
MSR 2025, Ottawa, Canada — Vision and Reflection

Bogdan Vasilescu
@b_vasilescu

The Standard of Rigor for
MSR Research

A 10-Year Evolution

2

About me
• Raj Reddy Associate Professor of Software and Societal Systems

• Societal Computing PhD program director

• Socio-Technical Research Using Data Excavation Lab

3

About me
• Raj Reddy Associate Professor of Software and Societal Systems

• Societal Computing PhD program director

• Socio-Technical Research Using Data Excavation Lab

4

About me
• Raj Reddy Associate Professor of Software and Societal Systems

• Societal Computing PhD program director

• Socio-Technical Research Using Data Excavation Lab

• Reading since MSR 2005, attending since MSR Summer School 2012

When Do Changes Induce Fixes?
(On Fridays.)

Jacek Śliwerski
International Max Planck Research School
Max Planck Institute for Computer Science

Saarbrücken, Germany
sliwers@mpi-sb.mpg.de

Thomas Zimmermann Andreas Zeller
Department of Computer Science

Saarland University
Saarbrücken, Germany
{tz, zeller}@acm.org

ABSTRACT
As a software system evolves, programmers make changes that
sometimes cause problems. We analyze CVS archives for fix-in-
ducing changes—changes that lead to problems, indicated by fixes.
We show how to automatically locate fix-inducing changes by link-
ing a version archive (such as CVS) to a bug database (such as
BUGZILLA). In a first investigation of the MOZILLA and ECLIPSE
history, it turns out that fix-inducing changes show distinct patterns
with respect to their size and the day of week they were applied.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—corrections, version control; D.2.8 [Metrics]: Com-
plexity measures

General Terms
Management, Measurement

1. INTRODUCTION
When we mine software histories, we frequently do so in order

to detect patterns that help us understanding the current state of
the system. Unfortunately, not all changes in the past have been
beneficial. Any bug database will show a significant fraction of
problems that are reported some time after some change has been
made.
In this work, we attempt to identify those changes that caused

problems. The basic idea is as follows:

1. We start with a bug report in the bug database, indicating a
fixed problem.

2. We extract the associated change from the version archive,
thus giving us the location of the fix.

3. We determine the earlier change at this location that was ap-
plied before the bug was reported.

This earlier change is the one that caused the later fix. We call such
a change fix-inducing.
What can one do with fix-inducing changes? Here are some po-

tential applications:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05May17,2005,SaintLouis,Missouri,USA
.Copyright2005ACM1-59593-123-6/05/0005...$5.00.

Which change properties may lead to problems? We can inves-
tigate which properties of a change correlate with inducing
fixes, for instance, changes made on a specific day or by a
specific group of developers.

How error-prone is my product? We can assign a metric to the
product—on average, how likely is it that a change induces a
later fix?

How can I filter out problematic changes? When extracting the
architecture via co-changes from a version archive, there is
no need to consider fix-inducing changes, as they get undone
later.

Can I improve guidance along related changes? When using co-
changes to guide programmers along related changes, we
would like to avoid fix-inducing changes in our suggestions.

This paper describes our first experiences with fix-inducing chang-
es. We discuss how to extract data from version and bug archives
(Section 2), and how we link bug reports to changes (Section 3).
In Section 4, we describe how to identify and locate fix-inducing
changes. Section 5 shows the results of our investigation of the
MOZILLA and ECLIPSE: It turns out that fix-inducing changes show
distinct patterns with respect to their size and the day of week they
were applied. Sections 6 and 7 close with related and future work.

2. WHAT’S IN OUR ARCHIVES?
For our analysis we need all changes and all fixes of a project.

We get this data from version archives like CVS and bug tracking
systems like BUGZILLA.
A CVS archive contains information about changes: Who changed

what, when, why, and how? A change � transforms a revision r1 to
a revision r2 by inserting, deleting, or changing lines. We will later
investigate changes on the line level. Several changes �1, . . . , �n

form a transaction t if they were submitted to CVS by the same
developer, at the same time, and with the same log message, i.e.,
they have been made with the same intention, e.g. to fix a bug or to
introduce a new feature. As CVS records only individual changes
to files, we group these to transactions with a sliding time window
approach [12].
A CVS archive also lacks information about the purpose of a

change: Did it introduce a new feature or did it fix a bug? Although
it is possible to identify such reasons solely with log messages [7],
we combine both CVS and BUGZILLA for this step because this
increases the precision of our approach.
A BUGZILLA database collects bug reports that are submitted by

a reporter with a short description and a summary. After a bug has
been submitted, it is discussed by developers and users who pro-
vide additional comments and may create attachments. After the

1

Mining Email Social Networks⇤

Christian Bird, Alex Gourley,
Prem Devanbu, Michael Gertz

Dept. of Computer Science, Kemper Hall,
University of California, Davis,
Davis, California Republic.

cabird,devanbu@ucdavis.edu

Anand Swaminathan
Graduate School of Management,
University of California, Davis,
Davis, California Republic.

aswaminathan@ucdavis.edu

ABSTRACT
Communication & Co-ordination activities are central to
large software projects, but are di�cult to observe and study
in traditional (closed-source, commercial) settings because
of the prevalence of informal, direct communication modes.
OSS projects, on the other hand, use the internet as the
communication medium, and typically conduct discussions
in an open, public manner. As a result, the email archives
of OSS projects provide a useful trace of the communica-
tion and co-ordination activities of the participants. How-
ever, there are various challenges that must be addressed
before this data can be e↵ectively mined. Once this is done,
we can construct social networks of email correspondents,
and begin to address some interesting questions. These in-
clude questions relating to participation in the email; the
social status of di↵erent types of OSS participants; the rela-
tionship of email activity and commit activity (in the CVS
repositories) and the relationship of social status with com-
mit activity. In this paper, we begin with a discussion of
our infrastructure and then discuss our approach to mining
the email archives; and finally we present some preliminary
results from our data analysis.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Empirical, Open
Source

General Terms
Human Factors, Measurement

Keywords
Open Source, Social Networks

⇤We gratefully acknowledge support from NSF Humanities
and Social Sciences Division, Grant Number SES 0525263.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06,May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

1. INTRODUCTION
Large-scale software development projects invariably re-

quire a lot of communication and coordination (C&C) am-
ongst the project workers. We distinguish these activities
from engineering activities, where actual artifacts such as
source code or documents are modified. The di�culty and
intensity of the required coordination e↵ort is quite high;
this is often cited as the reason why adding more developers
doesn’t necessarily speed-up development [4]. C&C activi-
ties influence (and are influenced by) the design, structure
and evolution of software systems. In traditional, commer-
cial software organization, C&C activities may occur infor-
mally, and would be di�cult to study. Even if coordination
and communication are computer-mediated, the traces of
these activities are usually not made public by commercial
organizations. Open-source software (OSS) projects on the
other hand, inherently conduct all their activities in pub-
lic, and in fact, this public, open enactment is key to their
success [16, 11]. In particular, every open-source project
includes one or more public mailing lists wherein project
stakeholders can communicate and coordinate their activi-
ties. The entire trace of these mailing lists are archived and
available for study.

These archives, along with the versioned source code repos-
itories and other on-line artifacts constitute a unique and
valuable resource for the study of C&C activities in software
projects. There is at UC Davis an interdisciplinary e↵ort to
mine this resource, and use the resulting data to study the
relationship with C&C activities in OSS projects, and the
actual development activities. In this paper, we describe
our experiences with this e↵ort, and some early results. We
begin first with a description of the phenomena that we are
mining; then we describe our data extraction tools; finally,
we present an early look at the data.

2. CHATTERERS & CHANGERS
A mailing list in an OSS project is a public forum. Anyone

can post messages to the list. Posted messages are visible
to all the mailing list subscribers. Posters to mailing lists
include developers, bug-reporters, contributors (who sub-
mit patches, but don’t have commit privileges) and ordinary
users. Mailing lists can be quite active; for example, on the
Apache developer mailing list, there were about 4996 mes-
sages in the year 2004 and 2340 in 2005. For gcc, these num-
bers were 19173 and 15082. Over the lifetime of the project,
we estimate that over 2000 distinct individuals have sent
messages to the Apache developer list. A subscriber may

137

5

About me
• Raj Reddy Associate Professor of Software and Societal Systems

• Societal Computing PhD program director

• Socio-Technical Research Using Data Excavation Lab

• Reading since MSR 2005, attending since MSR Summer School 2012

When Do Changes Induce Fixes?
(On Fridays.)

Jacek Śliwerski
International Max Planck Research School
Max Planck Institute for Computer Science

Saarbrücken, Germany
sliwers@mpi-sb.mpg.de

Thomas Zimmermann Andreas Zeller
Department of Computer Science

Saarland University
Saarbrücken, Germany
{tz, zeller}@acm.org

ABSTRACT
As a software system evolves, programmers make changes that
sometimes cause problems. We analyze CVS archives for fix-in-
ducing changes—changes that lead to problems, indicated by fixes.
We show how to automatically locate fix-inducing changes by link-
ing a version archive (such as CVS) to a bug database (such as
BUGZILLA). In a first investigation of the MOZILLA and ECLIPSE
history, it turns out that fix-inducing changes show distinct patterns
with respect to their size and the day of week they were applied.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—corrections, version control; D.2.8 [Metrics]: Com-
plexity measures

General Terms
Management, Measurement

1. INTRODUCTION
When we mine software histories, we frequently do so in order

to detect patterns that help us understanding the current state of
the system. Unfortunately, not all changes in the past have been
beneficial. Any bug database will show a significant fraction of
problems that are reported some time after some change has been
made.
In this work, we attempt to identify those changes that caused

problems. The basic idea is as follows:

1. We start with a bug report in the bug database, indicating a
fixed problem.

2. We extract the associated change from the version archive,
thus giving us the location of the fix.

3. We determine the earlier change at this location that was ap-
plied before the bug was reported.

This earlier change is the one that caused the later fix. We call such
a change fix-inducing.
What can one do with fix-inducing changes? Here are some po-

tential applications:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05May17,2005,SaintLouis,Missouri,USA
.Copyright2005ACM1-59593-123-6/05/0005...$5.00.

