
Bogdan Vasilescu
(CMU, ISR)

Prem Devanbu
(UCDavis)

Casey Casalnuovo
(UCDavis)

Recovering	Clear,	Natural	
Identifiers	from	Obfuscated	

(JavaScript)	Names

@b_vasilescu @devanbu

@b_vasilescu

var	geom2d	=	function()	{	
		var	t	=	numeric.sum;	
		function	r(n,	r)	{	
				this.x	=	n;	
				this.y	=	r;	
		}	
		u(r,	{	
				P:	function	e(n)	{	
						return	t([this.x	*	n.x,		
							 	 	 	 this.y	*	n.y]);	
				}	
		});	
		function	u(n,	r)	{	
				for	(var	t	in	r)	n[t]	=	r[t];	
				return	n;	
		}	
		return	{	
				V:	r	
		};	
}();

Today

@b_vasilescu

var	geom2d	=	function()	{	
		var	t	=	numeric.sum;	
		function	r(n,	r)	{	
				this.x	=	n;	
				this.y	=	r;	
		}	
		u(r,	{	
				P:	function	e(n)	{	
						return	t([this.x	*	n.x,		
							 	 	 	 this.y	*	n.y]);	
				}	
		});	
		function	u(n,	r)	{	
				for	(var	t	in	r)	n[t]	=	r[t];	
				return	n;	
		}	
		return	{	
				V:	r	
		};	
}();

Today

@b_vasilescu

var	geom2d	=	function()	{	
		var	t	=	numeric.sum;	
		function	r(n,	r)	{	
				this.x	=	n;	
				this.y	=	r;	
		}	
		u(r,	{	
				P:	function	e(n)	{	
						return	t([this.x	*	n.x,		
							 	 	 	 this.y	*	n.y]);	
				}	
		});	
		function	u(n,	r)	{	
				for	(var	t	in	r)	n[t]	=	r[t];	
				return	n;	
		}	
		return	{	
				V:	r	
		};	
}();

var	geom2d	=	function()	{	
		var	sum	=	numeric.sum;	
		function	Vector2d(x,	y)	{	
				this.x	=	x;	
				this.y	=	y;	
		}	
		mix(Vector2d,	{	
				P:	function	dotProduct(vector)	{	
						return	sum([this.x	*	vector.x,		
							 	 	 	 	 this.y	*	vector.y]);	
				}	
		});	
		function	mix(dest,	src)	{	
				for	(var	k	in	src)	dest[k]	=	src[k];	
				return	dest;	
		}	
		return	{	
				V:	Vector2d	
		};	
}();

Today Data-driven
method + tool

Why?
• Programs are (also) written to be read

“Instead of imagining that our main task is to instruct a
computer what to do, let us concentrate rather on explaining to
human beings what we want a computer to do.” [Don Knuth]

@b_vasilescu

Why?
• Programs are (also) written to be read

• Well-chosen variable names are critical to source
code readability, reusability, maintainability

• Example tasks:
• reverse engineering binaries
• reverse engineering obfuscated JavaScript
• consistent styling in large, distributed teams

@b_vasilescu

Why?
• Programs are (also) written to be read

• Well-chosen variable names are critical to source
code readability, reusability, maintainability

• Example tasks:
• reverse engineering binaries
• reverse engineering obfuscated JavaScript
• consistent styling in large, distributed teams

@b_vasilescu

Why?
• Programs are (also) written to be read

• Well-chosen variable names are critical to source
code readability, reusability, maintainability [many]

• Example tasks:
• reverse engineering binaries
• reverse engineering obfuscated JavaScript
• consistent styling in large, distributed teams

9 99

Martin Vechev, “Probabilistic Learning From Big Code”. Keynote at ISSTA 2016

@b_vasilescu

Key ingredient

• The “naturalness” of software [Hindle et al, 2011]

Hmmmm….

Natural languages are complex

Tiger, Tiger  
burning bright
In the forests
of the night

What immortal
hand or eye,
Could frame
thy fearful
symmetry?

Natural languages are complex

TIGER!!  
RUN!!!

..but most utterances
are simple & repetitive

English, த"#, German
Can be Rich, Powerful, Expressive

English, த"#, German
Can be Rich, Powerful, Expressive

..but “in nature” is mostly Simple, Repetitive, Boring

English, த"#, German
Can be Rich, Powerful, Expressive

..but “in nature” is mostly Simple, Repetitive, Boring

Statistical Models

English, த"#, German
Can be Rich, Powerful, Expressive

..but “in nature” is mostly Simple, Repetitive, Boring

Statistical Models

The “naturalness of
software” thesis

Programming Languages are complex...

