"Automatically Assessing Code Understandability" **Reanalyzed**: Combined Metrics Matter

Asher Trockman, Keenen Cates, Mark Mozina, Tuan Nguyen, Christian Kästner, Bogdan Vasilescu

Carnegie Mellon University

Automatically Assessing Code Understandability: How far are we?

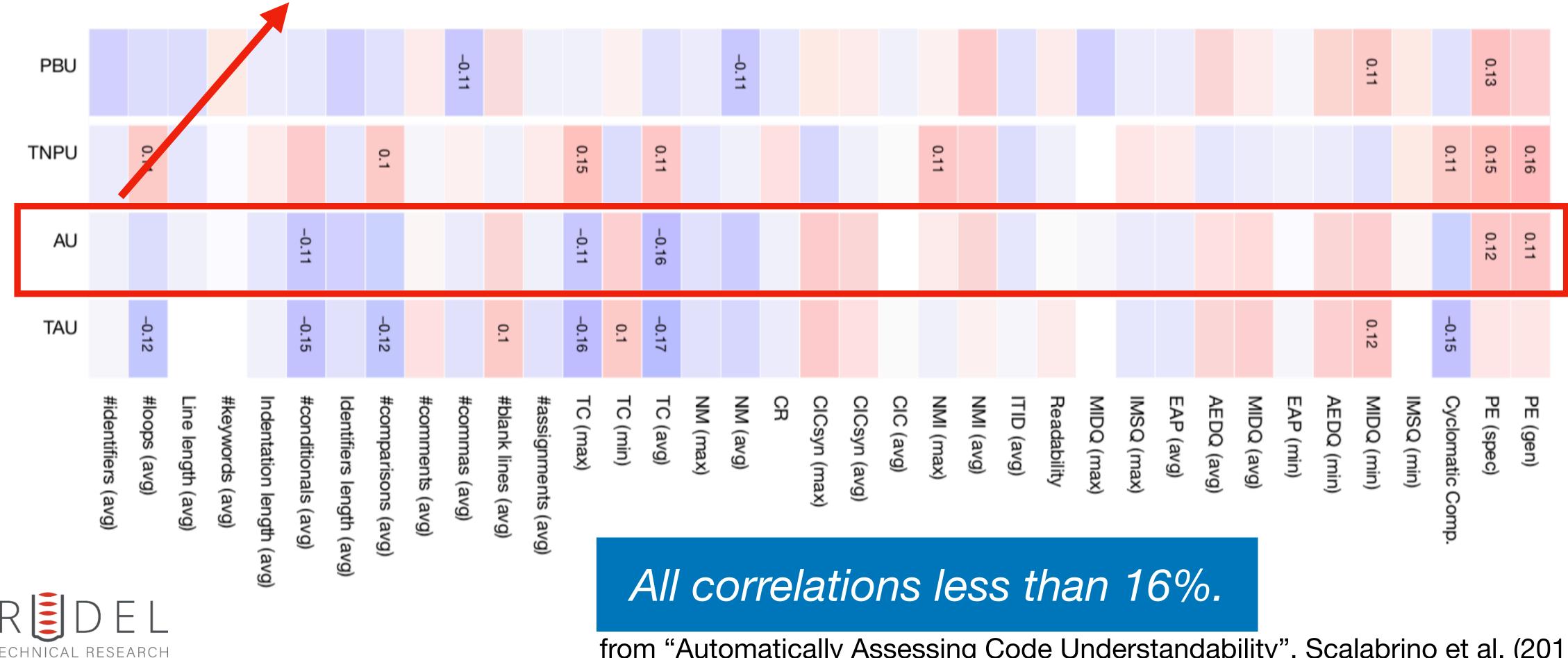
Simone Scalabrino, Gabriele Bavota, Christopher Vendome, Mario Linares-Vásquez, Denys Poshyvanyk, Rocco Olivetto

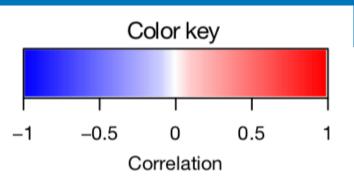
 Motivation: Understandability... 1. is crucial for maintenance 2. could predict defects Understandability metric: extremely useful

Automatically Assessing Code Understandability: How far are we?

