
Wait For It: Determinants of Pull
Request Evaluation Latency on GitHub

1) Motivation

The pull-based model is wildly used in distributed
software teams. It offers a much lower barrier to entry
for potential contributors, since anyone can submit pull
requests to any repository.

The members of a project’s core team (integrators) are
responsible for evaluating the proposed changes and
integrating them into the main development line. They
often struggle to keep up with the volume of incoming
pull requests. Automated testing, or continuous
integration (CI), is one technology that helps them
manage the high review load.

 We report on a quantitative study that tries to resolve
which factors affect pull request evaluation latency in
GitHub. We model the evaluation time of merged pull
requests (PRs) tested by Travis-CI.

The evaluation latency is a complex issue, requiring
many independent variables to explain adequately.

We build three different models and confirm the
following three hypotheses:

H1. Previously-identified
social and technical factors
influence pull request
latency in expected ways.

H2. Process-related factors
have a significant impact on
pull request latency.

H3. Continuous integration
is a dominant factor of pull
request latency.

Figure 1. Usage of Pull Requests

Pull Request Mechanism

3

Pull Request
List

Bug Fix
Contributor

Clone
Repository

Contributors

Core Team
(Integrators)

Pull-
Request

Feature

Pull-
Request

¾ Work practices and challenges in pull-based development: The integrator’ perspective. ICSE 2015
¾ Influence of social and technical factors for evaluating contribution in GitHub. ICSE 2014

� Pull requests are used in many scenarios beyond
basic patch submission.
– Bug Fixes
– New Features

Figure 3. Evaluation Model of Pull Requests

Results

Submitting

Profile

√Social Activities
√Contributions

Evaluate

Contributor

Patch
√Size
√Quality

Pull
Request

Issue Tracker

PR
PR

PR

PR PR
PR

Discussing

Continuous Integration
System

Merging

Core Team

Management
√Workload
√Team size
√Priority

InputTesting
Branch

Build

Test

Notifying

Out
pu

t

3) Results

Table 2. Pull Request Latency Models and Results

Table II
PULL REQUEST LATENCY MODELS

Model 1 Model 2 Model 3
Coeffs(Errors) Sum Sq. Coeffs(Errors) Sum Sq. Coeffs(Errors) Sum Sq.

(Intercept) 0.072 (0.009)⇤⇤⇤ 0.045 (0.009)⇤⇤⇤ 0.155 (0.008)⇤⇤⇤

scale(log(proj age)) 0.022 (0.004)⇤⇤⇤ 276.96⇤⇤⇤ �0.014 (0.004)⇤⇤ 276.96⇤⇤⇤ �0.028 (0.004)⇤⇤⇤ 276.96⇤⇤⇤

scale(log(team size)) �0.055 (0.004)⇤⇤⇤ 7.92⇤⇤⇤ �0.108 (0.004)⇤⇤⇤ 7.92⇤⇤⇤ �0.108 (0.004)⇤⇤⇤ 7.92⇤⇤⇤

scale(log(n additions + 0.5)) 0.064 (0.005)⇤⇤⇤3354.64⇤⇤⇤ 0.065 (0.005)⇤⇤⇤3354.64⇤⇤⇤ 0.035 (0.004)⇤⇤⇤3354.64⇤⇤⇤

scale(log(n deletions + 0.5)) �0.016 (0.005)⇤⇤ 54.92⇤⇤⇤ 0.001 (0.005) 54.92⇤⇤⇤ �0.000 (0.004) 54.92⇤⇤⇤

scale(log(n commits + 0.5)) 0.147 (0.005)⇤⇤⇤3789.65⇤⇤⇤ 0.130 (0.005)⇤⇤⇤3789.65⇤⇤⇤ 0.028 (0.004)⇤⇤⇤3789.65⇤⇤⇤

scale(log(hotness + 0.5)) 0.016 (0.004)⇤⇤⇤ 74.31⇤⇤⇤ 0.001 (0.004) 74.31⇤⇤⇤ 0.016 (0.003)⇤⇤⇤ 74.31⇤⇤⇤

pr includes testsTRUE 0.108 (0.010)⇤⇤⇤ 194.91⇤⇤⇤ 0.076 (0.009)⇤⇤⇤ 194.91⇤⇤⇤ 0.009 (0.008) 194.91⇤⇤⇤