Which change properties may lead to problems? We can inves-
tigate which properties of a change correlate with inducing
fixes, for instance, changes made on a specific day or by a
specific group of developers.

How error-prone is my product? We can assign a metric to the
product—on average, how likely is it that a change induces a
later fix?

How can I filter out problematic changes? When extracting the
architecture via co-changes from a version archive, there is
no need to consider fix-inducing changes, as they get undone
later.

Can I improve guidance along related changes? When using co-
changes to guide programmers along related changes, we
would like to avoid fix-inducing changes in our suggestions.

This paper describes our first experiences with fix-inducing chang-
es. We discuss how to extract data from version and bug archives
(Section 2), and how we link bug reports to changes (Section 3).
In Section 4, we describe how to identify and locate fix-inducing
changes. Section 5 shows the results of our investigation of the
MOZILLA and ECLIPSE: It turns out that fix-inducing changes show
distinct patterns with respect to their size and the day of week they
were applied. Sections 6 and 7 close with related and future work.

2. WHAT’S IN OUR ARCHIVES?
For our analysis we need all changes and all fixes of a project.

We get this data from version archives like CVS and bug tracking
systems like BUGZILLA.
A CVS archive contains information about changes: Who changed

what, when, why, and how? A change � transforms a revision r1 to
a revision r2 by inserting, deleting, or changing lines. We will later
investigate changes on the line level. Several changes �1, . . . , �n

form a transaction t if they were submitted to CVS by the same
developer, at the same time, and with the same log message, i.e.,
they have been made with the same intention, e.g. to fix a bug or to
introduce a new feature. As CVS records only individual changes
to files, we group these to transactions with a sliding time window
approach [12].
A CVS archive also lacks information about the purpose of a

change: Did it introduce a new feature or did it fix a bug? Although
it is possible to identify such reasons solely with log messages [7],
we combine both CVS and BUGZILLA for this step because this
increases the precision of our approach.
A BUGZILLA database collects bug reports that are submitted by

a reporter with a short description and a summary. After a bug has
been submitted, it is discussed by developers and users who pro-
vide additional comments and may create attachments. After the

1

Mining Email Social Networks⇤

Christian Bird, Alex Gourley,
Prem Devanbu, Michael Gertz

Dept. of Computer Science, Kemper Hall,
University of California, Davis,
Davis, California Republic.

cabird,devanbu@ucdavis.edu

Anand Swaminathan
Graduate School of Management,
University of California, Davis,
Davis, California Republic.

aswaminathan@ucdavis.edu

ABSTRACT
Communication & Co-ordination activities are central to
large software projects, but are di�cult to observe and study
in traditional (closed-source, commercial) settings because
of the prevalence of informal, direct communication modes.
OSS projects, on the other hand, use the internet as the
communication medium, and typically conduct discussions
in an open, public manner. As a result, the email archives
of OSS projects provide a useful trace of the communica-
tion and co-ordination activities of the participants. How-
ever, there are various challenges that must be addressed
before this data can be e↵ectively mined. Once this is done,
we can construct social networks of email correspondents,
and begin to address some interesting questions. These in-
clude questions relating to participation in the email; the
social status of di↵erent types of OSS participants; the rela-
tionship of email activity and commit activity (in the CVS
repositories) and the relationship of social status with com-
mit activity. In this paper, we begin with a discussion of
our infrastructure and then discuss our approach to mining
the email archives; and finally we present some preliminary
results from our data analysis.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Empirical, Open
Source

General Terms
Human Factors, Measurement

Keywords
Open Source, Social Networks

⇤We gratefully acknowledge support from NSF Humanities
and Social Sciences Division, Grant Number SES 0525263.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06,May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

1. INTRODUCTION
Large-scale software development projects invariably re-

quire a lot of communication and coordination (C&C) am-
ongst the project workers. We distinguish these activities
from engineering activities, where actual artifacts such as
source code or documents are modified. The di�culty and
intensity of the required coordination e↵ort is quite high;
this is often cited as the reason why adding more developers
doesn’t necessarily speed-up development [4]. C&C activi-
ties influence (and are influenced by) the design, structure
and evolution of software systems. In traditional, commer-
cial software organization, C&C activities may occur infor-
mally, and would be di�cult to study. Even if coordination
and communication are computer-mediated, the traces of
these activities are usually not made public by commercial
organizations. Open-source software (OSS) projects on the
other hand, inherently conduct all their activities in pub-
lic, and in fact, this public, open enactment is key to their
success [16, 11]. In particular, every open-source project
includes one or more public mailing lists wherein project
stakeholders can communicate and coordinate their activi-
ties. The entire trace of these mailing lists are archived and
available for study.

These archives, along with the versioned source code repos-
itories and other on-line artifacts constitute a unique and
valuable resource for the study of C&C activities in software
projects. There is at UC Davis an interdisciplinary e↵ort to
mine this resource, and use the resulting data to study the
relationship with C&C activities in OSS projects, and the
actual development activities. In this paper, we describe
our experiences with this e↵ort, and some early results. We
begin first with a description of the phenomena that we are
mining; then we describe our data extraction tools; finally,
we present an early look at the data.

2. CHATTERERS & CHANGERS
A mailing list in an OSS project is a public forum. Anyone

can post messages to the list. Posted messages are visible
to all the mailing list subscribers. Posters to mailing lists
include developers, bug-reporters, contributors (who sub-
mit patches, but don’t have commit privileges) and ordinary
users. Mailing lists can be quite active; for example, on the
Apache developer mailing list, there were about 4996 mes-
sages in the year 2004 and 2340 in 2005. For gcc, these num-
bers were 19173 and 15082. Over the lifetime of the project,
we estimate that over 2000 distinct individuals have sent
messages to the Apache developer list. A subscriber may

137

6

There is no such thing as MSR!
MSR = Data Science + Software Engineering

7

MSR is, more or less, quantitative empirical
software engineering?

• Storey, Ernst, et al. “The who, what, how of software engineering research: a socio-technical framework.” EMSE 2020. Talk: https://youtu.be/fs2XhM5-zXI

ICSE 2017: 20% problem understanding + 80% solution design

https://youtu.be/fs2XhM5-zXI

8

Where is MSR now?

How have we changed in the last 10 years?

How to increase the impact of our work?

9

MSR 2015 (Florence) vs MSR 2025 (Ottawa)

10

MSR 2015 (Florence) vs MSR 2025 (Ottawa)
No proceedings, no preprints ¯_(ツ)_/¯

11

MSR 2015 (Florence) vs MSR 2024 (Lisbon)

12

MSR 2015 (Florence): 29 full papers

Compare algorithms /
techniques to do X

Exploratory study to
characterize X

New technique to do X

Quantitatively test
hypothesis

Reflection on MSR
assumptions

Simulation to identify
underlying mechanism

0 5 10 15 20

Types of 10-page papers at MSR 2015 (Florence)

Compare algorithms /
techniques to do X

Exploratory study to
characterize X

New technique to do X

Quantitatively test
hypothesis

Reflection on MSR
assumptions

Simulation to identify
underlying mechanism

0 5 10 15 20

Types of 10-page papers at MSR 2015 (Florence)

13

MSR 2015 (Florence): 29 full papers

Compare algorithms /
techniques to do X

Exploratory study to
characterize X

New technique to do X

Quantitatively test
hypothesis

Reflection on MSR
assumptions

Simulation to identify
underlying mechanism

0 5 10 15 20

Types of 10-page papers at MSR 2015 (Florence)

14

MSR 2015 (Florence): 29 full papers

15

MSR 2024 (Lisbon): 37 full papers

Compare algorithms /
techniques to do X

Exploratory study to
characterize X

How well can LLMs do X? /
Benchmark evaluation

New dataset / benchmark

New technique to do X

0 5 10 15

Types of 10-page papers at MSR 2024 (Lisbon)

16

Lots written about high-quality, impactful SE
research already

• Storey, Ernst, et al. “The who, what, how of software engineering research: a
socio-technical framework.” EMSE 2020.
• Argument to increase impact by increasing the emphasis on humans

https://youtu.be/fs2XhM5-zXI

https://youtu.be/fs2XhM5-zXI

17

MSR 2015 (Florence): 29 full papers

Compare algorithms /
techniques to do X

Exploratory study to
characterize X

New technique to do X

Quantitatively test
hypothesis

Reflection on MSR
assumptions

Simulation to identify
underlying mechanism

0 5 10 15 20

Types of 10-page papers at MSR 2015 (Florence)

Human subjects evaluation

Human subjects evaluation

Survey + interviews

18

MSR 2024 (Lisbon): 37 full papers

Compare algorithms /
techniques to do X

Exploratory study to
characterize X

How well can LLMs do X? /
Benchmark evaluation

New dataset / benchmark

New technique to do X

0 5 10 15

Types of 10-page papers at MSR 2024 (Lisbon)

Human subjects evaluation

19

Lots written about high-quality, impactful SE
research already

• Mary Shaw, “Writing Good Software
Engineering Research Papers.” 2003
• “Why should the reader believe your result?”

