2022 International Conference on Software Engineering
Pittsburgh, PA, May 25th 2022

N

|
ICSE EDEE

In-IDE Code Generation from Natural
Language: Promise and Challenges

L

Graham Neubig
@gneubig

There has been much interest in ML methods that
generate source code (e.g. Python) from English
commands. But does this actually help software
developers? We asked 31 developers to use a code
generation plugin, and found some interesting
results: arxiv.org/abs/2101.11149 1/7

® sign) 1= i‘;’us‘i‘om, Sl
ration fromN.., 1 & ...
(English) . \#’ -’j eeeeeeeee
lenges T i — r':‘J
é{ InstrntedM, E \ /
. . _“l—’ - Post-test E; ul
lon University < R E \\ﬁ
. . . I nnnnnnnnnn d VM, IDE El\(l)egr;t
rnegie Mellon University\ 5= _ee *© /é
. . 7 20800 =0
gie Mellon University
Fig. 1. Overview of our study.
9:46 AM - Jan 28, 2021)
: : f@ Read the full conversation on Twitter
Frank Xu Bogdan Vasilescu Graham Neubig
Read 3 replies
S T R § D = L N : - ~)}ﬁ\ Language - institute for
= A NEULAB (Carnegie Mellon University M Technologies SOFTWARE
SOCIO-TECHNICAL RESEARC | tltUte
DSING DATA EXCAVATION LAB ns RESEARCH

‘| suspect that machines to be programmed
IN our native tongues —be It Dutch, English,
- American, French, German, or Swahili— are
~as damned difficult to make as they
would be to use.’

Edsger W. Dijkstra. 1979. On the foolishness of “natural language programming.” In Program Construction. Springer, 51-53.

Carnegie Mellon University E ‘ ‘ 1 A D
School of Computer Science STR L:J DEL m NEULAB

Dijkstra certainly got the “difficult to make” part ri
It took ~40 years

Carnegie Mellon U

School of Com

[EMNLP 2018]

TRANX: A Transition-based Neural Abstract Syntax Parser for Semantic
Parsing and Code Generation

Pengcheng Yin, Graham Neubig
Language Technologies Institute
Carnegie Mellon University
{pcyin,gneubig}@cs.cmu.edu

Abstract

We present TRANX, a transition-based neu-
ral semantic parser that maps natural language
(NL) utterances into formal meaning repre-
sentations (MRs). TRANX uses a transition
system based on the abstract syntax descrip-
tion language for the target MR, which gives
it two major advantages: (1) it is highly ac-
curate, using information from the syntax of
the target MR to constrain the output space
and model the information flow, and (2) it is
highly generalizable, and can easily be applied
to new types of MR by just writing a new ab-
stract syntax description corresponding to the
allowable structures in the MR. Experiments
on four different semantic parsing and code
generation tasks show that our system is gen-
eralizable, extensible, and effective, register-
ing strong results compared to existing neural
semantic parsers. !

1 Introduction

Semantic parsing is the task of transducing nat-
ural language (NL) utterances into formal mean-
ing representations (MRs). The target MRs can
he defined accordinoe to a wide varietv of for-

Because of these varying formalisms for MRs,
the design of semantic parsers, particularly neu-
ral network-based ones has generally focused on
a small subset of tasks — in order to ensure the
syntactic well-formedness of generated MRs, a
parser is usually specifically designed to reflect
the domain-dependent grammar of MRs in the
structure of the model (Zhong et al., 2017; Xu
et al., 2017). To alleviate this issue, there have
been recent efforts in neural semantic parsing with
general-purpose grammar models (Xiao et al.,
2016; Dong and Lapata, 2018). Yin and Neubig
(2017) put forward a neural sequence-to-sequence
model that generates tree-structured MRs using a
series of tree-construction actions, guided by the
task-specific context free grammar provided to the
model a priori. Rabinovich et al. (2017) pro-
pose the abstract syntax networks (ASNs), where
domain-specific MRs are represented by abstract
syntax trees (ASTs, Fig. 2 Left) specified under
the abstract syntax description language (ASDL)
framework (Wang et al., 1997). An ASN employs
a modular architecture, generating an AST us-
mo <pecificallv desioned neural networks for each