scale(log(n comments + 0.5)) 0.409 (0.005)⇤⇤⇤5482.16⇤⇤⇤ 0.189 (0.005)⇤⇤⇤5482.16⇤⇤⇤ 0.037 (0.005)⇤⇤⇤5482.16⇤⇤⇤

scale(submitter success rate) �0.037 (0.005)⇤⇤⇤ 432.86⇤⇤⇤ �0.023 (0.004)⇤⇤⇤ 432.86⇤⇤⇤ �0.016 (0.004)⇤⇤⇤ 432.86⇤⇤⇤

scale(strength social connection) �0.072 (0.005)⇤⇤⇤ 494.32⇤⇤⇤ �0.037 (0.005)⇤⇤⇤ 494.32⇤⇤⇤ �0.052 (0.004)⇤⇤⇤ 494.32⇤⇤⇤

scale(log(n followers + 0.5)) �0.090 (0.004)⇤⇤⇤ 358.74⇤⇤⇤ �0.108 (0.004)⇤⇤⇤ 358.74⇤⇤⇤ �0.064 (0.004)⇤⇤⇤ 358.74⇤⇤⇤

submitter is integratorTRUE �0.129 (0.011)⇤⇤⇤ 56.10⇤⇤⇤ �0.095 (0.010)⇤⇤⇤ 56.10⇤⇤⇤ �0.078 (0.009)⇤⇤⇤ 56.10⇤⇤⇤

scale(log(proj age)):scale(log(team size)) �0.074 (0.004)⇤⇤⇤ 234.23⇤⇤⇤ �0.012 (0.004)⇤⇤ 107.07⇤⇤⇤ �0.016 (0.004)⇤⇤⇤ 70.27⇤⇤⇤

scale(log(description complexity)) 0.115 (0.004)⇤⇤⇤ 960.00⇤⇤⇤ 0.087 (0.004)⇤⇤⇤ 960.00⇤⇤⇤

scale(log(availability + 0.5)) 0.037 (0.004)⇤⇤⇤ 124.96⇤⇤⇤ 0.033 (0.003)⇤⇤⇤ 124.96⇤⇤⇤

scale(log(n open pr + 0.5)) 0.166 (0.005)⇤⇤⇤ 908.33⇤⇤⇤ 0.151 (0.004)⇤⇤⇤ 908.33⇤⇤⇤

Friday effectTRUE 0.068 (0.010)⇤⇤⇤ 34.68⇤⇤⇤ 0.062 (0.009)⇤⇤⇤ 34.68⇤⇤⇤

issue tagTRUE 0.096 (0.009)⇤⇤⇤ 56.72⇤⇤⇤ 0.081 (0.008)⇤⇤⇤ 56.72⇤⇤⇤

mention tagTRUE �0.060 (0.013)⇤⇤⇤ 14.11⇤⇤⇤ �0.020 (0.012) 14.11⇤⇤⇤

scale(log(first rsp + 0.5)) 0.274 (0.005)⇤⇤⇤1892.64⇤⇤⇤ 0.243 (0.004)⇤⇤⇤1892.64⇤⇤⇤

scale(log(team size)):scale(log(workload+0.5)) �0.071 (0.004)⇤⇤⇤ 163.80⇤⇤⇤ �0.041 (0.004)⇤⇤⇤ 60.39⇤⇤⇤

scale(log(total ci time)) 0.481 (0.005)⇤⇤⇤3855.79⇤⇤⇤

ci errorTRUE �0.401 (0.009)⇤⇤⇤ 977.41⇤⇤⇤

ci failTRUE �0.016 (0.009) 0.27
scale(log(first rsp+0.5)):scale(log(total ci time)) �0.102 (0.003)⇤⇤⇤ 434.71⇤⇤⇤

Adjusted R-squared 0.362 0.461 0.587
⇤⇤⇤p < 0.001, ⇤⇤p < 0.01, ⇤p < 0.05

shorter evaluation latencies. Perhaps more surprisingly, project
area hotness and test case inclusion have highly significant
positive effects, i.e., pull requests touching active parts of
the system, and including tests, are associated with longer
evaluation latencies. Since all predictors suggested by prior
work are highly significant, we confirm H1.

