
[Journal First - ACM TOSEM]

In-IDE Code Generation from Natural
Language: Promise and Challenges

2022 International Conference on Software Engineering
Pittsburgh, PA, May 25th 2022 Graham Neubig

@gneubig

There has been much interest in ML methods that
generate source code (e.g. Python) from English
commands. But does this actually help software
developers? We asked 31 developers to use a code
generation plugin, and found some interesting
results: arxiv.org/abs/2101.11149 1/7

9:46 AM · Jan 28, 2021

Read the full conversation on Twitter

304 Reply Share

Read 3 replies

Bogdan Vasilescu
@b_vasilescu

Graham Neubig
@gneubig

Frank Xu
@frankxu2004

2

Edsger W. Dijkstra. 1979. On the foolishness of “natural language programming.” In Program Construction. Springer, 51–53.

“I suspect that machines to be programmed
in our native tongues —be it Dutch, English,
American, French, German, or Swahili— are

as damned difficult to make as they
would be to use.”

3

Dijkstra certainly got the “difficult to make” part right …

[EMNLP 2018]

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6045–6052
July 5 - 10, 2020. c�2020 Association for Computational Linguistics

6045

Incorporating External Knowledge through Pre-training
for Natural Language to Code Generation

Frank F. Xu∗, Zhengbao Jiang∗, Pengcheng Yin, Bogdan Vasilescu, Graham Neubig
Carnegie Mellon University

{fangzhex,zhengbaj,pcyin,vasilescu,gneubig}@cs.cmu.edu

Abstract

Open-domain code generation aims to gener-
ate code in a general-purpose programming
language (such as Python) from natural
language (NL) intents. Motivated by the
intuition that developers usually retrieve
resources on the web when writing code,
we explore the effectiveness of incorpo-
rating two varieties of external knowledge
into NL-to-code generation: automatically
mined NL-code pairs from the online pro-
gramming QA forum StackOverflow and
programming language API documentation.
Our evaluations show that combining the
two sources with data augmentation and
retrieval-based data re-sampling improves
the current state-of-the-art by up to 2.2%
absolute BLEU score on the code generation
testbed CoNaLa. The code and resources
are available at https://github.com/

neulab/external-knowledge-codegen.

1 Introduction

Semantic parsing, the task of generating machine

executable meaning representations from natural

language (NL) intents, has generally focused on

limited domains (Zelle and Mooney, 1996; Debo-

rah A. Dahl and Shriber, 1994), or domain-specific

languages with a limited set of operators (Berant

et al., 2013; Quirk et al., 2015; Dong and Lap-

ata, 2016; Liang et al., 2017; Krishnamurthy et al.,

2017; Zhong et al., 2017; Yu et al., 2018, 2019b,a).

However, recently there has been a move towards

applying semantic parsing to automatically gener-

ating source code in general-purpose programming

languages (Yin et al., 2018; Yao et al., 2018; Lin

et al., 2018; Agashe et al., 2019; Yao et al., 2019).

Prior work in this area (Xiao et al., 2016; Ling et al.,

2016; Rabinovich et al., 2017; Yin and Neubig,

2017, 2018; Dong and Lapata, 2018; Suhr et al.,

∗The first two authors contributed equally.

Annotated pairs <code, NL>

External Knowledge Resources:

Pre-train

Mined pairs from

Parsed pairs from API docs

Text-to-Code
Gen. Model

Noisy but real-use distributed

Clean but uniformly distributed

Re-sampling w/
Real Distribution

Human Curated Data:

Real Distribution
Estimation

Fine-tune

Figure 1: Our approach: incorporating external knowl-
edge by data re-sampling, pre-training and fine-tuning.

2018; Iyer et al., 2018; Yin and Neubig, 2019) used

a variety of models, especially neural architectures,

to achieve good performance.

