TOOL CHOICE MATTERS

Kavaler, Trockman, Vasilescu, Filkov

SOFTWARE DEVELOPMENT KEEPS CHANGING

- ► Waterfall
 - ► OOP

time

- ► flexible off the shelf
 - ► modular
 - ► collaborative
 - ► agile
 - ► platform independence
 - ► containers
 - ► automation, independence
 - ► DevOps, CI, CD

SOFTWARE DEVELOPMENT KEEPS CHANGING

- ► Waterfall
 - ► OOP
 - ► flexible off the shelf
 - ► modular
 - ► collaborative
 - ► agile

NEW TECH INCREASES PRODUCTIVITY AND PREDICTABILITY

Precedented	Component-	for		Agents, agility,	
Unprecedented	based		languages	aspects, autonomy	
A B C D Time and domain understanding					

From Boehm and Valerdi, 2008

I GOT TOOLS FOR THIS, I GOT TOOLS FOR THAT

► Tools available for many tasks

► QA: linters, package managers, coverage, testing, deployment

I GOT MULTIPLE TOOLS FOR THIS

► Many tools available for the same task

► E.g., dependency managers

Projects adopt tools with features needed, presumably

WHICH ONES?

r tool I	Per task class
	CI LASK CIASS
), 763 900 8, 093	23,917
2,785 2,328 2,221	15,249
7,095 2,876 3,435	12,886
	,876

TOOL ADOPTION SUMMARY STATISTICS

te: 54,440 total projects under study 38,948 projects which adopt tools under study 2,283 projects use different tools in the same task class

- But how are the tools chosen?
- ► What discussions precede the choices?
- Are any benefits seen/goals achieved after tool adoption?

PROJECTS USE MULTIPLE TOOLS

Number of tools

Sometimes projects switch from one tools to another in the same task class

➤ Why do they switch? Is there a benefit?

WE LOOKED AT DISCUSSIONS

► We expected to find at least some discussions of the choices

ʻish

clipart-library.com

► RQ1: How often do projects change between tools within the same task class?

►RQ2: Are there measurable changes, in terms of monthly churn, pull requests, number of contributors, and issues, associated with adopting a tool? Are different tools within an equivalence class associated with different outcomes?

► RQ3: Are certain tool adoption sequences more associated with changes in our outcomes of interest than others?

STUDY DESIGN

- Research methodology
 - Software Repository mining
 - Quasi-experiments, modeling, hypothesis testing
 - ► Case studies for triangulation, theory building

- Focus: 3 task classes (linters, dependency managers, code coverage)
- ► Data: 54,440 projects, 38,948 tool adoptions

RQ1: TOOL SWITCHING ALLUVIAL DIAGRAMS

RQ1: TOOL SWITCHING ALLUVIAL DIAGRAMS

Most projects choose one tool within a task class and stick with it. When projects adopt additional tools within the same task class, they go with the most popular choice.

Effectiveness variables: churn, #pull requests, #unique authors, #issues

INTERRUPTED TIME SERIES: REGRESSION DISCONTINUITY

 $y_i = \alpha + \beta \cdot time_i + \gamma \cdot intervention_i + \delta \cdot time_after_intervention_i + \varepsilon_i$

SLOPE INCREASES OR DECREASES, AND DISCONTINUITY

SOME RESULTS

.

