
Does Modeling Associate with
Lower Defect Proneness?

Alexander Serebrenik
TU Eindhoven

Truong Ho-Quang
Chalmers U of Tech

Adithya Raghuraman
STRUDEL @CMU

Michel Chaudron
Chalmers U of Tech

Bogdan Vasilescu
STRUDEL @CMU

MSR ’19, May 26–27, Montréal, QC, Canada

Slightly

!2

Belief vs evidence

© Microsoft Corporation

40 percent of major
decisions are based
not on facts, but on
the manager’s gut.
Accenture survey among 254 US managers in industry.
http://newsroom.accenture.com/article_display.cfm?article_id=4777

Opinion Formation

(Devanbu et al, ICSE 2016)

!3

Does the use of UML modeling, on average,
correlate with higher software quality?

We revisit a widely-held belief:

Software
design

Team / process maturity
and deliberateness

Higher code
quality

!4

Natural experiment

Mine OSS GitHub projects

!5

Natural experiment

“Treatment” group“Control” group

YesNo

!6

Natural experiment

“Treatment” group

An extensive dataset of UML models in GitHub
Gregorio Robles⇤, Truong Ho-Quang†, Regina Hebig†, Michel R.V. Chaudron†, Miguel Angel Fernandez⇤

⇤GSyC/LibreSoft, Universidad Rey Juan Carlos, Madrid, Spain
grex@gsyc.urjc.es, mafesan.nsn@gmail.com

†Chalmers — Göteborg University, Göteborg, Sweden
{truongh, hebig, chaudron}@chalmers.se

Abstract—The Unified Modeling Language (UML) is widely
taught in academia and has good acceptance in industry. How-
ever, there is not an ample dataset of UML diagrams publicly
available. Our aim is to offer a dataset of UML files, together with
meta-data of the software projects where the UML files belong to.
Therefore, we have systematically mined over 12 million GitHub
projects to find UML files in them. We present a semi-automated
approach to collect UML stored in images, .xmi, and .uml files.
We offer a dataset with over 93,000 UML diagrams from over
24,000 projects in GitHub.

Keywords-dataset; UML; GitHub; modeling; mining software
repositories;

I. INTRODUCTION

The Unified Modeling Language (UML) provides the fa-
cility for software engineers to specify, construct, visualize
and document the artifacts of a software-intensive system and
to facilitate communication of ideas [1]. UML is commonly
taught in the computer science curriculum worldwide, and
the use of UML is generally accepted in industrial software
development.

However, the number of publicly available examples of
UML is relatively low. To the knowledge of the authors, the
largest UML dataset up-to-date is the one reported in [2],
with around 800 UML models obtained by collecting examples
from the literature, web searches, and donations. However, that
dataset only contains lone-standing diagram. Thus, it cannot be
used for studying the software systems and projects associated
to these diagrams.

Even though it has been reported the UML is marginally
used in Open Source projects [3]1, the large amount of
repositories hosted in GitHub offers the possibility to look for
a large number of UML models used in software development
projects, together with their source code and development
meta-data. This is the reason why we have mined GitHub
for UML files. The result of this effort is a dataset with over
93,000 files with UML diagrams. These diagrams comprise
several types and formats and offer a valuable data source
for educational purposes, as they can be used as real-scenario
examples in class, and for further research.

The remainder of this paper is structured as follows: Next,
we introduce how we have extracted the data. Section III
contains the database schema, while section IV offers the

1In [3], we used a similar extraction methodology than the one presented
here but with only ⇠10% of the GHTorrent repositories as of 2016-02-01.

possibilities that such a dataset offers to researchers and prac-
titioners. After presenting future improvements in Section V,
we detail the limitations and challenges in Section VI. Finally,
conclusions are drawn in Section VII

II. EXTRACTION METHODOLOGY

The data extraction process comprises the following four
steps: (i) retrieval of the tree (file list) from GitHub repositories
(Section II-A), (ii) identification (grepping) of potential UML
files (Section II-B), (iii) automated examination (and manual
evaluation) of the existence of UML notation in the obtained
files (Section II-C), and (iv) retrieval of the meta-data from
those repositories where a UML file has been identified
(Section II-D).