IACL 2020]

Incorporating External Knowledge through Pre-training
for Natural Language to Code Generation

Frank F. Xu; Zhengbao Jiang; Pengcheng Yin, Bogdan Vasilescu, Graham Neubig
Carnegie Mellon University
{fangzhex, zhengbaj, pcyin,vasilescu, gneubig}@cs.cmu.edu

Abstract

Open-domain code generation aims to gener-
ate code in a general-purpose programming
language (such as Python) from natural
language (NL) intents. Motivated by the
intuition that developers usually retrieve
resources on the web when writing code,
we explore the effectiveness of incorpo-
rating two varieties of external knowledge
into NL-to-code generation: automatically
mined NL-code pairs from the online pro-
gramming QA forum StackOverflow and
programming language API documentation.
Our evaluations show that combining the
two sources with data augmentation and
retrieval-based data re-sampling improves
the current state-of-the-art by up to 2.2%
absolute BLEU score on the code generation
testbed CoNaLa. The code and resources
are available at https://github.com/
neulab/external-knowledge—-codegen.

1 Introduction

Semantic parsing, the task of generating machine
executable meaning representations from natural

External Knowledge Resources:

Re-sampling w/

Real Distribution
r'y

I
Mined pairs from = stackoverflow =~~~ { Real Distribution

Parsed pairs from APl docs

Estimation

1
1
Human Curated Data: X Pre-train

. -~ " Text-to-Code
Annotated pairs <code, NL> Fine-tune Gen. Model

Figure 1: Our approach: incorporating external knowl-
edge by data re-sampling, pre-training and fine-tuning.

2018; Iyer et al., 2018; Yin and Neubig, 2019) used
a variety of models, especially neural architectures,
to achieve good performance.

However, open-domain code generation for
general-purpose languages like Python is chal-
lenging. For example, given the intent to choose
a random file from the directory contents of the C
drive, ‘C:\\’, one would expect the Python code
Mﬂppet random.choice (os.listdir (*C:\\")),
that realizes the given intent. This would involve
not just generating syntactically correct code, but
also using (and potentially combining) calls to APIs
and libraries that implement some of the desired
functionality. As we show in § 3, current code gen-
eration models still have difficultv eeneratine the

Dijkstra certainly got the “difficult to make” part right ...

It took ~40 years

Remove the G SR
~ first column of @ == df.drop(df.columns[[0]])
dataframe df

\
N |
|=| Code retrieval

N del df[‘column name’]

(Training set example is somewhat different still)
df = df.drop(df.columns[[©®]], axis=1)

Carnegie Mellon University E
School of Computer Science STR L:J DEL w NEULAB 4

What about usability?

BLEU score X Usefulness In
on some VS. real-world
benchmark scenarios

Carnegie Mellon University =
School of Computer Science STR L:,l DEL W NE ULAB

Our human study

Carnegie Mellon University -
School of Computer Science STR I::;l DEL w NEULAB

Step 1: Develop an instrumented IDE plugin

<y Code generation
¥ (Yin & Neubig, 2018)

Y Code retrieval
|</>
(>

=] (custom)

e

</>
Natural Ianguage Ranked list of both generated
intent (English) and retrieved snippets

Carnegie Mellon University E |
School of Computer Science STR L:J DEL w NEULAB

Step 1: Develop an instrumented IDE plugin

Telemetry

Carnegie Mellon University E | A 1
School of Computer Science STR L:J DEL w NEULAB

Step 1: Develop an instrumented IDE plugin

Telemetry

Step 2: Compile a set of realistic tasks

Popular coding -
education websites EEJ — Q ['\i;"‘ / representative
e 2 .ty task categories
] Q'\Ir' " (with 2 tasks each)
/