However, open-domain code generation for

general-purpose languages like Python is chal-

lenging. For example, given the intent to choose

a random file from the directory contents of the C

drive, ‘C:\\’, one would expect the Python code

snippet random.choice(os.listdir(‘C:\\’)),

that realizes the given intent. This would involve

not just generating syntactically correct code, but

also using (and potentially combining) calls to APIs

and libraries that implement some of the desired

functionality. As we show in § 3, current code gen-

eration models still have difficulty generating the

correct function calls with appropriate argument

placement. For example, given the NL intent above,

although the state-of-the-art model by Yin and

Neubig (2018) that uses a transition-based method

to generate Python abstract syntax trees is guaran-

teed to generate syntactically correct code, it still

incorrectly outputs random.savefig(random(

compile(open(‘C:\\’))+100).isoformat()).

A known bottleneck to training more accurate

code generation models is the limited number of

manually annotated training pairs available in exist-

ing human-curated datasets, which are insufficient

to cover the myriad of ways in which some complex

functionality could be implemented in code. How-

ever, increasing the size of labeled datasets through

additional human annotation is relatively expensive.

[ACL 2020]

It took ~40 years

TRANX: A Transition-based Neural Abstract Syntax Parser for Semantic

Parsing and Code Generation

Pengcheng Yin, Graham Neubig

Language Technologies Institute
Carnegie Mellon University

{pcyin,gneubig}@cs.cmu.edu

Abstract

We present TRANX, a transition-based neu-
ral semantic parser that maps natural language
(NL) utterances into formal meaning repre-
sentations (MRs). TRANX uses a transition
system based on the abstract syntax descrip-

tion language for the target MR, which gives
it two major advantages: (1) it is highly ac-
curate, using information from the syntax of
the target MR to constrain the output space
and model the information flow, and (2) it is
highly generalizable, and can easily be applied
to new types of MR by just writing a new ab-
stract syntax description corresponding to the
allowable structures in the MR. Experiments
on four different semantic parsing and code
generation tasks show that our system is gen-
eralizable, extensible, and effective, register-
ing strong results compared to existing neural
semantic parsers.1

1 Introduction

Semantic parsing is the task of transducing nat-
ural language (NL) utterances into formal mean-
ing representations (MRs). The target MRs can
be defined according to a wide variety of for-
malisms. This include linguistically-motivated se-
mantic representations that are designed to cap-
ture the meaning of any sentence such as �-
calculus (Zettlemoyer and Collins, 2005) or the
abstract meaning representations (Banarescu et al.,
2013). Alternatively, for more task-driven ap-
proaches to semantic parsing, it is common for
meaning representations to represent executable
programs such as SQL queries (Zhong et al.,
2017), robotic commands (Artzi and Zettlemoyer,
2013), smart phone instructions (Quirk et al.,
2015), and even general-purpose programming
languages like Python (Yin and Neubig, 2017; Ra-
binovich et al., 2017) and Java (Ling et al., 2016).

1Available at https://github.com/pcyin/tranX. An
earilier version is used in Yin et al. (2018).

Because of these varying formalisms for MRs,
the design of semantic parsers, particularly neu-
ral network-based ones has generally focused on
a small subset of tasks — in order to ensure the
syntactic well-formedness of generated MRs, a
parser is usually specifically designed to reflect
the domain-dependent grammar of MRs in the
structure of the model (Zhong et al., 2017; Xu
et al., 2017). To alleviate this issue, there have
been recent efforts in neural semantic parsing with
general-purpose grammar models (Xiao et al.,
2016; Dong and Lapata, 2018). Yin and Neubig
(2017) put forward a neural sequence-to-sequence
model that generates tree-structured MRs using a
series of tree-construction actions, guided by the
task-specific context free grammar provided to the
model a priori. Rabinovich et al. (2017) pro-
pose the abstract syntax networks (ASNs), where
domain-specific MRs are represented by abstract
syntax trees (ASTs, Fig. 2 Left) specified under
the abstract syntax description language (ASDL)
framework (Wang et al., 1997). An ASN employs
a modular architecture, generating an AST us-
ing specifically designed neural networks for each
construct in the ASDL grammar.