• “What concrete evidence shows that your result
satisfies your claim?”

(Among many others)

• Laurie Williams & colleagues, “Writing
Good Software Engineering Research
Papers: Revisited.” 2017

20

Still, perception that MSR research is shallow …

• In big data some patterns and associations are always visible

• Data doesn’t mean insights

• “So what?”

• Etc

21

We have known a solution for over 20 years

1

1

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

You Gotta Have A Theory

Steve Easterbrook

sme@cs.toronto.edu

www.cs.toronto.edu/~sme

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Where’s your contribution?

 A better understanding of how software engineers
work?

 Identification of problems with the current state-of-
the-art?

 A characterization of the properties of new
tools/techniques?

 Evidence that approach A is better than approach B?

How will you validate your claims?

• Easterbrook. FSE 2006 Doctoral Symposium

22

The same argument reappears from time to time

@SCP 2015

Science of Computer Programming 101 (2015) 79–98

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Theory-oriented software engineering !

Klaas-Jan Stol ∗, Brian Fitzgerald
Lero – The Irish Software Engineering Research Centre, University of Limerick, Ireland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 October 2013
Received in revised form 27 February 2014
Accepted 25 June 2014
Available online 27 November 2014

Keywords:
Theory-oriented software engineering
Software engineering research
Theory fragment
Theory building
Empirical research

There has been a growing interest in the role of theory within Software Engineering (SE)
research. For several decades, researchers within the SE research community have argued
that, to become a ‘real’ engineering science, SE needs to develop stronger theoretical
foundations. However, so far, the role of theory is neither fully appreciated nor well
understood in SE research. Without a good common understanding of what theory is,
what it constitutes in SE research, and the various roles it can play in SE research, it
is difficult to appreciate how theory building can help to strengthen SE research. In this
paper we discuss the importance of theory and conceptualization, and review the key
components that comprise a theory. We then present the Research Path Schema (RPS),
which is an adaptation of an analytical framework from the social sciences. The RPS
defines a research study as consisting of three components: some phenomenon, system
or substance that a researcher is interested in; some technique or method to study that
substance; and some form of conceptualization or theory that provides an explanation
for, or abstraction of the observations made in a study. Different research studies have a
different archetypical ‘architecture,’ depending on the selection of these three components.
Consequently, the role of the conceptualization or theory will be different for each
archetypical study design, or selected research path. We conclude this paper by outlining
a number of implications for future SE research, and argue for a Theory-Oriented Software
Engineering research perspective, which can complement the recent focus on Evidence
Based Software Engineering.

 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade or so, there has been an increasing interest in Evidence-Based Software Engineering (EBSE). This
paradigm gained significant traction with the seminal paper by Kitchenham et al. in 2004 with the title ‘Evidence-Based
Software Engineering’ [2]. The premise underlying the EBSE paradigm is that SE researchers should conduct studies that
generate evidence for practitioners so as to enable them to make well-informed decisions regarding software develop-
ment techniques, methods and tools. There has been an increasing focus on conducting empirical studies within software
engineering, a development referred to as ‘empirical software engineering.’ This is reflected by a number of dedicated

! This is a revised version of the paper “Uncovering Theories in Software Engineering” presented in the 2nd SEMAT Workshop on a General Theory of
Software Engineering [1].

* Corresponding author.
E-mail addresses: klaas-jan.stol@lero.ie (K. Stol), bf@lero.ie (B. Fitzgerald).

http://dx.doi.org/10.1016/j.scico.2014.11.010
0167-6423/ 2014 Elsevier B.V. All rights reserved.

22

The same argument reappears from time to time

@SCP 2015

Science of Computer Programming 101 (2015) 79–98

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Theory-oriented software engineering !

Klaas-Jan Stol ∗, Brian Fitzgerald
Lero – The Irish Software Engineering Research Centre, University of Limerick, Ireland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 October 2013
Received in revised form 27 February 2014
Accepted 25 June 2014
Available online 27 November 2014

Keywords:
Theory-oriented software engineering
Software engineering research
Theory fragment
Theory building
Empirical research

There has been a growing interest in the role of theory within Software Engineering (SE)
research. For several decades, researchers within the SE research community have argued
that, to become a ‘real’ engineering science, SE needs to develop stronger theoretical
foundations. However, so far, the role of theory is neither fully appreciated nor well
understood in SE research. Without a good common understanding of what theory is,
what it constitutes in SE research, and the various roles it can play in SE research, it
is difficult to appreciate how theory building can help to strengthen SE research. In this
paper we discuss the importance of theory and conceptualization, and review the key
components that comprise a theory. We then present the Research Path Schema (RPS),
which is an adaptation of an analytical framework from the social sciences. The RPS
defines a research study as consisting of three components: some phenomenon, system
or substance that a researcher is interested in; some technique or method to study that
substance; and some form of conceptualization or theory that provides an explanation
for, or abstraction of the observations made in a study. Different research studies have a
different archetypical ‘architecture,’ depending on the selection of these three components.
Consequently, the role of the conceptualization or theory will be different for each
archetypical study design, or selected research path. We conclude this paper by outlining
a number of implications for future SE research, and argue for a Theory-Oriented Software
Engineering research perspective, which can complement the recent focus on Evidence
Based Software Engineering.

 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade or so, there has been an increasing interest in Evidence-Based Software Engineering (EBSE). This
paradigm gained significant traction with the seminal paper by Kitchenham et al. in 2004 with the title ‘Evidence-Based
Software Engineering’ [2]. The premise underlying the EBSE paradigm is that SE researchers should conduct studies that
generate evidence for practitioners so as to enable them to make well-informed decisions regarding software develop-
ment techniques, methods and tools. There has been an increasing focus on conducting empirical studies within software
engineering, a development referred to as ‘empirical software engineering.’ This is reflected by a number of dedicated

! This is a revised version of the paper “Uncovering Theories in Software Engineering” presented in the 2nd SEMAT Workshop on a General Theory of
Software Engineering [1].

* Corresponding author.
E-mail addresses: klaas-jan.stol@lero.ie (K. Stol), bf@lero.ie (B. Fitzgerald).

http://dx.doi.org/10.1016/j.scico.2014.11.010
0167-6423/ 2014 Elsevier B.V. All rights reserved.

@FSE 2016

 Building a Socio-Technical Theory of Coordination:
Why and How (Outstanding Research Award)

James Herbsleb
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

+1 412 268 8933
jdh@cs.cmu.edu

ABSTRACT
Research aimed at understanding and addressing coordination
breakdowns experienced in global software development (GSD)
projects at Lucent Technologies took a path from open-ended
qualitative exploratory studies to quantitative studies with a tight
focus on a key problem – delay – and its causes. Rather than being
directly associated with delay, multi-site work items involved
more people than comparable same-site work items, and the
number of people was a powerful predictor of delay. To
counteract this, we developed and deployed tools and practices to
support more effective communication and expertise location.
After conducting two case studies of open source development, an
extreme form of GSD, we realized that many tools and practices
could be effective for multi-site work, but none seemed to work
under all conditions. To achieve deeper insight, we developed and
tested our Socio-Technical Theory of Coordination (STTC) in
which the dependencies among engineering decisions are seen as
defining a constraint satisfaction problem that the organization
can solve in a variety of ways. I conclude by explaining how we
applied these ideas to transparent development environments, then
sketch important open research questions.

CCS Concepts

• Software and its engineering➝Software creation and
management

Keywords
Coordination; socio-technical theory of coordination;
collaboration; empirical studies; global software development;
open source; transparent environments

1. INTRODUCTION
Coordination has always been one of the fundamental problems of
software engineering: if the work of individuals in teams and
organizations does not mesh in just the right way, the product will
not work as intended. This is true of any product, but the difficulty
seems greater with software, for the reasons that Brooks pointed
long ago [1] – especially its invisibility and constant change.

Coordination becomes particularly challenging – and interesting
as a subject of study – when organizational forms morph, evolve,

or innovate. When people organize in a habitual, consistent way,
for example, in collocated teams, it is easy to overlook day-to-day
coordination mechanisms that are simply taken for granted. It is
easy to see the importance of things such as meetings of various
flavors, processes, methods, and architectural separation, which
have long been studied. Other, subtler mechanisms such as
informal communication, practices, habits, and shared mental
models are often only made visible by their absence.

Very interesting – and often disturbing – things happen when an
organization is geographically split apart. Much can be learned
by observing the mayhem that often ensues when organizations
are distributed, and much is revealed about what must have been
happening in the collocated case that keeps such chaos more or
less at bay. Adding new tools and practices in these novel
organizational contexts, and seeing how the work is impacted,
also helps to deepen our understanding of what coordination is
and how to achieve it.

In this paper, I summarize two decades of research that colleagues
and I have carried out to understand and sometimes to facilitate
how work is carried out via novel and evolving organizational
forms, driven by factors such as geographic distribution,
collaboration in open source project communities, and open
ecosystems.