...but Natural Programs are simple & repetitive.

and this, too, CAN BE EXPLOITED!!

[Hindle et al, 2011]

Variable Name
Guesser

(AUTONYM)

.org

Autonym

Variable Name
Guesser

(AUTONYM)

Minified 
Source Code

function	u(n,	r)	{	
				for	(var	t	in	r)	n[t]	=	r[t];	
				return	n;	
}

.org

Autonym

Variable Name
Guesser

(AUTONYM)

Minified 
Source Code

Un-Minified 
Source Code

function	u(n,	r)	{	
				for	(var	t	in	r)	n[t]	=	r[t];	
				return	n;	
}

function	mix(dest,	src)	{	
				for	(var	k	in	src)	dest[k]	=	src[k];	
				return	dest;	
}

.org

Autonym

.org

Moses SMTPre-
processing

Post-
processing

Autonym

Minified 
Source Code

Un-Minified 
Source Code

.org

Moses SMTPre-
processing

Post-
processing

Autonym

What’s the relevance of Machine Translation?

Noisy channel translation model

Noisy channel translation model

Noisy channel translation model

distorted message

Noisy channel translation model

channel model

distorted message

Noisy channel translation model

channel model
language model

distorted message

Noisy channel translation model

Goal: recoverp(e|f) = p(f |e)p(e)/p(f)

channel model
language model

distorted message

Noisy channel translation model

Goal: recoverp(e|f) = p(f |e)p(e)/p(f)

channel model
language model

distorted message

Noisy channel translation model

Goal: recoverp(e|f) = p(f |e)p(e)/p(f)

channel model
language model

distorted message

(for a given)

Bayes

theor
em

Noisy channel translation model

Goal: recoverp(e|f) = p(f |e)p(e)/p(f)

channel model
language model

distorted message

Language
model

Translation
(channel distortion)

model

Language
model

Translation
model

Translating French () to English ()

Language
model

Translation
model

Aligned French-English Corpus

Translating French () to English ()

English Corpus

Language
model

Translation
model

Aligned French-English Corpus

Translating French () to English ()

English Corpus

Language
model

Translation
model

Aligned French-English Corpus

Translating French () to English ()

Clear Code Corpus

Language
model

Translation
model

Aligned Clear-Minified  
Code Corpus

Translating minified () to clear JS ()

Clear Code Corpus

Language
model

Translation
model

Aligned Clear-Minified  
Code Corpus

Translating minified () to clear JS ()
GitHub + minifier

Alignment

EN: I know what you named your identifiers!

NL: Ik weet wat je je ID's genoemd!

Natural language:
non-trivial alignment
• Reordering
• Different length
• Dropped words

Alignment

EN: I know what you named your identifiers!

NL: Ik weet wat je je ID's genoemd!

Natural language:
non-trivial alignment
• Reordering
• Different length
• Dropped words

Alignment

EN: I know what you named your identifiers!

NL: Ik weet wat je je ID's genoemd!

function	u(n,	r)	{

function	mix(dest,	src){

Natural language:
non-trivial alignment
• Reordering
• Different length
• Dropped words

Alignment

EN: I know what you named your identifiers!

NL: Ik weet wat je je ID's genoemd!

function	u(n,	r)	{

function	mix(dest,	src){

Natural language:
non-trivial alignment
• Reordering
• Different length
• Dropped words

Minification:
straightforward
alignment

Complications

function	r(n,	r)	{	

		for	(var	t	in	r)	n[t]	=	r[t];	

		return	n;	
		
}

?

function	r(n,	r)	{	

		for	(var	t	in	r)	n[t]	=	r[t];	

		return	n;	
		
}

Complications

function	r(n,	r)	{	

		for	(var	t	in	r)	n[t]	=	r[t];	

		return	n;	
		
}

Complications

function	r(n,	r)	{	

		for	(var	t	in	r)	n[t]	=	r[t];	

		return	n;	
		
}

Complications

Autonym

function	r(n,	r)	{	

		for	(var	t	in	r)	n[t]	=	r[t];	

		return	n;	
		
}

(1) Overloading

function	mix(dest,	src)	{	
		

}

Complications

Autonym

function	r(n,	r)	{	

		for	(var	t	in	r)	n[t]	=	r[t];	

		return	n;	
		
}

(1) Overloading

function	mix(dest,	src)	{	
		

}

Scope
analysis

Complications

Autonym

function	r(n,	r)	{	

		for	(var	t	in	r)	n[t]	=	r[t];	

		return	n;	
		
