
TOOL CHOICE
MATTERS

Kavaler, Trockman,
Vasilescu, Filkov

SOFTWARE DEVELOPMENT KEEPS CHANGING

➤ Waterfall

➤ OOP

➤ flexible off the shelf

➤ modular

➤ collaborative

➤ agile

➤ platform independence

➤ containers

➤ automation, independence

➤ DevOps, CI, CD

Alexa, Good Morning.  
- sets thermostat to 69F  
- turn on lights  
- play “Thank u, next”

time

SOFTWARE DEVELOPMENT KEEPS CHANGING

➤ Waterfall

➤ OOP

➤ flexible off the shelf

➤ modular

➤ collaborative

➤ agile

➤ platform independence

➤ containers

➤ automation, independence

➤ DevOps, CI, CD

Alexa, Good Morning.  
- sets thermostat to 69F  
- turn on lights  
- play “Thank u, next”

time

Relies on Tools  
More and more

NEW TECH INCREASES PRODUCTIVITY AND PREDICTABILITY

82 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

Contributions to value-based software engi-
neering—integration of resource investment
levels and benefits estimation models into re-
turn-on-investment models.

These achievements have also impacted the man-
agement of software engineering. Practitioners have
benefited from them in these areas:

The basis of project stakeholder negotiation
and expectations management. This includes
the ability to avoid overcommitment to infea-
sible budgets and schedules.
The basis of project planning and control, and
impact on processes. Anchor-point milestones
enable control of complex concurrent engineer-
ing processes. Schedule, cost, and quality as
independent-variable processes enable meeting
targets by prioritizing and adding or dropping
marginal-priority features.
Improved project performance. Phase and ac-
tivity estimates provide a framework for better
progress monitoring and control.
A framework for process improvement. This
includes improved planning realism; monitor-
ing and control; models; and productivity, cycle
time, quality, and business value.
Contributions to communities of interest. Be-
sides the core estimation community, these
include the communities concerned with em-
pirical methods, metrics, economics-driven
or value-based software engineering, systems
architecting, software processes, and project
management.

Given that the software engineering field is con-

N

N

N

N

N

N

tinually reinventing itself, it is evident that software
resource estimation is not a solved problem. Be-
cause we expect software engineering to continue
changing, future challenges will introduce new op-
portunities for improved methods and tools. Here
are the most significant challenges:

Integration of software- and systems-engineer-
ing estimation. Challenges include compatible
sizing parameters, schedule estimation, and
compatible output estimates.
Sizing for new product forms. These include re-
quirements or architectural specifications, sto-
ries, and component-based development sizing.
Exploration of new model forms. Candidates
include case-based or analogy-based estimation;
neural nets; system dynamics; and new sizing,
complexity, reuse, or volatility parameters.
Maintaining compatibility across multiple
classes of models. Challenges include compat-
ibility of inputs, outputs, and assumptions.
Total-cost-of-ownership estimation. In addi-
tion to software development, this can include
estimation of costs of installation, training, ser-
vices, equipment, COTS licenses, facilities, op-
erations, maintenance, and disposal.
Benefits and return-on-investment estimation.
This can include valuation of products, services,
and less-quantifiable returns such as customer
satisfaction, controllability, and staff morale.
Accommodating future software engineering
trends. These can include ultralarge software-
intensive systems, ultrahigh dependability,
increasingly rapid change, massively distrib-
uted and concurrent development, and the ef-
fects of computational plenty, autonomy, and
biocomputing.

These trends contribute to the ever-receding ho-
rizon of perfectible resource estimation models but
keep the model development and evolution com-
munity in a highly stimulating and challenge-driven
state.

References
 1. Chaos Report, Standish Group Int’l, 2007.
 2. B.W. Boehm, Software Engineering Economics, Pren-

tice Hall, 1981.
 3. C.E. Walston and C.P. Felix, “A Method of Program-

ming Measurement and Estimation,” IBM Systems J.,
vol. 16, no. 1, 1977, pp. 54–73.

 4. A.J. Albrecht and J. Gaffney, “Software Function,
Source Lines of Code, and Development Effort Predic-
tion: A Software Science Validation,” IEEE Trans.
Software Eng., vol. SE-9, no. 6, 1983, pp. 639–648.

 5. J. Lane and R. Valerdi, “Synthesizing System-of-Sys-
tems Concepts for Use in Cost Estimation,” Systems
Eng., Dec. 2007, pp. 297–308.

N

N

N

N

N

N

N

A

Component-
based

Precedented

Unprecedented
COTS Very-high-level

languages
Agents, agility,

aspects, autonomy

B C D
Time and domain understanding

Relative productivity

Estimation error

Figure 3. Software
estimation—the
receding horizon. At
point A, increased
domain understanding
led to the ability to
develop and reuse
software components.
Points B, C, and D
indicate other points
where software
development was
essentially reinvented.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 26, 2009 at 20:37 from IEEE Xplore. Restrictions apply.