The story begins with qualitative studies that throw out a wide net
in order to understand the experience and difficulties of global
software development (GSD) – teams operating across
geographic, time zone, national, and cultural barriers. The focus
shifts to quantitative studies to validate qualitative results and take
a close look at one of the primary difficulties that surfaced from
early results – the developers’ experience that multi-site work
takes much longer than comparable work at a single site. This
leads in turn to a focus on finding and engaging the right people,
the specific problem our quantitative results pointed to [2].

These empirical results guided our efforts to find solutions, as we
developed resources and tools to assist in the development
process, and evaluated them in situ. In particular, we developed
an early chat tool [3, 4], an expertise location tool [5], descriptions
of practices that organizations had found helpful [6, 7], and
organizational models describing various ways to distribute work
across sites along with their strengths, weaknesses, and criteria for
when each is appropriate [8].

Another organizational form – open source development projects
– caught our attention during this period. It appeared to us to be
an extreme form of geographically distributed development,
loosely and informally organized; yet it appeared to be free from
many of the problems we observed in industry. We performed
two case studies of very different communities, Apache and
Mozilla, to try to understand how this new form successfully

SAMPLE: Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.
DOI: http://dx.doi.org/10.1145/12345.67890

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2994160

2

22

The same argument reappears from time to time

@SCP 2015

Science of Computer Programming 101 (2015) 79–98

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Theory-oriented software engineering !

Klaas-Jan Stol ∗, Brian Fitzgerald
Lero – The Irish Software Engineering Research Centre, University of Limerick, Ireland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 October 2013
Received in revised form 27 February 2014
Accepted 25 June 2014
Available online 27 November 2014

Keywords:
Theory-oriented software engineering
Software engineering research
Theory fragment
Theory building
Empirical research

There has been a growing interest in the role of theory within Software Engineering (SE)
research. For several decades, researchers within the SE research community have argued
that, to become a ‘real’ engineering science, SE needs to develop stronger theoretical
foundations. However, so far, the role of theory is neither fully appreciated nor well
understood in SE research. Without a good common understanding of what theory is,
what it constitutes in SE research, and the various roles it can play in SE research, it
is difficult to appreciate how theory building can help to strengthen SE research. In this
paper we discuss the importance of theory and conceptualization, and review the key
components that comprise a theory. We then present the Research Path Schema (RPS),
which is an adaptation of an analytical framework from the social sciences. The RPS
defines a research study as consisting of three components: some phenomenon, system
or substance that a researcher is interested in; some technique or method to study that
substance; and some form of conceptualization or theory that provides an explanation
for, or abstraction of the observations made in a study. Different research studies have a
different archetypical ‘architecture,’ depending on the selection of these three components.
Consequently, the role of the conceptualization or theory will be different for each
archetypical study design, or selected research path. We conclude this paper by outlining
a number of implications for future SE research, and argue for a Theory-Oriented Software
Engineering research perspective, which can complement the recent focus on Evidence
Based Software Engineering.

 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade or so, there has been an increasing interest in Evidence-Based Software Engineering (EBSE). This
paradigm gained significant traction with the seminal paper by Kitchenham et al. in 2004 with the title ‘Evidence-Based
Software Engineering’ [2]. The premise underlying the EBSE paradigm is that SE researchers should conduct studies that
generate evidence for practitioners so as to enable them to make well-informed decisions regarding software develop-
ment techniques, methods and tools. There has been an increasing focus on conducting empirical studies within software
engineering, a development referred to as ‘empirical software engineering.’ This is reflected by a number of dedicated

! This is a revised version of the paper “Uncovering Theories in Software Engineering” presented in the 2nd SEMAT Workshop on a General Theory of
Software Engineering [1].

* Corresponding author.
E-mail addresses: klaas-jan.stol@lero.ie (K. Stol), bf@lero.ie (B. Fitzgerald).

http://dx.doi.org/10.1016/j.scico.2014.11.010
0167-6423/ 2014 Elsevier B.V. All rights reserved.

@FSE 2016

 Building a Socio-Technical Theory of Coordination:
Why and How (Outstanding Research Award)

James Herbsleb
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

+1 412 268 8933
jdh@cs.cmu.edu

ABSTRACT
Research aimed at understanding and addressing coordination
breakdowns experienced in global software development (GSD)
projects at Lucent Technologies took a path from open-ended
qualitative exploratory studies to quantitative studies with a tight
focus on a key problem – delay – and its causes. Rather than being
directly associated with delay, multi-site work items involved
more people than comparable same-site work items, and the
number of people was a powerful predictor of delay. To
counteract this, we developed and deployed tools and practices to
support more effective communication and expertise location.
After conducting two case studies of open source development, an
extreme form of GSD, we realized that many tools and practices
could be effective for multi-site work, but none seemed to work
under all conditions. To achieve deeper insight, we developed and
tested our Socio-Technical Theory of Coordination (STTC) in
which the dependencies among engineering decisions are seen as
defining a constraint satisfaction problem that the organization
can solve in a variety of ways. I conclude by explaining how we
applied these ideas to transparent development environments, then
sketch important open research questions.

CCS Concepts

• Software and its engineering➝Software creation and
management

Keywords
Coordination; socio-technical theory of coordination;
collaboration; empirical studies; global software development;
open source; transparent environments

1. INTRODUCTION
Coordination has always been one of the fundamental problems of
software engineering: if the work of individuals in teams and
organizations does not mesh in just the right way, the product will
not work as intended. This is true of any product, but the difficulty
seems greater with software, for the reasons that Brooks pointed
long ago [1] – especially its invisibility and constant change.

Coordination becomes particularly challenging – and interesting
as a subject of study – when organizational forms morph, evolve,

or innovate. When people organize in a habitual, consistent way,
for example, in collocated teams, it is easy to overlook day-to-day
coordination mechanisms that are simply taken for granted. It is
easy to see the importance of things such as meetings of various
flavors, processes, methods, and architectural separation, which
have long been studied. Other, subtler mechanisms such as
informal communication, practices, habits, and shared mental
models are often only made visible by their absence.

Very interesting – and often disturbing – things happen when an
organization is geographically split apart. Much can be learned
by observing the mayhem that often ensues when organizations
are distributed, and much is revealed about what must have been
happening in the collocated case that keeps such chaos more or
less at bay. Adding new tools and practices in these novel
organizational contexts, and seeing how the work is impacted,
also helps to deepen our understanding of what coordination is
and how to achieve it.

In this paper, I summarize two decades of research that colleagues
and I have carried out to understand and sometimes to facilitate
how work is carried out via novel and evolving organizational
forms, driven by factors such as geographic distribution,
collaboration in open source project communities, and open
ecosystems.

The story begins with qualitative studies that throw out a wide net
in order to understand the experience and difficulties of global
software development (GSD) – teams operating across
geographic, time zone, national, and cultural barriers. The focus
shifts to quantitative studies to validate qualitative results and take
a close look at one of the primary difficulties that surfaced from
early results – the developers’ experience that multi-site work
takes much longer than comparable work at a single site. This
leads in turn to a focus on finding and engaging the right people,
the specific problem our quantitative results pointed to [2].

These empirical results guided our efforts to find solutions, as we
developed resources and tools to assist in the development
process, and evaluated them in situ. In particular, we developed
an early chat tool [3, 4], an expertise location tool [5], descriptions
of practices that organizations had found helpful [6, 7], and
organizational models describing various ways to distribute work
across sites along with their strengths, weaknesses, and criteria for
when each is appropriate [8].

Another organizational form – open source development projects
– caught our attention during this period. It appeared to us to be
an extreme form of geographically distributed development,
loosely and informally organized; yet it appeared to be free from
many of the problems we observed in industry. We performed
two case studies of very different communities, Apache and
Mozilla, to try to understand how this new form successfully

SAMPLE: Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.
DOI: http://dx.doi.org/10.1145/12345.67890

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2994160

2

@Dagstuhl 2022

23

We already have lots of CS-related theories

• Statistical theory enables proper hypothesis testing and confidence intervals

• Information theory guides efficient data encoding and compression

• Linear algebra and calculus form the backbone of most machine learning
models

• Optimization theory guides efficient model training approaches

• Etc.

24

• A theory is a set of propositions that are logically related, expressing the
relation(s) among several different constructs and propositions.

• Theories are the building blocks of scientific knowledge.

But not enough good theories about SE processes
and stakeholder behavior

25

• A theory is a set of propositions that are logically related, expressing the
relation(s) among several different constructs and propositions.

• Theories are the building blocks of scientific knowledge.

When Do Changes Induce Fixes?
(On Fridays.)

Jacek Śliwerski
International Max Planck Research School
Max Planck Institute for Computer Science

Saarbrücken, Germany
sliwers@mpi-sb.mpg.de

Thomas Zimmermann Andreas Zeller
Department of Computer Science

Saarland University
Saarbrücken, Germany
{tz, zeller}@acm.org

ABSTRACT
As a software system evolves, programmers make changes that
sometimes cause problems. We analyze CVS archives for fix-in-
ducing changes—changes that lead to problems, indicated by fixes.
We show how to automatically locate fix-inducing changes by link-
ing a version archive (such as CVS) to a bug database (such as
BUGZILLA). In a first investigation of the MOZILLA and ECLIPSE
history, it turns out that fix-inducing changes show distinct patterns
with respect to their size and the day of week they were applied.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—corrections, version control; D.2.8 [Metrics]: Com-
plexity measures

General Terms
Management, Measurement

1. INTRODUCTION
When we mine software histories, we frequently do so in order

to detect patterns that help us understanding the current state of
the system. Unfortunately, not all changes in the past have been
beneficial. Any bug database will show a significant fraction of
problems that are reported some time after some change has been
made.
In this work, we attempt to identify those changes that caused

problems. The basic idea is as follows:

1. We start with a bug report in the bug database, indicating a
fixed problem.

2. We extract the associated change from the version archive,
thus giving us the location of the fix.

3. We determine the earlier change at this location that was ap-
plied before the bug was reported.

This earlier change is the one that caused the later fix. We call such
a change fix-inducing.
What can one do with fix-inducing changes? Here are some po-

tential applications:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05May17,2005,SaintLouis,Missouri,USA
.Copyright2005ACM1-59593-123-6/05/0005...$5.00.