Simone Scalabrino, Gabriele Bavota, Christopher Vendome, Mario Linares-Vásquez, Denys Poshyvanyk, Rocco Olivetto

- 46 developers quizzed on 8 Java snippets
- n = 324 observations, p = 121 features




Recorded 121 code-related metrics for the snippets

Original study: Individual correlations only

Understandability vs. **121** Metrics

JSING DATA EXCAVATION LAB

from "Automatically Assessing Code Understandability", Scalabrino et al. (2017)

Our reanalysis: Combined metrics — Logistic models

- Improvement: multiple regression models
- Public data set: Thank you, Scalabrino et al.!
- Caveat: High dimensionality (121 metrics) Solution: Automatic variable selection

• (Understandability ~ Combination of metrics + ε)

e.g., forward stepwise selection and LASSO

1. Developer Experience

If a developer has 5 or more years of programming experience, their odds of understanding increase by 200% on average.

1. Forward-Stepwise-Selected Understandability Classifier

Variable	Coefficient
(Intercept)	-0.398
Indentation.lengthdf	t. 0.241
LiteralsVisual.Y.	-0.275
JavaProfessional	1.228
X.parameters	-0.307
NMIavg.	0.442^{*}
MIDQmax.	-0.392^{*}
X.periodsavg.	-0.325^{*}
Professional	1.014^{*}
Line.lengthmax.	-0.488^{**}
TCavg.	-0.793^{**}
Ν	324
Log Likelihood	185.00
AIC	394.00
BIC	439.37
R_m^2	0.2870
R_c^2	0.4106
^{***} p < .001; ^{**} p < .01; [*] p < .05	

2. Maximum Line Length

Increasing the maximum line length by one character decreases the odds of understanding by 2%.

Takeaway: keep lines short.

1. Forward-Stepwise-Selected Understandability Classifier

Variable	Coefficient
(Intercept)	-0.398
Indentation.lengthdf	t. 0.241
LiteralsVisual.Y.	-0.275
JavaProfessional	1.228
X.parameters	-0.307
NMIavg.	0.442^{*}
MIDQmax.	-0.392^{*}
X.periodsavg.	-0.325^{*}
Professional	1.014^{*}
Line.lengthmax.	-0.488^{*}
TCavg.	-0.793^{*}
Ν	324
Log Likelihood	185.00
AIC	394.00
BIC	439.37
R_m^2	0.2870
R_c^2	0.4106
^{***} p < .001; ^{**} p < .01; [*] p < .05	

3. Narrow Meaning Identifiers¹

Increasing NMI, a measure of descriptiveness of variable names, by one unit increases the odds of understanding by 80%.

Takeaway: use specific variable names.

1. Forward-Stepwise-Selected Understandability Classifier

Variable	Coefficient
(Intercept)	-0.398
Indentation.lengthdf	t. 0.241
LiteralsVisual.Y.	-0.275
JavaProfessional	1.228
X.parameters	-0.307
NMIavg.	0.442^{*}
MIDQmax.	-0.392^{*}
X.periodsavg.	-0.325^{*}
Professional	1.014^{*}
Line.lengthmax.	-0.488^{*}
TCavg.	-0.793^{*}
N	324
Log Likelihood	185.00
AIC	394.00
BIC	439.37
R_m^2	0.2870
R_c^2	0.4106
***	*

***p < .001; **p < .01; *p < .05

[1] "Automatically Assessing Code Understandability", Scalabrino et al. (2017)

