THE SKY IS NOT THE LIMIT: **Multitasking Across GitHub Projects**

Bogdan Vasilescu (@b_vasilescu) Kelly Blincoe (@KellyBlincoe) Qi Xuan **Casey Casalnuovo Dana Damian** Prem Devanbu **Vladimir Filkov**

Multitasking is common

#icsenumber

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)

WHY?

 Request from other dev's / management

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)

WHY?

- Request from other dev's / management
- Dependencies

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)

WHY?

- Request from other dev's / management
- Dependencies

- Being "stuck"
- Downtime

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)

WHY?

- Request from other dev's / management
- Dependencies

- Being "stuck"
 - Personal interest

Downtime

EXAMPLE: GitHub developer (25 Nov 2013 – 18 May 2014)

WHY?

- Request from other dev's / management
- Dependencies

- Being "stuck"
- Personal interest

CONS

PROS

CONS

Fill downtime

Switch focus between projects to utilize time more efficiently

(Adler and Benbunan-Fich, 2012)

PROS

CONS

Fill downtime

Switch focus between projects to utilize time more efficiently

(Adler and Benbunan-Fich, 2012)

Cross-fertilisation

Easier to work on other projects if knowledge is transferrable

(Lindbeck and Snower, 2000)

PROS

Fill downtime

Switch focus between projects to utilize time more efficiently

(Adler and Benbunan-Fich, 2012)

Cross-fertilisation

Easier to work on other projects if knowledge is transferrable

(Lindbeck and Snower, 2000)

CONS

Cognitive switching cost

Depends on interruption duration, complexity, moment

(Altmann and Trafton, 2002) (Borst, Taatgen, van Rijn, 2015)

PROS

Fill downtime

Switch focus between projects to utilize time more efficiently

(Adler and Benbunan-Fich, 2012)

Cross-fertilisation

Easier to work on other projects if knowledge is transferrable

(Lindbeck and Snower, 2000)

CONS

Cognitive switching cost

Depends on interruption duration, complexity, moment

(Altmann and Trafton, 2002) (Borst, Taatgen, van Rijn, 2015)

"Project overload"

Mental congestion when too much multitasking (Zika-Viktorsson, Sundstrom, Engwall, 2006)

PROS

Fill downtime

Switch focus between projects to utilize tim more efficiently

(Adler and Benbunan-Fich, 2012)

Cross-fertilisation

Easier to work on other projects if knowledge is transferrable

Amount of multitasking

CONS

Cognitive switching cost

Depends on interruption duration, complexity, moment

Altmann and Trafton, 2002) Borst, Taatgen, van Rijn, 2015)

"Project overload"

Mental congestion when too much multitasking (Zika-Viktorsson, Sundstrom, Engwall, 2006)

(Lindbeck and Snower, 2000)

Rule of thumb (Weinberg, 1992) - not based on data

Rule of thumb (Weinberg, 1992) - not based on data

Rule of thumb (Weinberg, 1992) - not based on data

Recent work:

Resuming interrupted tasks
(Parnin and DeLine, 2010)

Work fragmentation

(Sanchez, Robbes, and Gonzalez, 2015)

... but lots of data to test theories on.

14 million people 35 million projects This work: Large-scale empirical study

(15% resp. rate)

WHAT? **Multitasking across projects** Trends Reasons Effects Limits ? ? ? HOW? Sample: 1,200 programmers 5+ years of activity Data mining + User survey

50,000+ projects total

This work: Large-scale empirical study

PERCEPTION "When contributing to multiple projects in parallel, I:"

Strongly disagree	Disagree	Neutral		Agree	Strongly agree
15%	ir	ncrease proje <mark>ct</mark>	success		47%
23%	r	esolve more is:	sues		40%
29%	fee	<mark>l more produc</mark> t	tive		33%
31%	<mark>co</mark> ntribu	<mark>t</mark> e more code c	overall		29%
34%	review r	nore pull reque	ests		23%
52%	introduce	fewer bugs			5%
100	50	0	50		100

PERCEPTION "When contributing to multiple projects in parallel, I:"

"When contributing to multiple projects in parallel, I:"

PERCEPTION "When contributing to multiple projects in parallel, I:"

PERCEPTION "When contributing to multiple projects in parallel, I:"

EMPIRICAL DATA Multitasking vs. code production

EMPIRICAL DATA Multitasking vs. code production

Daily multitasking correlates to amount of code produced

PERCEPTION "When contributing to multiple projects in parallel, I:"

⊠ ||||

EMPIRICAL DATA Multitasking vs. code production

Daily multitasking correlates to amount of code produced Weekly and day-to-day scheduling of work matters

⊠⊠

EMPIRICAL DATA Multitasking vs. code production

Daily multitasking correlates to amount of code produced Weekly and day-to-day scheduling of work matters

No scheduling is productive beyond 5 projects/week

Period matters

 Period matters
Effort matters (A vs. B)

Period matters
Effort matters
Break matters
...
(A vs. D)

1. PROJECTS PER DAY

1. PROJECTS PER DAY

2. WEEKLY FOCUS

2. WEEKLY FOCUS

Linear mixed-effects regression

Response: LOC added / week

Controls:

- time
- total projects
- programming languages

Projects per day Weekly focus 100% 80% 60% 40% 20% 0% 2 3 4 5 6 В С D Α Projects Day-to-day focus

Longitudinal data

- Random effect: developer
- 1,200 developers
- 5+ years each: multiple weeks of observation
- developer-to-developer variability in the response

Random slope: time | developer

 developers more productive initially may be less strongly affected by time passing

Predictors:

Higher LOC added

Projects per day

Weekly focus

Day-to-day focus (repeatability)

Higher LOC added

Weekly focus

Day-to-day focus (repeatability)

Higher LOC added

More within-day multitasking

Weekly focus

Day-to-day focus (repeatability)

D

Higher LOC added

More within-day multitasking

Weekly focus

Day-to-day focus (repeatability)

Interaction effects:

No scheduling is productive over 5 projects/week

PROS

Fill downtime

Switch focus between projects to utilize tim more efficiently

(Adler and Benbunan-Fich, 2012)

Cognitive switching cost

CONS

Depends on interruption duration, complexity, moment

Altmann and Trafton, 2002) Borst, Taatgen, van Rijn, 2015)

Amount of multitasking

В

"Project overload"

Mental congestion when too much multitasking

(Zika-Viktorsson, Sundstrom, Engwall, 2006)

More within-day multitasking

Higher focus More repetitive day-to-day work

Interaction effects:

No scheduling is productive over 5 projects/week

(Lindbeck and Snower, 2000)

transferrable

Cross-fertilisation

Easier to work on other

projects if knowledge is

Implications - awareness

Average 2.7 projects/day (median 2; range 0-10) Average 6 projects/week (median 5; range 0-30)

Multitasking correlates to amount of code produced No scheduling is productive beyond 5 projects/week

Implications - awareness

Average 2.7 projects/day (median 2; range 0-10) Average 6 projects/week (median 5; range 0-30)

Multitasking correlates to amount of code produced No scheduling is productive beyond 5 projects/week

TASK MANAGEMENT TOOLS

Codetree Z ZenHub.io HuBoard sprintly <> Zube

Bogdan Vasilescu Kelly Blincoe Qi Xuan **Casey Casalnuovo Daniela** Damian Prem Devanbu Vladimir Filkov

NEW ZEALAND