Inspired by this existing research, we have de-
veloped TRANX, a TRANsition-based abstract
syntaX parser for semantic parsing and code gen-
eration. TRANX is designed with the following
principles in mind:

• Generalization ability TRANX employs ASTs
as a general-purpose intermediate meaning rep-
resentation, and the task-dependent grammar is
provided to the system as external knowledge to
guide the parsing process, therefore decoupling
the semantic parsing procedure with specifici-
ties of grammars.

• Extensibility TRANX uses a simple transi-
tion system to parse NL utterances into tree-

4

Dijkstra certainly got the “difficult to make” part right …
It took ~40 years

Remove the
first column of
dataframe df

Code generation
(Yin & Neubig, 2018)

df.drop(df.columns[[0]])

Code retrieval

del df[‘column_name’]

df = df.drop(df.columns[[0]], axis=1)

(Training set example is somewhat different still)

5

What about usability?

BLEU score X
on some

benchmark
vs.

Usefulness in
real-world
scenarios

6

Our human study

7

Step 1: Develop an instrumented IDE plugin

Natural language
intent (English)

Ranked list of both generated
and retrieved snippets

Code generation
(Yin & Neubig, 2018)
Code retrieval
(custom)

8

Step 1: Develop an instrumented IDE plugin

Telemetry

9

Step 1: Develop an instrumented IDE plugin

Telemetry

10

Step 2: Compile a set of realistic tasks

Popular coding
education websites

Stack Overflow
questions

7 representative
task categories

(with 2 tasks each)

11

Step 2: Compile a set of realistic tasks In-IDE Code Generation from Natural Language: Promise and Challenges 29:9

Table 2. Overview of Our 14 Python Programming Tasks

Category Tasks

Basic Python T1-1 Randomly generate and sort numbers and characters with dictionary
T1-2 Date & time format parsing and calculation with timezone

File T2-1 Read, manipulate, and output CSV !les
T2-2 Text processing about encoding, newline styles, and whitespaces

OS T3-1 File and directory copying, name editing
T3-2 File system information aggregation

Web Scraping T4-1 Parse URLs and speci!c text chunks from web page
T4-2 Extract table data and images from Wikipedia page

Web Server & Client T5-1 Implement an HTTP server for querying and validating data
T5-2 Implement an HTTP client interacting with given blog post APIs

Data Analysis & ML T6-1 Data analysis on automobile data of performance metrics and prices
T6-2 Train and evaluate a multi-class logistic regression model given dataset

Data Visualization T7-1 Produce a scatter plot given speci!cation and dataset
T7-2 Draw a !gure with three grouped bar chart subplots aggregated from dataset

and Coursera16) to identify modules commonly taught across all websites that indicate common
usage scenarios of the Python language. Second, we cross-checked if the previously identi!ed use
cases are well represented among frequently upvoted questions with the [python] tag on Stack
Over"ow, which would further indicate real programmer needs. By searching the category name,
we found that each of our identi!ed categories covers more than 300 questions with more than
10 upvotes on Stack Over"ow. We iteratively discussed the emerging themes among the research
team, re!ning or grouping as needed, until we arrived at a diverse but relatively small set of use
cases, covering a wide range of skills a Python developer may need in practice.

In total, we identi!ed seven categories of use cases, summarized in Table 2. For each of the 7
categories, we then designed two tasks covering use cases in the most highly upvoted questions
on Stack Over"ow. To this end, we searched Stack Over"ow for the “python” keyword together
with another keyword indicative of the task category (e.g., “python matplotlib,” “python pandas”),
selected only questions that were asking how to do something (i.e., excluding questions that ask
about features of the language or about how to install packages), and drafted and iteratively re-
!ned after discussion among the research team tasks that would cover 3–5 of the most frequently
upvoted questions.