Stack Overflow \\
guestions =

Carnegie Mellon University - ‘ | - AN
School of Computer Science S TR L:J DEL m NEULAB

10

Step 2: Compile a set of realistic tasks

Category Tasks

T1-1 Randomly generate and sort numbers and characters with dictionary

Basic Python T1-2 Date & time format parsing and calculation with timezone
Fila T2-1 Read, manipulate, and output CSV files
T2-2 Text processing about encoding, newline styles, and whitespaces
0S T3-1 File and directory copying, name editing
T3-2 File system information aggregation
Web Scraping T4-1 Parse URLs and specific text chunks from web page

T4-2 Extract table data and images from Wikipedia page

T5-1 Implement an HTTP server for querying and validating data

T5-2 Implement an HTTP client interacting with given blog post APIs

T6-1 Data analysis on automobile data of performance metrics and prices

T6-2 Train and evaluate a multi-class logistic regression model given dataset

T7-1 Produce a scatter plot given specification and dataset

T7-2 Draw a figure with three grouped bar chart subplots aggregated from dataset

Web Server & Client
Data Analysis & ML

Data Visualization

Bl

Carnegie Mellon University - N 'y
N . - JJ“\\J‘A i
School of Computer Science S T R - D E |_ ﬂ -

Step 3: 31 participants completing tasks

31 partmpants

Carnegie Mellon Universit

School of Computer Si:ience STR E,I DEL m NEULAB

g/

= .

Consent &
Pre-test survey

=

Instrumented VM, IDE

CH)

Y A A

T1 T5 T6

Instrumented VM, IDE

& @
T1 13 T4 T6

Event
Iogs
-
Post test ‘ | 'l I
survey Log data
analy5|s
Event Iogs
. /;u rvey data
Post test analysis
survey

12

Highlight: No significant improvement in quantitative measures of
speed, code quality, or program correctness when using the plugin

B w/o plugin
All (23 7) Basic Python (62) File (61) 0S (38) Web Scra ping (12) Web Server & Data Anal sis & Data
Client (8) Machine Leammg (36) Visualization (20)

10

Score

mcgf"élgl;ﬂugl?;?gcience S T R EJ D E I_ m NEU[AB 13

Highlight: Code generation and retrieval are
useful in different settings.

Code generation methods work
better for simpler queries on
basic Python functionality

140 - I Retrieved

[Generated
120 -

100 -

Code retrieval is 80~

poreferred for more
complicated

functionality w*

20 -

Tokens

60 -

O_

Originall Length Final Length Edit Di'stance

Carnegie Mellon University E
School of Computer Science STR L:J DEL w NEULAB 14

Highlight: In general, users liked using the plugin!
But we have a loooong way to go to make code generation systems practical

e Combine code generation with code retrieval. Our results suggest that some queries may be e Provide a unified and intuitive query syntax. We observed that users are not always formulat-

better answered through code retrieval techniques, and others through code generation. We
recommend that future research continue to explore these types of approaches jointly, e.g.,
using hybrid models [40, 41] that may be able to combine the best of both worlds.

Consider the user’s local context as part of the input. Our oracle comparison revealed that
users’ natural language queries can often be disambiguated by considering the local context
provided by the source files they were working in at the time, which in turn could lead
to better performance of the code generation model. There is already convincing evidence
from prior work that considering a user’s local context provides unique information about
what code they might type next [111]. In addition, some work on code retrieval has also
considered how to incorporate context to improve retrieval results [17]; this may be similarly
incorporated.

Consider the user’s local context as part of the output. Considering where in their local IDE
users are when invoking an NL2Code assistant can also help with localizing the returned
code snippets for that context. Some transformations are relatively simple, e.g., pretty print-
ing and indentation. Other transformations may require more advanced program analysis
but are still well within reach of current technology, e.g., renaming variables used in the
returned snippet to match the local context (the Bing Developer Assistant code retrieval
engine [115] already does this), or applying coding conventions [2].