Which change properties may lead to problems? We can inves-
tigate which properties of a change correlate with inducing
fixes, for instance, changes made on a specific day or by a
specific group of developers.

How error-prone is my product? We can assign a metric to the
product—on average, how likely is it that a change induces a
later fix?

How can I filter out problematic changes? When extracting the
architecture via co-changes from a version archive, there is
no need to consider fix-inducing changes, as they get undone
later.

Can I improve guidance along related changes? When using co-
changes to guide programmers along related changes, we
would like to avoid fix-inducing changes in our suggestions.

This paper describes our first experiences with fix-inducing chang-
es. We discuss how to extract data from version and bug archives
(Section 2), and how we link bug reports to changes (Section 3).
In Section 4, we describe how to identify and locate fix-inducing
changes. Section 5 shows the results of our investigation of the
MOZILLA and ECLIPSE: It turns out that fix-inducing changes show
distinct patterns with respect to their size and the day of week they
were applied. Sections 6 and 7 close with related and future work.

2. WHAT’S IN OUR ARCHIVES?
For our analysis we need all changes and all fixes of a project.

We get this data from version archives like CVS and bug tracking
systems like BUGZILLA.
A CVS archive contains information about changes: Who changed

what, when, why, and how? A change � transforms a revision r1 to
a revision r2 by inserting, deleting, or changing lines. We will later
investigate changes on the line level. Several changes �1, . . . , �n

form a transaction t if they were submitted to CVS by the same
developer, at the same time, and with the same log message, i.e.,
they have been made with the same intention, e.g. to fix a bug or to
introduce a new feature. As CVS records only individual changes
to files, we group these to transactions with a sliding time window
approach [12].
A CVS archive also lacks information about the purpose of a

change: Did it introduce a new feature or did it fix a bug? Although
it is possible to identify such reasons solely with log messages [7],
we combine both CVS and BUGZILLA for this step because this
increases the precision of our approach.
A BUGZILLA database collects bug reports that are submitted by

a reporter with a short description and a summary. After a bug has
been submitted, it is discussed by developers and users who pro-
vide additional comments and may create attachments. After the

1

@MSR 2005

But not enough good theories about SE processes
and stakeholder behavior

26

“What are you talking about? We have tons of
theories”

Compare algorithms /
techniques to do X

Exploratory study to
characterize X

New technique to do X

Quantitatively test
hypothesis

Reflection on MSR
assumptions

Simulation to identify
underlying mechanism

0 5 10 15 20

Types of 10-page papers at MSR 2015 (Florence)

Compare algorithms /
techniques to do X

Exploratory study to
characterize X

How well can LLMs do X? /
Benchmark evaluation

New dataset / benchmark

New technique to do X

0 5 10 15

Types of 10-page papers at MSR 2024 (Lisbon)

Data collection
↓

Interpretation of findings
↓

Propositions / Hypotheses
↓

Theory

27

SBOMs are a kind of theory

28

But not enough good theories about SE processes
and stakeholder behavior

• A theory is a set of propositions that are logically related, expressing the
relation(s) among several different constructs and propositions.

• Theories are the building blocks of scientific knowledge.

• A theory that describes a phenomenon is a valid theory.
Theory
↓

Hypotheses
↓

Data collection
↓

Interpretation of findings
↓

Validation / Refinement

• A good theory both explains how and why certain
phenomena occur, and allows predictions to be made.

29

Example: Signaling theory (Spence, 1973)

Bu
ilt

-in
 (G

itH
ub

)
C

us
to

m

People use the visible cues on the platform as signals, to make rick inferences
about unobservable traits of other users or projects.

• Trockman, Zhou, Kästner, & Vasilescu. Adding sparkle to social coding: An empirical study of repository badges in the npm ecosystem. ICSE 2018

30

Example: Signaling theory (Spence, 1973)
People use the visible cues on the platform as signals, to make rick inferences
about unobservable traits of other users or projects.

Signals of code quality

• Trockman, Zhou, Kästner, & Vasilescu. Adding sparkle to social coding: An empirical study of repository badges in the npm ecosystem. ICSE 2018

31

Example: Signaling theory (Spence, 1973)

“Assessment” vs “conventional” signals: the cost of producing the signal should
result in the two types of badges having differential effects.
Harder to fake “assessment” badges provide more reliable signals.

code stylecode style standardstandard

gittergitter join chatjoin chat

slackslack 6/1606/160slackslack joinjoin

• Trockman, Zhou, Kästner, & Vasilescu. Adding sparkle to social coding: An empirical study of repository badges in the npm ecosystem. ICSE 2018

32

But not enough good theories about SE processes
and stakeholder behavior

• A theory is a set of propositions that are logically related, expressing the
relation(s) among several different constructs and propositions.

• Theories are the building blocks of scientific knowledge.

• A theory that describes a phenomenon is a valid theory.
Theory
↓

Hypotheses
↓

Data collection
↓

Interpretation of findings
↓

Validation / Refinement

• A good theory both explains how and why certain
phenomena occur, and allows predictions to be made.
• We don’t have enough of these!

33

We have very little deductive use of theories

Compare algorithms /
techniques to do X

Exploratory study to
characterize X

New technique to do X

Quantitatively test
hypothesis

Reflection on MSR
assumptions

Simulation to identify
underlying mechanism

0 5 10 15 20

Types of 10-page papers at MSR 2015 (Florence)

Compare algorithms /
techniques to do X

Exploratory study to
characterize X

How well can LLMs do X? /
Benchmark evaluation

New dataset / benchmark

New technique to do X

0 5 10 15

Types of 10-page papers at MSR 2024 (Lisbon)

Tests specific
hypothesis

34

Is there space for this kind of theory in MSR?

 Building a Socio-Technical Theory of Coordination:
Why and How (Outstanding Research Award)

James Herbsleb
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

+1 412 268 8933
jdh@cs.cmu.edu

ABSTRACT
Research aimed at understanding and addressing coordination
breakdowns experienced in global software development (GSD)
projects at Lucent Technologies took a path from open-ended
qualitative exploratory studies to quantitative studies with a tight
focus on a key problem – delay – and its causes. Rather than being
directly associated with delay, multi-site work items involved
more people than comparable same-site work items, and the
number of people was a powerful predictor of delay. To
counteract this, we developed and deployed tools and practices to
support more effective communication and expertise location.
After conducting two case studies of open source development, an
extreme form of GSD, we realized that many tools and practices
could be effective for multi-site work, but none seemed to work
under all conditions. To achieve deeper insight, we developed and
tested our Socio-Technical Theory of Coordination (STTC) in
which the dependencies among engineering decisions are seen as
defining a constraint satisfaction problem that the organization
can solve in a variety of ways. I conclude by explaining how we
applied these ideas to transparent development environments, then
sketch important open research questions.

CCS Concepts

• Software and its engineering➝Software creation and
management

Keywords
Coordination; socio-technical theory of coordination;
collaboration; empirical studies; global software development;
open source; transparent environments

1. INTRODUCTION
Coordination has always been one of the fundamental problems of
software engineering: if the work of individuals in teams and
organizations does not mesh in just the right way, the product will
not work as intended. This is true of any product, but the difficulty
seems greater with software, for the reasons that Brooks pointed
long ago [1] – especially its invisibility and constant change.

Coordination becomes particularly challenging – and interesting
as a subject of study – when organizational forms morph, evolve,

or innovate. When people organize in a habitual, consistent way,
for example, in collocated teams, it is easy to overlook day-to-day
coordination mechanisms that are simply taken for granted. It is
easy to see the importance of things such as meetings of various
flavors, processes, methods, and architectural separation, which
have long been studied. Other, subtler mechanisms such as
informal communication, practices, habits, and shared mental
models are often only made visible by their absence.

Very interesting – and often disturbing – things happen when an
organization is geographically split apart. Much can be learned
by observing the mayhem that often ensues when organizations
are distributed, and much is revealed about what must have been
happening in the collocated case that keeps such chaos more or
less at bay. Adding new tools and practices in these novel
organizational contexts, and seeing how the work is impacted,
also helps to deepen our understanding of what coordination is
and how to achieve it.

In this paper, I summarize two decades of research that colleagues
and I have carried out to understand and sometimes to facilitate
how work is carried out via novel and evolving organizational
forms, driven by factors such as geographic distribution,
collaboration in open source project communities, and open
ecosystems.

The story begins with qualitative studies that throw out a wide net
in order to understand the experience and difficulties of global
software development (GSD) – teams operating across
geographic, time zone, national, and cultural barriers. The focus
shifts to quantitative studies to validate qualitative results and take
a close look at one of the primary difficulties that surfaced from
early results – the developers’ experience that multi-site work
takes much longer than comparable work at a single site. This
leads in turn to a focus on finding and engaging the right people,
the specific problem our quantitative results pointed to [2].