We illustrate this process with the following example task for the “Data visualization”
category17:

By running python3 main.py, draw a scatter plot of the data in shampoo.csv and save it to shampoo.png. The
plot size should be 10 inches wide and 6 inches high. The Date column is the x axis (some dates are missing from
the data and in the plot the x axis should be completed with all missing dates without sales data). The date string
shown on the plot should be in the format (YYYY-MM-DD). The Sales column is the y axis. The graph should have
the title “Shampoo Sales Trend.” The font size of the title, axis labels, and x & y tick values should be 20pt, 16pt, and
12pt, respectively. The scatter points should be colored purple.

This task covers some of the top questions regarding data visualization with matplotlib found
on Stack Over"ow through the approach described above:

(1) How do you change the size of !gures drawn with matplotlib?18

16https://www.coursera.org/.
17Corresponding to the search https://stackover"ow.com/search?tab=votes&q=python%20matplotlib.
18https://stackover"ow.com/questions/332289/how-do-you-change-the-size-of-!gures-drawn-with-matplotlib.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 29. Publication date: February 2022.

12

Step 3: 31 participants completing tasks

31 participants

Instrumented VM, IDE

…

T1 T5 T6

Instrumented VM, IDE

…

T1 T3 T4 T6

Post-test
survey

Event
logs

Post-test
survey

Event logs

Log data
analysis

Survey data
analysis

… Consent &
Pre-test survey

13

Highlight: No significant improvement in quantitative measures of
speed, code quality, or program correctness when using the plugin

14

Highlight: Code generation and retrieval are
useful in different settings.

29:22 F. F. Xu et al.

Fig. 6. Split violin plots comparing the length (in tokens) of the code snippets chosen by the study partic-
ipants across all successful queries, before and a!er potential edits in the IDE. The horizontal do"ed lines
represent 25% and 75% quartiles, and the dashed lines represent medians.

In!nity). This may help explain why the retrieved snippets require more edits to correct the code
to better suit the current programming code context, compared to the generated snippets.

Diving deeper into the edits to the plugin-supplied version of the di"erent snippets, we compute
the frequency distribution of tokens in both versions (plugin and !nal), normalized based on total
token count in each corpus. Table 6 highlights the tokens with the greatest increases and decreases
in relative frequency during editing. We observe that study participants seem to add common
keywords such as “in, for, if, with,” built-in names and functions such as “key, print,” and common
variable names such as “line, !lename” to the generated/retrieved candidates. Stated di"erently, in
these cases the code snippets seem to miss substantive parts and relevant functionality, which also
may be partly due to the lack of speci!city described in the previous section.

In contrast, study participants seem to delete number and string literals from the code snippets.
This may be explained by the fact that the tool used retrieved code snippets as they appeared on
Stack Ove#ow, and thus many retrieved code snippets contain additional boilerplate code required
for initialization or setup and hard-coded example inputs and outputs. We also observe some com-
monly used variable names like “df, plt” that get deleted, suggesting that variable replacement is
one of the common operations when reusing the code snippets. An interesting observation here is
that “In” and “Out” are getting deleted frequently. We !nd that it is mostly due to some of the code
snippets retrieved from Stack Over#ow being in the format of IPython REPL, which uses “In” and
“Out” to separate the Python source code and execution outputs. When integrating these snippets,
the users will have to remove this super#uous text. Figure 7 shows a representative example of
such user edits after selecting a candidate snippet, which involves deleting IPython REPL contents,
variable replacement and addition, as well as literal replacements.

Furthermore, following the previous observations on actual tokens, we are interested in how
the frequency of di"erent types of tokens changes before and after users edit the plugin-returned
code snippets. We use the tokenize33 Python 3 library to parse and tag the code snippets and
compare the frequency changes by token type, similar to the previous analysis.34 The results are
shown in Table 7. We !nd that users add new NAME (identi!ers, keywords) tokens the most, with
the frequency of STRING (string literal) tokens slightly increased, and COMMENT (comment strings)

33https://docs.python.org/3/library/tokenize.html.
34Three of the retrieved snippets cannot be parsed and thus are omitted. See full explanation of di"erent token types at
https://www.asmeurer.com/brown-water-python/tokens.html. We also left out some uninteresting token types, such as
ENCODING, ENDMARKER, NL.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 29. Publication date: February 2022.