Provide more context for each returned snippet. Our study shows that NL2Code generation or
retrieval systems can be useful when users already know what the right answer is, but they
need help retrieving it. At the same time, many of our study participants reported lacking
sufficient background knowledge, be it domain-specific or API-specific, to recognize when a
plugin-returned code snippet is the right one given their query, or what the snippet does in
detail. Future research should consider incorporating more context and documentation to-
gether with the plugin’s results, which allows users to better understand the code, e.g., links
to Stack Overflow, official documentation pages, explanations of domain-specific concepts,
other API usage examples. One example of this is the work of Moreno et al. [78], which
retrieves usage examples that show how to use a specific method.

Bl

Carnegie Mellon University - ‘ ‘ 1 A D
School of Computer Science S T R - D E |_ m N E ULAB

ing queries in the way that we would expect, perhaps because they are used to traditional
search engines that are more robust to noisy inputs and designed for keyword-based search.
The NL2Code generation model we experimented with in this study was trained on natural
language queries that are not only complete English sentences, but also include references to
variables or literals involved with an intent, specially delimited by dedicated syntax (grave
accents). As our respondents commented in the post-test survey, getting used to formulat-
ing queries this way takes some practice. Future research should consider not only what
is the most natural way for users to describe their intent using natural language, but also
how to provide a unified query syntax for both code generation and code retrieval, to mini-
mize confusion. Robust semantic parsing techniques [8, 95] may also help with interpreting
ill-specified user queries.

Provide dialogue-based query capability. Dialogue-based querying could allow users to refine
their natural language intents until they are sufficiently precise for the underlying models
to confidently provide some results. Future systems may reference work on query refor-
mulation in information retrieval, where the user queries are refined to improve retrieval
results both for standard information retrieval [7] and code retrieval [39, 45]. In addition, in
the NLP community there have been notable advancements recently in interactive semantic
parsing [51, 119], i.e., soliciting user input when dealing with missing information or ambi-
guity while processing the initial natural language query, which could be of use as well.

Consider new paradigms of evaluation for code generation and retrieval systems. Usage log data,
such as the ones we collected here, is arguably very informative and useful for researchers
looking to evaluate NL2Code systems. However, compared to automated metrics such as
BLEU, such data is much less readily available. We argue that such data is worth collecting
even if only in small quantities. For example, with little but high-quality data, one could still
train a reranker [125] to try to select the outputs that a human user selected; if the predictive
power exceeds that of BLEU alone, then the trained reranker could be used to automatically
evaluate the quality of the generated or retrieved code more realistically than by using BLEU.

15

Conclusion: We need more human-centered approaches to
evaluate ML-based tools within the software development workflow

H neulab /tranX-plugin Public

<> Code (%) Issues 3 19 Pullrequests (») Actions Projects [Wiki @ Security |~ Insights
¥ master ~ E ©9 Go to file Add file » Code ~ About
branch tags
A plugin for code generation in
@ frankxu2004 add user id settin... £8c1099 12 days ago <Y 64 commits PyCharm/IntelliJ using tranX
N .] Readme
gradle/wrapper update http client implementation a... 2 years ago
¥ 33 stars
imgs update usage 2 years ago
® 2 watching
src also upload unselected queries to th... 2 years ago % 0 forks
[.gitignore update http client implementation a... 2 years ago
[README.md add user id setting in readme 12 days ago Releases 9
[9 build.gradle bump ver 2 years ago © Beta release 1.8
on Sep 8, 2020
[Y gradlew Initial commit of tranx plugin 3 years ago
+ 8 releases
a gradlew.bat Initial commit of tranx plugin 3 years ago
[\ settings.gradle Initial commit of tranx plugin 3 years ago

Packages

https://github.com/neulab/tranX-plugin

Carnegie Mellon University - ;
School of Computer Science S T R — D E |_ % NE U[AB 16

https://github.com/neulab/tranX-plugin