Model 2 offers a significantly better fit (R2 = 46.1%).
Pull request churn, size, and length of discussion, all highly
significant, remain the most prominent predictors, together
explaining 67% of the variance explained. However, the new
process-related factors are all highly significant, and have
sizeable effects. Pull requests with later initial reactions from
integrators (10% of the variance explained) tend to also be
closed later, suggesting that the initial priorities integrators
assign to pull requests very early in the evaluation process (the
median first comment time is 16min) are already indicative of
the (much later) closing time (median 11.2h). The description
length (5%) seems indicative of a pull request’s complexity
(impact) rather than its legibility, since the effect is positive
(longer closing time). The integrators’ workload is another
sizeable positive effect (5%), moderated by team size. Other
positive, albeit smaller, effects are integrator availability (pull
requests submitted outside “business hours” and on Fridays
tend to be closed later) and links to issue reports; @mention
tags have a small negative effect (pull requests assigned to
reviewers early in the process, i.e., at creation, tend to be
processed quicker). Therefore, H2 is confirmed.

Model 3 achieves the best fit among our models (R2 =
58.7%). The CI-related factors are highly significant and cover
more than 20% of the variance explained, on par with the
main social and technical effects (pull request churn, size, and

length of discussion). The prominence of the total CI latency
effect (16%) supports the process description in Section II:
integrators wait for the automatic testing phase to end (median
39min) before proceeding to do a team-wide code review and
eventually close the pull request. The total CI latency effect
is moderated by first human response. As discussed above,
CI errors will occur when the pull request has already been
merged (then the branch has been deleted), hence the negative
significant effect on latency. Therefore, H3 is confirmed.

V. CONCLUSIONS AND FUTURE WORK

Allowing greater inclusivity in contributions can result in a
deluge of pull requests, which, if unchecked, can significantly
increase the burden on integrators in distributed software
development projects. Our preliminary models show that pull
request review latency is complex, and depends on many
predictors. Naturally, the size of the pull request matters: the
shorter it is the faster it will be reviewed. Other actionable
strong predictors are the delay to the first human response
and the availability of the CI pipeline. Improving on both may
hasten the review process.

This preliminary study suffers from at least the similar
threats that other preliminary studies do [4], [15]: possible is-
sues with data gathering, no validation, and unrefined models.
We are working on addressing all of these in a more mature
study of this subject, that will also elaborate on the impact of
CI on the distributed software development process.

VI. ACKNOWLEDGEMENTS

YY and HW acknowledge support from NSFC (grants
61432020, 61472430). VF, PD, and BV are partially supported
by NSF (grants 1247280, 1414172).

MSR 2015, Florence, Italy

 
∗College of Computer, National University of Defense Technology. China
†Department of Computer Science, University of California, Davis. USA

Y. Yu∗†, H. Wang∗, V. Filkov†, P. Devanbu†, B. Vasilescu†

yuyue@nudt.edu.cn • vasilescu@ucdavis.edu

2) Our study

Table 1. Summary of Our Dataset

Table I
BASIC STATISTICS FOR OUR DATA SET. WE ONLY MODEL THE EVALUATION

TIME OF PULL REQUESTS (PRS) TESTED BY CI AND MERGED.

Attributes Ruby Python JavaScript Java/C++ Total

#Integrators 220 177 190 103 690
#PRs received 28,409 28,903 26,983 18,989 103,284
#PRs merged 20,755 24,039 17,920 13,456 76,170
#PRs merged&CI-tested 11,562 11,955 11,821 5,510 40,848

Table I presents basic statistics about our dataset. In total,
we collected 103,284 pull requests from 40 different projects.
We found that 74% of pull requests have been merged (using
heuristics similar to those in [13]), and that 59% have been
submitted after CI was adopted (measured, per project, as the
date of the earliest pull request tested by Travis-CI). In this
preliminary study we only model the evaluation time of pull
requests that have been tested by Travis-CI and eventually
merged. Rejected pull requests and pull requests that do
not undergo automatic testing may be subject to different
processes; we will address these in future work.
Measures:

1) Outcome: The outcome measure is the pull request
latency, i.e., the time interval between pull request creation and
closing date, in minutes (in case of “reopened” pull requests,
we only consider the date when they are first closed).