A. Step 1: Mining GitHub
We depart with a list of GitHub repositories obtained from

GHTorrent [4]2, which offers a list of over 15M non-forked
non-deleted repositories. Since GHTorrent now distributes
CSV files (one file per table) instead of mysqldump based
backups, we use data available in the projects.csv file: the
URL of the project and the values of forked from and deleted
(as we discard those projects that are forks or have been
removed/deleted).

For those projects that are not forks nor have been deleted,
we retrieve from the GitHub API3 the tree (file list) for the
master branch. If the master branch does not exist, then we
query again the GitHub API for the branch that the project
has set as default, and perform a third request to download its
tree. With up to three GitHub calls for each repository, given
the GitHub API limitation of 5,000 requests/hour, it would
take around 14 months to perform the retrieval of data in
this first step. As this would have made the data gathering
unfeasible, we downloaded the JSON files in parallel with
over 20 active GitHub accounts, which were donated during
this process. This reduced the time span to approximately one
month. For almost 3 million of the repositories we obtained an
empty JSON file or an error message from the GitHub API,
because the repository has been removed or made private in
the time that goes from GHTorrent obtaining its data (which
is before February 1st 2016) and our request to the GitHub
API (during Summer of 2017).

2Specifically its 2016-02-01 data release: https://ghtstorage.blob.core.
windows.net/downloads/mysql-2016-02-01.tar.gz

3https://developer.github.com/v3/git/trees/#get-a-tree

(Robles et al, MSR 2017)

4,650 projects
http://oss.models-db.com

http://oss.models-db.com

!7

Natural experiment

“Treatment” group

Mine the
issue tracker

50 projects
• C++, C#, Java
• 2009+
• 10+ stars
• 30+ issues
• Issues in English

!8

Natural experiment

“Treatment” group

50 projects
• C++, C#, Java
• 2009+
• 10+ stars
• 30+ issues
• Issues in English

“Control” group

93 projects
Same filters, sampled
using GHTorrent

!9

Natural experiment

“Treatment” group
Separate bugs from

features etc.

vs …

Naive Bayes classifier
89% accuracy

“Control” group

!10

Natural experiment

“Treatment” group
Compare

defect rates

“Control” group

!11

Projects w/ UML: ~35% fewer bugs reported
than projects w/t UML (R2 = 58%)

Num bug
issues

Num commits Num
stars

Has
license

Has UML

+ + - -

Plus controls for:
• Proj age
• Num contribs
• Test suite ratio
• Comment ratio
• Has CI
• Language

!12

Projects w/ UML: ~35% fewer bugs reported
than projects w/t UML (R2 = 58%)

Num bug
issues

Num commits
(57% of variance

explained)

Num
stars

Has
license

Has UML
(2% of variance

explained)

+ + - -

Plus controls for:
• Proj age
• Num contribs
• Test suite ratio
• Comment ratio
• Has CI
• Language

< 0.5% of GitHub
repos have UML

Only 50 UML
projects in this
model

!13

!10

Natural experiment

“Treatment” group
Compare

defect rates

“Control” group

!12

Projects w/ UML: ~35% fewer bugs reported
than projects w/t UML (R2 = 58%)

Num bug
issues

Num commits
(57% of variance

explained)

Num
stars

Has
license

Has UML
(2% of variance

explained)

+ + - -

Plus controls for:
• Proj age
• Num contribs
• Test suite ratio
• Comment ratio
• Has CI
• Language

< 0.5% of GitHub
repos have UML

Only 50 UML
projects in this
model

Does UML Modeling Associate with Lower Defect
Proneness?: A Preliminary Empirical Investigation
Adithya Raghuraman

Carnegie Mellon Univ.

adithya@cmu.edu

Truong Ho-Quang,
Michel R. V. Chaudron

Chalmers | Gothenburg University

{truongh, chaudron}@chalmers.se

Alexander Serebrenik
Eindhoven Univ. of Tech.