Code retrieval is
preferred for more

complicated
functionality

Code generation methods work
better for simpler queries on

basic Python functionality

15

Highlight: In general, users liked using the plugin!
But we have a loooong way to go to make code generation systems practical

29:28 F. F. Xu et al.

for comparison, and that study participants choose snippets returned by the code generation model
almost as frequently as they do snippets from the code retrieval engine. In turn, this suggests that,
at least within the scope of the current study, one type of model cannot be used as a substitute for
the other. As discussed above, the code generation model does almost always produce di!erent
results than the code retrieval model. However, it was unclear from that analysis whether the
generated code snippets re"ect some fundamentally higher level of sophistication inherent to the
code generation model, or whether the code retrieval engine we used for comparison is simply too
naive.

To further test this, we performed an additional analysis. Speci#cally, we looked up the chosen
code generation snippets in the manually labeled Stack Over"ow dataset used for training the code
generation model to assess whether the model is simply memorizing the training inputs. Only 13
out of the 173 unique queries (~7.5%) had as the chosen code fragment snippets found verbatim
in the model’s training dataset. Therefore, the evidence so far suggests that the code generation
model does add some level of sophistication, and customization of results to the developers’ intent
(e.g., composing function calls), compared to what any code retrieval engine could.

Third, we provide the following concrete future work recommendations for researchers and
toolsmiths in this area, informed by our results:

• Combine code generation with code retrieval. Our results suggest that some queries may be
better answered through code retrieval techniques, and others through code generation. We
recommend that future research continue to explore these types of approaches jointly, e.g.,
using hybrid models [40, 41] that may be able to combine the best of both worlds.

• Consider the user’s local context as part of the input. Our oracle comparison revealed that
users’ natural language queries can often be disambiguated by considering the local context
provided by the source #les they were working in at the time, which in turn could lead
to better performance of the code generation model. There is already convincing evidence
from prior work that considering a user’s local context provides unique information about
what code they might type next [111]. In addition, some work on code retrieval has also
considered how to incorporate context to improve retrieval results [17]; this may be similarly
incorporated.

• Consider the user’s local context as part of the output. Considering where in their local IDE
users are when invoking an NL2Code assistant can also help with localizing the returned
code snippets for that context. Some transformations are relatively simple, e.g., pretty print-
ing and indentation. Other transformations may require more advanced program analysis
but are still well within reach of current technology, e.g., renaming variables used in the
returned snippet to match the local context (the Bing Developer Assistant code retrieval
engine [115] already does this), or applying coding conventions [2].

• Provide more context for each returned snippet. Our study shows that NL2Code generation or
retrieval systems can be useful when users already know what the right answer is, but they
need help retrieving it. At the same time, many of our study participants reported lacking
su$cient background knowledge, be it domain-speci#c or API-speci#c, to recognize when a
plugin-returned code snippet is the right one given their query, or what the snippet does in
detail. Future research should consider incorporating more context and documentation to-
gether with the plugin’s results, which allows users to better understand the code, e.g., links
to Stack Over"ow, o$cial documentation pages, explanations of domain-speci#c concepts,
other API usage examples. One example of this is the work of Moreno et al. [78], which
retrieves usage examples that show how to use a speci#c method.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 29. Publication date: February 2022.