**

**

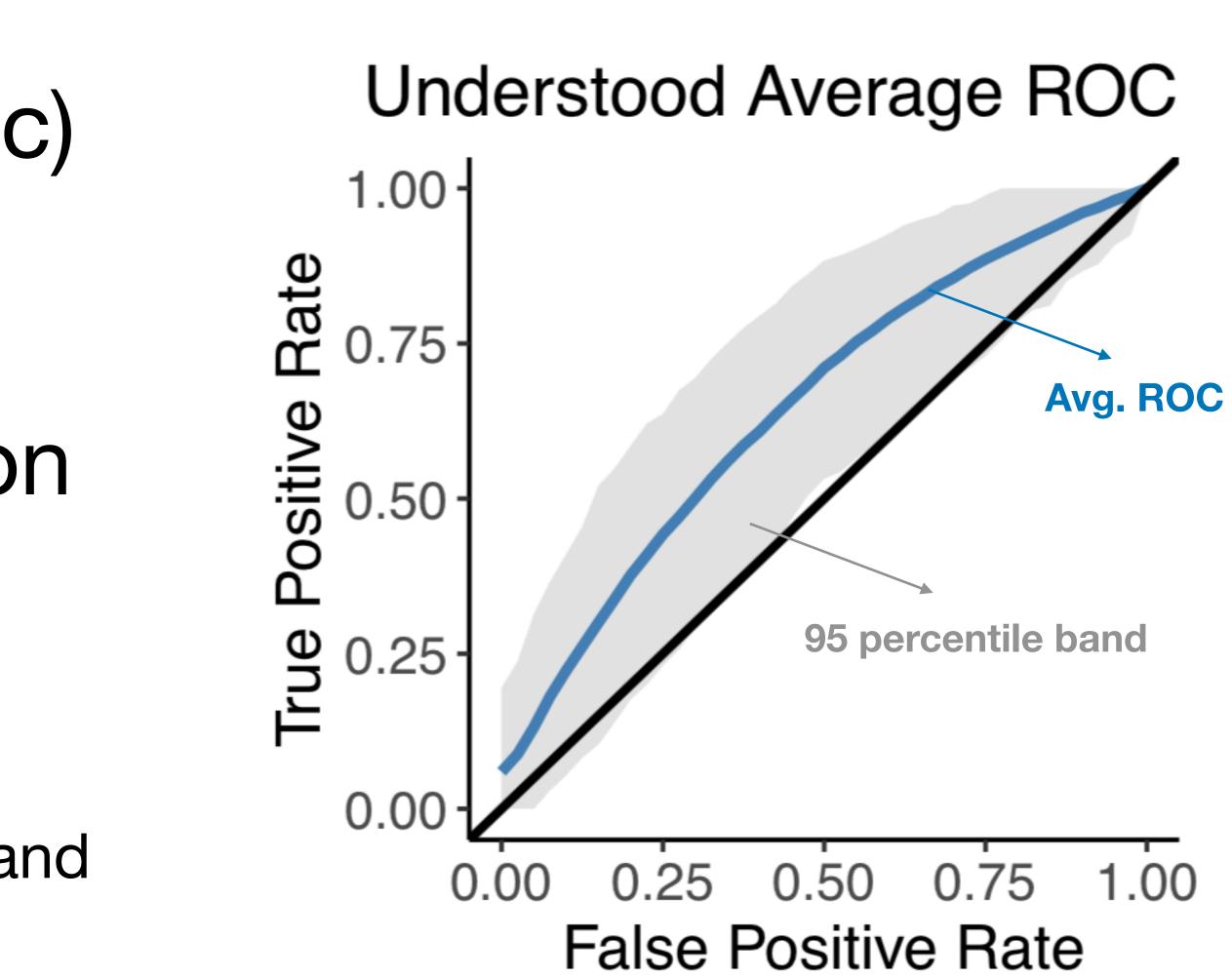
By combining metrics on developer experience, code readability, and more...

$Pseudo-R^2 = 41\%$

1. Forward-Stepwise-Selected Understandability Classifier

Variable	Coefficient	
(Intercept)	-0.398	
Indentation.lengthdf	t. 0.241	
LiteralsVisual.Y.	-0.275	
JavaProfessional	1.228	
X.parameters	-0.307	
NMIavg.	0.442^{*}	
MIDQmax.	-0.392^{*}	
X.periodsavg.	-0.325^{*}	
Professional	1.014^{*}	
Line.lengthmax.	-0.488^{*}	
TCavg.	-0.793^{*}	
N	324	
Log Likelihood	185.00	
AIC	394.00	
BIC	439.37	
R_m^2	0.2870	
R_c^2	0.4106	
***p < .001; **p < .01; *p < .05		

* *


Can we predict understandability?

- Binary classifier (Logistic) Understood or not
- Random cross validation

• Avg. AUC: 0.64

i.e., ranks an easy-to-understand snippet above a hard-to-understand one 64% of the time

Original Study

Correlations with individual metrics...

Can we measure understandability?

(Not with existing individual metrics.)

Our Reanalysis

Linear models with combined metrics...

Can we measure understandability? YES (With more data.)

Creating a Metric of Code Understandability:

Now

46 developers

Small dataset Simple models ~64% accuracy

Future Work

1000 developers

Big data Advanced models Useful in real world

Thanks, Scalabrino et al.!