2) Predictors: We compute project-level, pull-request level,
and submitter-level measures, as discussed in Section II.
Project age: At time of pull request creation, in minutes. Older
projects are likely to have different contribution dynamics.
Team size: Number of integrators active (i.e., closed at least
one issue/pull request, not their own) during the three months
prior to pull request creation. Larger teams may be better
prepared to handle higher volumes of incoming pull requests.
Project area hotness: Median number of commits to files
touched by the pull request relative to all project commits
during the last three months.
Commits: Total number of commits part of the pull request.
Travis-CI tests each commit separately.
Churn: Total number of lines added and deleted by the pull re-
quest. Bigger changes may require longer code reviews/testing.
Test inclusion: Binary variable measuring if the pull request
touched at least one test file (based on file name/path regular
expressions). Integrators prefer pull requests containing tests.
Comments: Total number of overall and inline comments
part of a pull request discussion. Pull requests with lots of
comments tend to signal controversy [6].
Submitter’s success rate: Fraction of previous pull requests
merged, relative to all previous pull requests by this submitter.
Integrator: True if the submitter is an integrator.
Strength of social connection: The fraction of team members
that interacted with the submitter in the last three months
(computed using comment networks [26]). Integrators may
favor contributors more strongly connected to them.
Followers: Total number of GitHub developers following the
submitter at pull request creation, as a measure of reputation.
Description complexity: Total number of words in the pull
request title and description. Longer descriptions may indicate

higher complexity (longer evaluation), or better documentation
(facilitating evaluation akin to issue reports [27]).
Workload: Total number of pull requests still open in each
project at current pull request creation time.
Integrator availability: The minimum number of hours
(0 . . . 23) until either of the top two integrators (by number
of pull requests handled the last three months) are active, on
average (based on activity in the last three months), during
24 hours. Two reviewers find an optimal number of defects
during code review [18], [19], hence our choice for top two.
Friday effect: True if the pull request arrives Friday [20].
#Issue tag and @mention tag: Binary variables to encode the
presence of “#” tags (links to issues) and “@” tags (to notify
integrators directly) in the pull request title or description.
First human response: Time interval in minutes from pull
request creation to first response by reviewers, as a measure
of the project team’s responsiveness.
Total CI latency: Time interval in minutes from pull request
creation to the last commit tested by CI. The team-wide code
review typically starts after all commits have been tested.
CI result: Binary variables to encode the presence of errors
while running Travis-CI (most often, branch already deleted)
and test failures across the different pull request commits.
Analysis: We use multiple linear regression to model the
latency of evaluating pull requests. We build three models,
the first only with predictors previously used in the literature
(H1), and the subsequent two by adding groups of variables
corresponding to H2 and H3. The age of the project, the team
size, and their interaction were added to all models as control
variables. All numeric variables were first log transformed
(plus 0.5) to stabilize variance and reduce heteroscedastic-
ity [5], then standardized (mean 0, standard deviation 1). To
test for multicollinearity, we computed the variance inflation
factors (VIFs) for each predictor (all remained well below 3,
indicating absence of multicollinearity). We use the adjusted
R2 statistic to evaluate the goodness-of-fit of our models. For
each model variable, we report its coefficients, standard error,
and significance level. We consider coefficients important if
they were statistically significant (p < 0.05). We obtain effect
sizes from ANOVA analyses. The resulting multivariate linear
regression models are shown in Table II.

IV. RESULTS

Model 1 has a relatively low goodness of fit (R2 = 36.2%).
As expected, the pull request churn, size, and length of discus-
sion play a dominant role in explaining the variance in the data.
All three effects are highly significant, and together account
for 85% of the variance explained. Pull requests with more
discussion, consisting of more commits, and adding more lines
of code are associated with longer evaluation latencies. Effects
related to the submitter’s track record, reputation, and social
connection to project members are also highly significant, with
smaller but still sizeable contributions to explaining the data
variance. Pull requests by the core team members, contributors
with more followers, more ties to project integrators, and
higher previous pull request success rates are associated with

Figure 2. Distribution of Pull Request Evaluation Time
Pull Request Latency (log)

Fr
eq

ue
nc

y

0
10

00
20

00
30

00

1 min 10 mins 1 day 1 week half year1 hour 1 mo

Features