In-IDE Code Generation from Natural Language: Promise and Challenges 29:29

• Provide a uni!ed and intuitive query syntax. We observed that users are not always formulat-
ing queries in the way that we would expect, perhaps because they are used to traditional
search engines that are more robust to noisy inputs and designed for keyword-based search.
The NL2Code generation model we experimented with in this study was trained on natural
language queries that are not only complete English sentences, but also include references to
variables or literals involved with an intent, specially delimited by dedicated syntax (grave
accents). As our respondents commented in the post-test survey, getting used to formulat-
ing queries this way takes some practice. Future research should consider not only what
is the most natural way for users to describe their intent using natural language, but also
how to provide a uni!ed query syntax for both code generation and code retrieval, to mini-
mize confusion. Robust semantic parsing techniques [8, 95] may also help with interpreting
ill-speci!ed user queries.

• Provide dialogue-based query capability. Dialogue-based querying could allow users to re!ne
their natural language intents until they are su"ciently precise for the underlying models
to con!dently provide some results. Future systems may reference work on query refor-
mulation in information retrieval, where the user queries are re!ned to improve retrieval
results both for standard information retrieval [7] and code retrieval [39, 45]. In addition, in
the NLP community there have been notable advancements recently in interactive semantic
parsing [51, 119], i.e., soliciting user input when dealing with missing information or ambi-
guity while processing the initial natural language query, which could be of use as well.

• Consider new paradigms of evaluation for code generation and retrieval systems. Usage log data,
such as the ones we collected here, is arguably very informative and useful for researchers
looking to evaluate NL2Code systems. However, compared to automated metrics such as
BLEU, such data is much less readily available. We argue that such data is worth collecting
even if only in small quantities. For example, with little but high-quality data, one could still
train a reranker [125] to try to select the outputs that a human user selected; if the predictive
power exceeds that of BLEU alone, then the trained reranker could be used to automatically
evaluate the quality of the generated or retrieved code more realistically than by using BLEU.

9 RELATED WORK
Finally, we more extensively discuss how this work !ts in the landscape of the many other related
works in the area.

9.1 NL2Code Generation
While we took a particular approach to code generation, there are a wide variety of other op-
tions. Researchers have proposed that natural language dialogue could be a new form of human-
computer interaction, since nearly the advent of modern computers [26, 35, 44, 76]. The bulk of
prior work either targeted domain-speci!c languages (DSLs), or focused on task-speci!c code
generation for general-purpose languages, where more progress could be made given the relatively
constrained vocabulary and output code space. Examples include generating formatted input !le
parsers [63]; structured, idiomatic sequences of API calls [96]; regular expressions [60, 74, 90];
string manipulation DSL programs [100]; card implementations for trading card games [68]; and
solutions to the simplest of programming competition-style problems [10].

With the recent boom of neural networks and deep learning in natural language processing,
generating arbitrary code in a general-purpose language [123, 124] are becoming more feasible.
Some have been trained on both o"cial API documentation and Stack Over#ow questions and

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 29. Publication date: February 2022.

16

Conclusion: We need more human-centered approaches to
evaluate ML-based tools within the software development workflow

neulab / tranX-plugin Public

 1
branch

 9
tags

About

A plugin for code generation in
PyCharm/IntelliJ using tranX

 Readme

 33 stars

 2 watching

 0 forks

Releases 9

Beta release 1.8 Latest

on Sep 8, 2020

+ 8 releases

Packages

No packages published
Publish your first package

Code Issues 3 Pull requests Actions Projects Wiki Security Insights

 master Go to file Add file Code

frankxu2004 add user id settin… f8c1099 12 days ago 64 commits

gradle/wrapper update http client implementation a… 2 years ago

imgs update usage 2 years ago

src also upload unselected queries to th… 2 years ago

.gitignore update http client implementation a… 2 years ago

README.md add user id setting in readme 12 days ago

build.gradle bump ver 2 years ago

gradlew Initial commit of tranx plugin 3 years ago

gradlew.bat Initial commit of tranx plugin 3 years ago

settings.gradle Initial commit of tranx plugin 3 years ago

README.mdhttps://github.com/neulab/tranX-plugin

https://github.com/neulab/tranX-plugin