These empirical results guided our efforts to find solutions, as we
developed resources and tools to assist in the development
process, and evaluated them in situ. In particular, we developed
an early chat tool [3, 4], an expertise location tool [5], descriptions
of practices that organizations had found helpful [6, 7], and
organizational models describing various ways to distribute work
across sites along with their strengths, weaknesses, and criteria for
when each is appropriate [8].

Another organizational form – open source development projects
– caught our attention during this period. It appeared to us to be
an extreme form of geographically distributed development,
loosely and informally organized; yet it appeared to be free from
many of the problems we observed in industry. We performed
two case studies of very different communities, Apache and
Mozilla, to try to understand how this new form successfully

SAMPLE: Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.
DOI: http://dx.doi.org/10.1145/12345.67890

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2994160

2

Herbsleb is skeptical:
• “The universal principle of interdisciplinary

contempt”

• “Intellectual worth is evaluated on a single
dimension from math to BS”

• “Is that really computer science?”

So are Menzies & Shepperd:
• “Data analytics studies are almost

always theory light because they’re
inductive in their approach.”

Information and Software Technology 112 (2019) 35–47
Contents lists available at ScienceDirect

Information and Software Technology
journal homepage: www.elsevier.com/locate/infsof

“Bad smells ” in software analytics papers
Tim Menzies a , ∗ , Martin Shepperd b
a Dept. of Computer Science North Carolina State University, USA
b Brunel Software Engineering Lab (BSEL) Dept. of Computer Science Brunel University London UB8 3PH, UK
! b # $ % ! & $
Context: There has been a rapid growth in the use of data analytics to underpin evidence-based software engineering. However the combination of complex techniques,
diverse reporting standards and poorly understood underlying phenomena are causing some concern as to the reliability of studies.
Objective: Our goal is to provide guidance for producers and consumers of software analytics studies (computational experiments and correlation studies).
Method: We propose using “bad smells ”, i.e., surface indications of deeper problems and popular in the agile software community and consider how they may be
manifest in software analytics studies.
Results: We list 12 “bad smells ” in software analytics papers (and show their impact by examples).
Conclusions: We believe the metaphor of bad smell is a useful device. Therefore we encourage more debate on what contributes to the validity of software analytics
studies (so we expect our list will mature over time).
1. Introduction

The drive to establish software engineering as an evidence-based dis-
cipline has been gaining momentum since the seminal article of Kitchen-
ham et al. [56] . In parallel there has been a massive growth in the
amount of publicly available software data and sophisticated data ana-
lytics methods. This has resulted in a sharp increase in the number and
reach of empirically based, data driven studies that are generally termed
software analytics.

Typically software analytics studies seek to distill large amounts of
low-value data into small chunks of very high-value information. Stud-
ies are more data-driven than theory-driven. For example, after exam-
ining many software projects, certain coding styles could be seen to be
more bug prone. Follow up experimentation, by manipulating the cod-
ing styles, could lead us to believe there is causality. Hence we might
recommend some coding styles should be avoided (subject to various
context-related caveats). However, absence of theory can lead to chal-
lenges. In particular, the lack of strong prior beliefs may make it diffi-
cult to choose between or evaluate potentially millions of possibilities
[24,28] .

Thus far, so good. Unfortunately, concerns are being expressed about
the reliability of many of these results both from within software en-
gineering (SE) [53,93] and more widely from other experimental and
data driven disciplines such as the bio-medical sciences [31,50] . This
has reached the point that in experimental psychology researchers now
refer to the “replication crisis ”. This in turn raises questions of study
validity.

Arguably the situation is not dissimilar in software engineering. In
a major systematic review of SE experiments (1993–2002) Kampenes

∗ Corresponding author.
E-mail address: timm@ieee.org (T. Menzies).

et al. [54] found similar e(ect sizes being reported to psychology. In
2012 we published an editorial for a Special Issue in the journal Empirical
Software Engineering on repeatable results in software engineering pre-
diction [77] where the principal focus was “conclusion instability ”. In
that editorial, we raised concerns about the numerous occasions where
Study 1 concluded X yet Study 2 concluded ¬X. The inability to resolve
these seeming contradictions leaves us at an impasse. Clearly, we need
better ways to conduct and report our work, as well as to examine the
work of others.

In this article we consider what may be learned from other disciplines
and what speci)c lessons should be applied to improving the reporting
of software analytics type studies. “Bad smells ” is a term that comes from
the agile community. According to Fowler [5] , bad smells (a.k.a. code
smells) are “a surface indication that usually corresponds to a deeper
problem ”. See Table 1 for a summary of the bad smells identi)ed in this
article.

As per Fowler, we say that the “smells ” listed in this article do not
necessarily indicate that the conclusions from the underlying study must
be rejected. However, we believe they raise three areas of potential
concern.

1. For the author(s) they reduce the likelihood of publication.
2. For the reader they raise red flags concerning the reliability of the

results (i.e., their consistency) and the validity (i.e., the correctness
of the analysis or how well it captures those constructs we believe it
represents).

3. For science, they hinder the opportunities of pooling results via
meta-analysis and building bodies of knowledge.

https://doi.org/10.1016/j.infsof.2019.04.005
Received 5 August 2018; Received in revised form 17 March 2019; Accepted 12 April 2019
Available online 16 April 2019
0950-5849/© 2019 Published by Elsevier B.V.

35

Now what?

36

Proposal: Let’s establish more causal relationships

• A good theory both explains how and why certain phenomena occur, and
allows predictions to be made.
• Causal relationships allow for stronger predictions

• Bonus points if we validate the mechanism

37

Proposal: Let’s establish more causal relationships

• A good theory both explains how and why certain phenomena occur, and
allows predictions to be made.

http://www.tylervigen.com/spurious-correlations

http://www.tylervigen.com/spurious-correlations

38

Ingredients for establishing a causal relationship?
Three properties must hold to establish a causal relationship between X and Y.

X —> Y when:
•
•
•

39

Ingredients for establishing a causal relationship?
Three properties must hold to establish a causal relationship between X and Y.

X —> Y when:
• X precedes Y
• X and Y are correlated
• We can exclude plausible alternative explanations for Y other than X

40

Proposal: Let’s establish more causal relationships

• A good theory both explains how and why certain phenomena occur, and
allows predictions to be made.
• Causal relationships allow for stronger predictions

• Bonus points if we validate the mechanism

• There are lots of techniques for causal inference from observational data.
• We are up to date on AI tech but 20 years behind on research methods?

• MSR was always about methods
• The name itself is a method!

41

Example: Do tweets cause GitHub stars?That’s all we need, unless you’d like to set customization options.
By embedding Twitter content in your website or app, you are agreeing to the Developer Agreement and Developer Policy.

Max Woolf
@minimaxir · Follow

I just released my new Python package: simpleaichat, an
open-source tool for working with ChatGPT/GPT-4 with
minimal code yet max flexibility!

I built simpleaichat out of sheer frustration with LangChain
and aim to make it the easiest way to make AI apps.

github.com
GitHub - minimaxir/simpleaichat: Python package for easily interfacin…
Python package for easily interfacing with chat apps, with robust
features and minimal code complexity. - GitHub - …
minimaxir/simpleaichat: Python package for easily interfacing with chat

5:24 PM · Jun 8, 2023

737 Reply Share

Read 18 replies

<blockquote class="twitter-tweet"><p lang="en" dir="ltr">I just released my new Python package: simpleaichat, an open-source tool for working with ChatGPT/GPT-4 with minimal code yet max flexibility!

I built simpleaichat out of sheer frustration with LangChain and aim to make it the easiest way to make AI apps. https://t.co/ehDD5Nx0qv</p>— Max Woolf (@minimaxir) June 8, 2023</blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Copy Code

• Fang, Lamba, Herbsleb, & Vasilescu. “This is damn slick!” Estimating the impact of tweets on open source project popularity and new contributors. ICSE 2022

41

Example: Do tweets cause GitHub stars?That’s all we need, unless you’d like to set customization options.
By embedding Twitter content in your website or app, you are agreeing to the Developer Agreement and Developer Policy.

Max Woolf
@minimaxir · Follow

I just released my new Python package: simpleaichat, an
open-source tool for working with ChatGPT/GPT-4 with
minimal code yet max flexibility!

I built simpleaichat out of sheer frustration with LangChain
and aim to make it the easiest way to make AI apps.

github.com
GitHub - minimaxir/simpleaichat: Python package for easily interfacin…
Python package for easily interfacing with chat apps, with robust
features and minimal code complexity. - GitHub - …
minimaxir/simpleaichat: Python package for easily interfacing with chat

5:24 PM · Jun 8, 2023

737 Reply Share

Read 18 replies

<blockquote class="twitter-tweet"><p lang="en" dir="ltr">I just released my new Python package: simpleaichat, an open-source tool for working with ChatGPT/GPT-4 with minimal code yet max flexibility!