DEPENDENCY MANAGER MODELS

	log(Churn + 1)	PRs	Unique Authors	Issues
	Coeffs (Err.)	Coeffs (Err.)	Coeffs (Err.)	Coeffs (Err.)
Authors	$0.456^{***}(0.007)$	$0.383^{***}(0.004)$		$0.052^{***}(0.004)$
Commits	$0.052^{***}(0.001)$	$0.014^{***}(0.000)$	$0.009^{***}(0.000)$	$0.015^{***}(0.000)$
PRs	$-0.078^{***}(0.003)$. ,	$0.068^{***}(0.001)$	
Churn		$-0.040^{***}(0.001)$		$0.009^{***}(0.001)$
time	$-0.049^{***}(0.000)$	$0.011^{***}(0.000)$	$-0.005^{***}(0.000)$	$0.013^{***}(0.000)$
gemnasium_int	$-0.168^{***}(0.043)$	-0.022 (0.025)	$0.048^{***}(0.010)$	0.061 (0.030)
gemnasium_after	-0.003 (0.003)	$0.009^{***}(0.002)$	0.001^{*} (0.001)	-0.001 (0.002)
david_int	$-0.182^{***}(0.021)$	$0.199^{***}(0.012)$	$0.082^{***}(0.005)$	$0.138^{***}(0.015)$
david_after	$-0.009^{***}(0.002)$	$0.005^{***}(0.001)$	-0.001 (0.000)	$-0.011^{***}(0.001)$
bithound_int	0.002 (0.107)	$0.418^{***}(0.061)$	$0.088^{***}(0.026)$	0.078 (0.073)
bithound_after	-0.028^{*} (0.014)	$0.037^{***}(0.008)$	0.000 (0.003)	-0.014 (0.009)
Intercept	$4.567^{***}(0.014)$	$0.289^{***}(0.009)$	$0.998^{***}(0.003)$	$0.415^{***}(0.011)$
Marginal R^2	21.6%	7.1%	12.5%	2.4%
Conditional \mathbb{R}^2	54.1%	58.9%	44.8%	56.8%
Note:			*p<0.05; **p	o<0.01; ***p<0.001

SOME RESULTS

DEPENDENCY MANAGER MODELS

	log(Churn + 1) Coeffs (Err.)	PRs Coeffs (Err.)	Unique Authors Coeffs (Err.)	Issues Coeffs (Err.)
Authors Commits PRs Churn	$0.456^{***}(0.007)$ $0.052^{***}(0.001)$ $-0.078^{***}(0.003)$	0.383***(0.004) 0.014***(0.000) Control Variables -0.040***(0.001)	$0.009^{***}(0.000)$ $0.068^{***}(0.001)$	$0.052^{***}(0.004)$ $0.015^{***}(0.000)$ $0.009^{***}(0.001)$
time gemnasium_int gemnasium_after david_int david_after	$-0.049^{***}(0.000)$ $-0.168^{***}(0.043)$ -0.003 (0.003) $-0.182^{***}(0.021)$ $-0.009^{***}(0.002)$	0.011***(0.000) - - Discontinuity, - Slope 3. 2.	$\begin{array}{r} -0.005^{***}(0.000)\\ 0.048^{***}(0.010)\\ 0.001^{*} (0.001)\\ 0.082^{***}(0.005)\\ \hline 0.001 (0.000) \end{array}$	$\begin{array}{r} 0.013^{***}(0.000) \\ 0.061 & (0.030) \\ -0.001 & (0.002) \\ 0.138^{***}(0.015) \\ -0.011^{***}(0.001) \end{array}$
bithound_int bithound_after Intercept	$\begin{array}{r} 0.003 & (0.002) \\ 0.002 & (0.107) \\ -0.028^{*} & (0.014) \\ 4.567^{***} (0.014) \end{array}$	0.037 ² (0.008) 0.289***(0.009)	$\begin{array}{c} 0.001 & (0.000) \\ \hline 0.088^{***} (0.026) \\ 0.000 & (0.003) \\ 0.998^{***} (0.003) \end{array}$	$\begin{array}{c} 0.011 & (0.001) \\ 0.078 & (0.073) \\ -0.014 & (0.009) \\ 0.415^{***} (0.011) \end{array}$
Marginal R^2 Conditional R^2 <i>Note:</i>	$21.6\%\ 54.1\%$	7.1% 58.9%	12.5% 44.8% *p<0.05; **1	2.4% 56.8% p<0.01; ***p<0.001

RQ3: ON ADOPTION ORDER

.

RQ3: SOME RESULTS

CONCLUSION AND FUTURE

- ► Tool choice matters but it is not discussed much
- Projects can benefit from adopting the right tool
- ➤ The order in which tools are adopted matters

Future goal: bespoke tool pipelines, depending on project context

THANKS!

► NSF

. .

► DECAL @ UCD

.

► Strudel @ CMU