From Boehm and Valerdi, 2008

I GOT TOOLS FOR THIS, I GOT TOOLS FOR THAT
➤ Tools available for many tasks

➤ QA: linters, package managers, coverage, testing, deployment

COVERALLS

GITHUB ENCOURAGES CONTEXT SWITCHING

➤ Programmers work on different projects at the same time

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Number of repos (2013−11−25 : 2014−11−23) 0 1 3 5 8

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Number of repos (2013−11−25 : 2014−11−23) 0 1 3 5 8ONE GITHUB DEVELOPER:

➤ Some of those projects can use different tools for same task!

I GOT MULTIPLE TOOLS FOR THIS
➤ Many tools available for the same task

➤ E.g., dependency managers

➤ Projects adopt tools with features needed, presumably

GITHUB ENCOURAGES CONTEXT SWITCHING

➤ Programmers work on different projects at the same time

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Number of repos (2013−11−25 : 2014−11−23) 0 1 3 5 8

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Number of repos (2013−11−25 : 2014−11−23) 0 1 3 5 8ONE GITHUB DEVELOPER:

➤ Some of those projects can use different tools for same task!

WHICH ONES?

➤ But how are the tools chosen?

➤ What discussions precede the choices?

➤ Are any benefits seen/goals achieved after tool adoption?

PROJECTS USE MULTIPLE TOOLS
Nu

m
be

r o
f p

ro
je

ct
s

0

12500

25000

37500

50000

Number of tools

1 2 3 4 5 6 7 8 9 10+

PROJECTS SWITCH BETWEEN TOOLS

➤ Sometimes projects switch from one tools to another in the
same task class

➤ Why do they switch? Is there a benefit?

GITHUB ENCOURAGES CONTEXT SWITCHING

➤ Programmers work on different projects at the same time

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Number of repos (2013−11−25 : 2014−11−23) 0 1 3 5 8

Mon
Tue

Wed
Thu
Fri

Sat
Sun

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Number of repos (2013−11−25 : 2014−11−23) 0 1 3 5 8ONE GITHUB DEVELOPER:

➤ Some of those projects can use different tools for same task!

WE LOOKED AT DISCUSSIONS

➤ We expected to find at least some discussions of the choices

clipart-library.com

‘ish

RESEARCH QUESTIONS
➤RQ1: How often do projects change between tools within the same
task class?

➤RQ2: Are there measurable changes, in terms of monthly churn, pull
requests, number of contributors, and issues, associated with adopting
a tool? Are different tools within an equivalence class associated with
different outcomes?

➤RQ3: Are certain tool adoption sequences more associated with
changes in our outcomes of interest than others?

STUDY DESIGN

➤ Research methodology

➤ Software Repository mining

➤ Quasi-experiments, modeling, hypothesis testing

➤ Case studies for triangulation, theory building

➤ Focus: 3 task classes (linters, dependency managers, code
coverage)

➤ Data: 54,440 projects, 38,948 tool adoptions

RQ1: TOOL SWITCHING ALLUVIAL DIAGRAMS
0

100
200
300
400
500

1 2 3

Linter

1 2 3
0

5000

10000 Tool
eslint

jshint

standard

0

200

400

600

800

1 2 3

Dependency Manager

1 2 3
0

5000

10000

15000

20000

25000

Tool
bithound

david

gemnasium

0
250
500
750

1000

1 2 3

Coverage

1 2 3
0

5000

10000

15000

Sequence Position

Tool
codeclimate

codecov

coveralls

RQ1: TOOL SWITCHING ALLUVIAL DIAGRAMS
0

100
200
300
400
500

1 2 3

Linter

1 2 3
0

5000

10000 Tool
eslint

jshint

standard

0

200

400

600

800

1 2 3

Dependency Manager

1 2 3
0

5000

10000

15000

20000

25000

Tool
bithound

david

gemnasium

0
250
500
750

1000

1 2 3

Coverage

1 2 3
0

5000

10000

15000

Sequence Position

Tool
codeclimate

codecov

coveralls

Most projects choose one tool within a task class and stick with it.
When projects adopt additional tools within the same task class,
they go with the most popular choice.

RQ2: EFFECTIVENESS BEFORE AND AFTER ADOPTION

Effectiveness variables: churn, #pull requests, #unique authors, #issues

INTERRUPTED TIME SERIES: REGRESSION DISCONTINUITY

time: 1 2 3 … … … 100 101 102 … … … 200

 intervention: 0 0 0 … … … 1 1 1 … … … 1

time after
intervention: 0 0 0 … … … 1 2 3 … … … 100

yi = α + β·timei + ɣ·interventioni + δ·time_after_interventioni + εi

β

β + δ

ɣ

SLOPE INCREASES OR DECREASES, AND DISCONTINUITY

SOME RESULTS

SOME RESULTS

Control Variables

RQ3: ON ADOPTION ORDER

RQ3: SOME RESULTS

CONCLUSION AND FUTURE

➤ Tool choice matters but it is not discussed much

➤ Projects can benefit from adopting the right tool

➤ The order in which tools are adopted matters

➤ Future goal: bespoke tool pipelines, depending on project
context

THANKS!

➤ NSF

➤ DECAL @ UCD

➤ Strudel @ CMU