I built simpleaichat out of sheer frustration with LangChain and aim to make it the easiest way to make AI apps. https://t.co/ehDD5Nx0qv</p>— Max Woolf (@minimaxir) June 8, 2023</blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Copy Code

minimaxir / simpleaichat Public

About

Python package for easily
interfacing with chat apps, with
robust features and minimal code
complexity.

ai # chatgpt

 Readme

 MIT license

 559 stars

 11 watching

 22 forks

Report repository

Releases 3

v0.1.1 Latest

last week

+ 2 releases

Code Issues 7 Pull requests 1 Actions Projects Security Insights

 main Go to file Code

minimaxir notes on model param … 2 days ago 75

.github GitHub sponsorship last week

docs README images last week

examples add exquisite corpse example 5 days ago

simpleaichat add AIChat.session() as context manager 5 days ago

.gitignore working packahe 2 weeks ago

LICENSE initial last month

PROMPTS.md last minute README tweaks last week

README.md notes on model param 2 days ago

setup.py add missing dateutil dep #1 last week

README.md

~300
June 8

(last week
Thursday)

June 16
(this morning)

June 9

559

• Fang, Lamba, Herbsleb, & Vasilescu. “This is damn slick!” Estimating the impact of tweets on open source project popularity and new contributors. ICSE 2022

42

Idea: Measure how much a group mean changes
before and after an intervention

85 - 50 = 35 new ?

• Fang, Lamba, Herbsleb, & Vasilescu. “This is damn slick!” Estimating the impact of tweets on open source project popularity and new contributors. ICSE 2022

43

Better idea: Compare that change to the change in
an appropriate control group

Effect of
the tweets

Effect of
something

else

Counterfactual

• Fang, Lamba, Herbsleb, & Vasilescu. “This is damn slick!” Estimating the impact of tweets on open source project popularity and new contributors. ICSE 2022

44

4(8) THE PRIZE IN ECONOMIC SCIENCES 2021 � THE ROYAL SWEDISH ACADEMY OF SCIENCES � WWW.KVA.SE

Understanding labour markets
The e!ects of a minimum wage
In the early 1990s, the conventional wisdom among economists was that higher minimum wages
lead to lower employment because they increase wage costs for businesses. However, the evidence
supporting this conclusion was not fully convincing; there were indeed many studies that indicated
a negative correlation between minimum wages and employment, but did this really mean that
higher minimum wages led to higher unemployment? Reverse causation could even be the issue:
when unemployment rises, employers can set lower wages which, in turn, may lead to demands to
increase the minimum wage.

To investigate how increased minimum wages a&ect employment, Card and Krueger used a natu-
ral experiment. In the early 1990s, the minimum hourly wage in New Jersey was raised from 4.25
dollars to 5.05 dollars. Just studying what happened in New Jersey after this increase does not give
a reliable answer to the question, as numerous other factors can in)uence how employment levels
change over time. As with randomised experiments, a control group was needed, i.e., a group where
wages didn’t change but all the other factors were the same.

Card and Krueger noted that there was no increase in neighbouring Pennsylvania. Of course, there
were di&erences between the two states, but it is likely that the labour markets would evolve similarly
close to the border. So, they studied the e&ects on employment in two neighbouring areas – New Jersey

Card and Krueger used a natural experiment
to study how increasing the minimum wage
affects employment.

The researchers identified a treatment group
(restaurants in New Jersey) and a control group
(restaurants in eastern Pennsylvania) to measure
the effect of increasing the minimum wage.

The effect of increasing the minimum wage

NEW JERSEY

PENNSYLVANIA

CONTROL GROUP TREATMENT GROUP

1 April 1992: The hourly minimum wage in
New Jersey was increased from 4.25 dollars
to 5.05 dollars. Despite this, employment in
New Jersey was not affected.

New Jersey
Eastern Pennsylvania

Em
pl

oy
m

en
t (

fe
b

19
92

=1
)

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

Oct -91 Oct -92 Oct -93 Oct -94 Oct -95

Card and Krueger (1993) natural experiment to study
how increasing the minimum wage affects employment.

https://www.nobelprize.org/uploads/2021/10/popular-economicsciencesprize2021-2.pdf

4(8) THE PRIZE IN ECONOMIC SCIENCES 2021 � THE ROYAL SWEDISH ACADEMY OF SCIENCES � WWW.KVA.SE

Understanding labour markets
The e!ects of a minimum wage
In the early 1990s, the conventional wisdom among economists was that higher minimum wages
lead to lower employment because they increase wage costs for businesses. However, the evidence
supporting this conclusion was not fully convincing; there were indeed many studies that indicated
a negative correlation between minimum wages and employment, but did this really mean that
higher minimum wages led to higher unemployment? Reverse causation could even be the issue:
when unemployment rises, employers can set lower wages which, in turn, may lead to demands to
increase the minimum wage.

To investigate how increased minimum wages a&ect employment, Card and Krueger used a natu-
ral experiment. In the early 1990s, the minimum hourly wage in New Jersey was raised from 4.25
dollars to 5.05 dollars. Just studying what happened in New Jersey after this increase does not give
a reliable answer to the question, as numerous other factors can in)uence how employment levels
change over time. As with randomised experiments, a control group was needed, i.e., a group where
wages didn’t change but all the other factors were the same.

Card and Krueger noted that there was no increase in neighbouring Pennsylvania. Of course, there
were di&erences between the two states, but it is likely that the labour markets would evolve similarly
close to the border. So, they studied the e&ects on employment in two neighbouring areas – New Jersey

Card and Krueger used a natural experiment
to study how increasing the minimum wage
affects employment.

The researchers identified a treatment group
(restaurants in New Jersey) and a control group
(restaurants in eastern Pennsylvania) to measure
the effect of increasing the minimum wage.

The effect of increasing the minimum wage

NEW JERSEY

PENNSYLVANIA

CONTROL GROUP TREATMENT GROUP

1 April 1992: The hourly minimum wage in
New Jersey was increased from 4.25 dollars
to 5.05 dollars. Despite this, employment in
New Jersey was not affected.

New Jersey
Eastern Pennsylvania

Em
pl

oy
m

en
t (

fe
b

19
92

=1
)

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

Oct -91 Oct -92 Oct -93 Oct -94 Oct -95

45

Another example: Donation badges decrease
median bug report response times by ~2 h

• Nakasai, Hata, & Matsumoto. Are donation badges appealing?: A case study of developer responses to Eclipse bug reports. IEEE Software 2018.

 MAY/JUNE 2019 | IEEE SOFTWARE 23

viewed as an effective and inexpen-
sive signaling system, whereby de-
velopers use technical and social
information as signals to evaluate
potential contributions.6 We believe
that other OSS organizers can adopt
this strategy to manage their devel-
oper ecosystems.

Causal Inference in Brief
Causal inference stems from the so-
cial sciences and explores cause and
effects as its main concern.7 In econo-
metrics, difference-in-differences
(DID) methods are one of the key
analytical elements for causal infer-
ence.7 We adopted this element in
our analysis, as outlined Figure 1.
DID is used to statistically visualize
actual and counterfactual scenarios,
thereby enabling a causality analysis.
To investigate the effects of a treat-
ment in statistics, one cannot see the
results with and without an interven-
tion based on one individual only.
DID addresses this problem by com-
paring two groups, one with the in-
tervention and one without it.

Figure 1 shows how DID is used
to understand the effect of donation
badges by illustrating the response
times of two groups before and af-
ter the donation badge program
was introduced. Donors refer to all
contributors who received badges.
As shown in Figure 1, the counter-
factual response trend (i.e., dotted
line) is the coefficient of the response
trend in the control group. Using that
counterfactual response trend and re-
sponse trend in donors (i.e., positive
and negative coefficient values), we
infer the effect of donation badges.
For instance, a negative coefficient
value indicates a faster response time,
whereas a positive coefficient value
indicates a slower response time.

To improve our results, the DID
is extended to quantile DID (QDID)

to better describe the relationships at
the median and in other quantiles.
Only the median is discussed in this

article because of space limitations.
Although half of the reports received
responses in one day, the average
time is almost two months because
of some outliers (i.e., the maximum
value is more than four years).

Because DID depends on the com-
mon trends assumption,7 selecting
a proper control group is necessary.
Matching is a statistical technique
whereby, for every member of the

donor group, a control member with
similar observable characteristics is
found, and it is used to reduce selec-

tion bias by equating groups. We used
propensity score matching because it
is a popular matching technique.

Approach
Our analysis was composed of two
phases, as shown in Figure 2. First,
we selected two groups of report-
ers, i.e., a donor group and a con-
trol group whose members have not
donated (upper panel). Next, we

FIGURE 1. An example of the causal inference framework using a DID model showing
response time before versus after the introduction of donation badges.

Before After
Time

Badge Effect

Re
sp

on
se

 T
im

e

Response Trend in
Control Group

Counterfactual
Response
Trend!in
Donors

Response Trend
in Donors

Our findings suggest that the
appearance of donation badges

has a practical rewarding effect for
individual donors.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 28,2025 at 11:06:52 UTC from IEEE Xplore. Restrictions apply.

Some Eclipse donors are recognized on
Bugzilla with a “Friend of Eclipse” badge.