a.serebrenik@tue.nl

Bogdan Vasilescu
Carnegie Mellon Univ.

vasilescu@cmu.edu

Abstract—The benefits of modeling the design to improve the

quality and maintainability of software systems have long been

advocated and recognized. Yet, the empirical evidence on this

remains scarce. In this paper, we fill this gap by reporting on

an empirical study of the relationship between UML modeling

and software defect proneness in a large sample of open-source

GitHub projects. Using statistical modeling, and controlling for

confounding variables, we show that projects containing traces

of UML models in their repositories experience, on average, a

statistically minorly different number of software defects (as

mined from their issue trackers) than projects without traces

of UML models.

Index Terms—software design, UML, software quality, open-

source-software

I. INTRODUCTION

Software design is widely accepted as a fundamental step
to developing high-quality software [1].

By making designs developers go through a process of
reflection, including discussing trade-offs and alternatives,
which should result in more thoughtful designs and more
maintainable systems [2]. The communication benefits to
explicit software design are also well understood: architectural
decisions that developers make become well-documented, re-
ducing information loss and potential misinterpretation during
system implementation, and facilitating communication among
team members and the onboarding of new developers [2]. Both
commercial [2] and open-source software developers [3] alike
recognize these potential benefits.

Among modeling languages, the Unified Modeling Lan-
guage (UML) is often viewed as de-facto standard for de-
scribing the design of software system using diagrams [3].
In practice, UML is often used in a loose/informal manner
(not adhering stricly to the standard [4]). Also UML is used
selectively, focusing on important, critical or novel parts.

Still, despite many expected benefits of UML modeling on
software development outcomes, the empirical evidence on
the matter is scarce. Notable exceptions include a study by
Arisholm et al. [5], showing through two controlled experi-
ments involving students that, for complex tasks and after a
learning curve, the availability of UML models may increase
the functional correctness and the design quality of subsequent
code changes. There is also work by Fernández-Sáez et al.

[6] that suggests an overall positive outlook of practitioners
towards UML modeling in software maintenance. Finally, we
note an empirical study by Nugroho and Chaudron [2] of an

industrial Java system, showing that classes for which UML-
modeled classes, on average, have a lower defect density that
those that were not modeled.

In this paper we study the intuitive and widely held belief
that the use of UML modeling, on average, should correlate

with higher software quality. To this end, we statistically
analyse empirical data obtained from of 143 open-source
GITHUB projects. Many hypotheses about the benefits of
UML models on specific software maintenance outcomes have
been proposed [7]. However, more generally, one can expect
that the mere practice of UML modeling as part of software
development indicates a high team- and process maturity and
deliberateness that, in turn, should lead to higher-quality code.

In search of evidence [8] to substantiate this belief, we
start from a publicly available data set of open-source soft-
ware projects on GITHUB that use UML models [9], and:
1) assemble a control group of GITHUB projects not known
to use UML models; 2) mine data from the GITHUB issue
trackers of both sets of projects (using and not using UML
models), estimating their defect rates (“bug” issue reports) as
a proxy for software quality; and 3) use multivariate statistical
modeling to estimate the impact of having UML models on
defect proneness, while controling for confounding factors.
Our results reveal a small statistically significant effect of
using UML models on defect proneness, i.e., projects with

UML models tend to have fewer defects.

II. METHODOLOGY

We designed a quasi-experiment to compare the defect
proneness between two groups of open-source GITHUB
projects: a treatment group of projects using UML models,
part of a public data set [9]; and a control group of projects
sampled randomly using GHTORRENT [10]. We describe our
data collection and analysis process next.

A. Data

As part of a previous study [11], Robles et al. [9] released
a data set of 4,650 non-trivial GITHUB projects,1 defined
as having at least six months of activity between their first
and most recent commits and at least two contributors, that
use UML models, as identified by a manually-augmented
automated repository mining technique. As our operational-
ization of defect proneness involves mining the projects’

1Available online at http://oss.models-db.com

Bogdan Vasilescu
@b_vasilescu

http://cmustrudel.github.io

http://cmustrudel.github.io