46

Another example still: Advertising tools inside
Google office toilets increases adoption

�

���

���

���

���

���

-DQ��)HE�� 0DU�� $SU�� 0D\�� -XQ��

8
QL
TX
H�
8
VH
UV
�3
HU
�'
D\

8
L

8
3

'

(a) clang-format

�

��

��

��

��

$XJ�� 6HS�� 2FW�� 1RY�� 'HF��

8
QL
TX
H�
8
VH
UV
�3
HU
�'
D\

8
L

8
3

'

(b) PatchSearch

�

��

���

$SU�� 0D\�� -XQ��

8
QL
TX
H�
8
VH
UV
�3
HU
�'
D\

8
L

8
3

'

(c) PythonFormatter

�

��

��

��

$SU�� 0D\�� -XQ�� -XO��
8

L
8

3
'

(d) GenerateDoc

�

���

���

6HS�� 2FW�� 1RY�� 'HF�� -DQ��)HE�� 0DU��

8
QL
TX
H�
8
VH
UV
�3
HU
�'
D\

8
L

8
3

'

(e) iblaze

�

��

��

��

��

6HS�� 2FW�� 1RY�� 'HF�� -DQ��

8
QL
TX
H�
8
VH
UV
�3
HU
�'
D\

8
L

8
3

'

(f) VerifyDetermBuild

�

��

��

��

0DU�� $SU�� 0D\�� -XQ�� -XO�� $XJ�� 6HS�� 2FW��

8
L

8
3

'

(g) EmulatorSettings

�

��

��

��

0DU�� $SU�� 0D\�� -XQ�� -XO��

8
QL
TX
H�
8
VH
UV
�3
HU
�'
D\

8
L

8
3

'

(h) SandboxManager

�

�

��

��

$XJ�� 6HS�� 2FW�� 1RY��

8
L

8
3

'

(i) ChangeTimeZone

�

�

��

��

'HF�� -DQ��)HE�� 0DU�� $SU�� 0D\��

8
QL
TX
H�
8
VH
UV
�3
HU
�'
D\

8
L

8
3

'

(j) UIDiff

�

��

��

��

��

��

0D\�� -XQ�� -XO�� $XJ��

8
QL
TX
H�
8
VH
UV
�3
HU
�'
D\

8
L

8
3

'

(k) EstimateResources

�

��

��

��

6HS�� 2FW�� 1RY�� 'HF�� -DQ��

8
QL
TX
H�
8
VH
UV
�3
HU
�'
D\

8
L

8
3

'

(l) Coverage

Fig. 2: Daily tool usage rates, before and after episodes (solid grey vertical lines).

470

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 28,2025 at 10:51:48 UTC from IEEE Xplore. Restrictions apply.

Do Developers Discover New Tools On The Toilet?
Emerson Murphy-Hill

Google, LLC
emersonm@google.com

Edward K. Smith*

Bloomberg
tedks@riseup.net

Caitlin Sadowski
Google, LLC

supertri@google.com

Ciera Jaspan
Google, LLC

ciera@google.com

Collin Winter*

Waymo
collinwinter@waymo.com

Matthew Jorde
Google, LLC

majorde@google.com

Andrea Knight
Google, LLC

aknight@google.com

Andrew Trenk
Google, LLC

atrenk@google.com

Steve Gross
Google, LLC

stevegross@google.com

Abstract—Maintaining awareness of useful tools is a
substantial challenge for developers. Physical newslet-
ters are a simple technique to inform developers about
tools. In this paper, we evaluate such a technique, called
Testing on the Toilet, by performing a mixed-methods
case study. We first quantitatively evaluate how effec-
tive this technique is by applying statistical causal in-
ference over six years of data about tools used by thou-
sands of developers. We then qualitatively contextual-
ize these results by interviewing and surveying 382 de-
velopers, from authors to editors to readers. We found
that the technique was generally effective at increasing
software development tool use, although the increase
varied depending on factors such as the breadth of ap-
plicability of the tool, the extent to which the tool has
reached saturation, and the memorability of the tool
name.

I. Introduction
Tools can help increase developer productivity by in-

creasing velocity and code quality. For instance, tools can
find concurrency bugs [28], reduce the effort to analyze
customer feedback [14], and help configure caching frame-
works [10]. With an increasing number of tools becoming
available for developers to use, the opportunity to improve
productivity by increasing tool usage is enormous.

However, as the number of tools increases, so does
the difficulty for developers to gain awareness of relevant
tools. As Campbell and Miller argue, tools in major de-
velopment environments suffer from “deep discoverability”
problems [9]. The problem extends beyond software de-
velopment; in Grossman and colleagues’ survey of Auto-
CAD users, a “typical problem was that users were not
aware of a specific tool or operation which was available
for use” [20]. The problem is compounded at large compa-
nies like Microsoft [39], where developers create in-house
tools and wish to share them with peers.

To increase awareness and adoption of software tools
and practices, Google uses a technique called “Testing
on the Toilet”, or TotT for short (Figure 1). The TotT
episodes are 1-page printed newsletters, written by de-
velopers and posted in restrooms [6]. While originally
aimed at promoting testing tools and practices – hence the

*Research performed while at Google.

��������	
�

TTesting on the Toi let Presents . . . Healthy Code on the Commode ��������	���

��
��������	�
��������������

���������	��
�����	��	���������
�����������������������������	���������	�����
	�����������
�����������	
��
������������������������������
������
����������
����

����
����	����
����������������������
��������������
�������������
�
	���	�����	�������	�����
�����������
��
�����
�����	����������	��������	�����	��������������	�������
�����	�������	
�����	����
��������������������
���	�������������������������
�������������	����
����
���������
���
�������
���������	���������������	������������������������������	������
����	����
	�����������������

 ��������������
�������������
������
�!�����������������	�����
�"

���������	
���

����������	��
��������������

���������������������������������	�
������	��
����������

��������������������� �! !�����"�#�����������������

 #$%!�&#'(()����	�
��*������+�)(()����������,������-��
�)�

�����������������	
�������	������	

��������������	��
��������������

�����������������	�
������	��
����������

��������������������� �! !�����"�#���������������������������������������+�

���+�

���������

 #$%!�&#'�((�)����	�
��*������+�)�

����������((�)����������,������-��
�)��

 ���	�����
�����
����
���������
�������������	�����������������������������������
���
���#���	�����������	����������
����	��������$�����������%��&���������������������	�	�
�
	����������
	��� 	� ���	������"

��
��

'��

	�	��������	�������
	��������
���
��
������������������
��������������
��������
���������
	���������
������������������"

� �
�����	������
�(��������
�������	
��������������������������������������
�)�������	���������������������
�����
����������������*'���	�����

)����	���	���������
�����������������	��	�����+����������������	��	������	�����	���
�����������������

������������'������������������������������	����������������	�����������
��	����������	
��
�	����	������������	�������������$����������������

�����������
��������	�
����������������
���������	������	�
�

�����������������

������
���
�
��������������������������
���
��������
���������
�
�

���������
��

�
�������������������	�	���� ��������� � �����
����������������

Fig. 1: TotT episode promoting clang-format.

name – over the years TotT has become more inclusive of
other kinds of software development practices and tools.
Throughout the period of our study, episodes were dis-
tributed by volunteers; more recently, facilities staff have
taken up distribution. Episodes are posted in restrooms
for about a week, until the next episode is posted.

Software developers have posted episodes at Google
since May 2006, and other organizations have invested in
similar efforts. One such example is the Schibsted Group’s
Testing on the Toilet, which uses a format very similar
to our own [5]. Similarly, both Johns Hopkins Univer-

465

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

1558-1225/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE.2019.00059

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 28,2025 at 10:51:48 UTC from IEEE Xplore. Restrictions apply.

• Murphy-Hill, Smith, Sadowski, et al. Do developers discover new tools on the toilet?. ICSE 2019

CausalImpact R package: Inferring causal impact using
Bayesian structural time-series models

47

Where to start
r-causal.org

48

Summary: We are a methods conference,
let’s step up our methods game!

Compare algorithms /
techniques to do X

Exploratory study to
characterize X

New technique to do X

Quantitatively test
hypothesis

Reflection on MSR
assumptions

Simulation to identify
underlying mechanism

0 5 10 15 20

Types of 10-page papers at MSR 2015 (Florence)

Compare algorithms /
techniques to do X

Exploratory study to
characterize X

How well can LLMs do X? /
Benchmark evaluation

New dataset / benchmark

New technique to do X

0 5 10 15

Types of 10-page papers at MSR 2024 (Lisbon) Tests specific
hypothesisHuman subjects evaluation

Human subjects
evaluation

Human subjects
evaluation

Designing solutions:
• Less benchmark evaluations, more human-

centered methods

• More theory: why, how, when, for whom, and
under what conditions does it work?

Understanding the problem:
• Less descriptives, more understanding

mechanisms and testing hypotheses

• Causal relationships are good theory
fragments, and allow for predictions

49

Summary: We are a methods conference,
let’s step up our methods game!

Compare algorithms /
techniques to do X

Exploratory study to
characterize X

New technique to do X

Quantitatively test
hypothesis

Reflection on MSR
assumptions

Simulation to identify
underlying mechanism

0 5 10 15 20

Types of 10-page papers at MSR 2015 (Florence)

Compare algorithms /
techniques to do X

Exploratory study to
characterize X

How well can LLMs do X? /
Benchmark evaluation

New dataset / benchmark

New technique to do X

0 5 10 15

Types of 10-page papers at MSR 2024 (Lisbon) Tests specific
hypothesisHuman subjects evaluation

Human subjects
evaluation

Human subjects
evaluation

Designing solutions:
• Less benchmark evaluations, more human-

centered methods

• More theory: why, how, when, for whom, and
under what conditions does it work?

Understanding the problem:
• Less descriptives, more understanding

mechanisms and testing hypotheses

• Causal relationships are good theory
fragments, and allow for predictions