}

function	mix(dest,	src)	{	
		
		for	(var	k	in	list)	dest[k]	=	list[k];	

		return	dest;	

}

(2) Consistency
(Sentence-by-sentence translation)

Complications

Autonym

function	r(n,	r)	{	

		for	(var	t	in	r)	n[t]	=	r[t];	

		return	n;	
		
}

function	mix(dest,	src)	{	
		
		for	(var	k	in	list)	dest[k]	=	list[k];	

		return	dest;	

}

(2) Consistency
(Sentence-by-sentence translation)

Language
model
scoring

Idea: try all, let language model
decide which is more natural, on
average, across ALL lines

Language
model

Translation
model

Complications

Autonym

Evaluation
• Held-out test set: 2,149 files

• Comparison to JSNice
[Raychev et al, 2015]

• Metric: % names recovered

Evaluation
• Held-out test set: 2,149 files

• Comparison to JSNice
[Raychev et al, 2015]

• Metric: % names recovered

• Global vs. local names
(globals don’t change)

var	geom2d	=	function()	{	
		var	t	=	numeric.sum;	
		function	r(n,	r)	{	
				this.x	=	n;	
				this.y	=	r;	
		}	
...

var	geom2d	=	function()	{	
		var	sum	=	numeric.sum;	
		function	Vector2d(x,	y)	{	
				this.x	=	x;	
				this.y	=	y;	
		}	
...

0.00

0.25

0.50

0.75

1.00

Auto
ny

m (L
oc

al)

Auto
ny

m (A
ll)

JS
Nice

 (L
oc

al)

JS
Nice

 (A
ll)

JS
Nau

gh
ty

(Lo
ca

l)

JS
Nau

gh
ty

(All)

Renaming technique

%
 n

am
es

 re
co

ve
re

d
−

21
49

 fi
le

s

% names recovered (2,149 test files)
Local Global

Autonym JSNice

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Autonym File Accuracy

JS
N

ic
e

Fi
le

 A
cc

ur
ac

y

20
40
60

Frequency

Joining forces

Moses SMTPre-
processing

Post-
processing

Autonym

Becoming JSNaughty

Moses SMTPre-
processing

Post-
processing

Autonym

JSNice

Becoming JSNaughty

0.00

0.25

0.50

0.75

1.00

Auto
ny

m (L
oc

al)

Auto
ny

m (A
ll)

JS
Nice

 (L
oc

al)

JS
Nice

 (A
ll)

JS
Nau

gh
ty

(Lo
ca

l)

JS
Nau

gh
ty

(All)

Renaming technique

%
 n

am
es

 re
co

ve
re

d
−

21
49

 fi
le

s

% names recovered (2,149 test files)

Autonym JSNice JSNaughty

Global

Examples

1 module . export s = http . c r e a t eSe rv e r (function (e , r) {
2 var t ;
3 var i = new stream . Stream () ;
4 . . .
5 var n = "" ;
6 csv () . fromStream (e) . on (" data " , function (e , r) {
7 i f (! t) { . . . }
8 var a = {} ;
9 (. z ip (t , e)) . each (function (e) { . . . }) ;

10 i . emit (" data " , n + JSON. s t r i n g i f y (a)) ;
11 n = " ," ;
12 }) . on (" end " , function (e) {
13 i . emit (" data " , "]} ") ;
14 i . emit (" end ") ;
15 }) . on (" error " , function (e) {
16 i . emit (" error " , e) ;
17 conso l e . l og (" csv error " , e . message) ;
18 }) ;
19 }) ;

Figure 7: Case study

very popular: for the majority of potential adversaries, the
output of UglifyJS provides a su�cient deterrence.

Turning to de-obfuscation, a key focus in reverse engineer-
ing and deobfuscation is on static & dynamic analysis tech-
niques [10, 12]. This has great relevance for malicious code
detection [9, 31], and has received a great deal of attention.
Given the constraints on obfuscation use for JavaScript,
these approaches are ill-suited to the most common use case,
which is to recover full, natural, identifier names which are
corrupted by minifiers like JavaScript. Code analysis tools
generally focus on the semantics of obfuscated programs, to
recover intent; however, what most JavaScript programmers
need is a way to make minified programs easier to read, with
natural, well-suited identifiers that promote human under-
standing. Thus, in this setting, a statistical approach, which
helps make minified programs look “familiar”, viz, textually
similar to most JavaScript programs that do the same thing,
is precisely what is needed; thus SMT techniques, trained
over large corpora are specially well-suited.

5.2 The Naturalness of Software
Gabel & Su observed [19] that most short code sequences

are not unique; following this work, Hindle et al [23] showed
that statistical language models were just as e↵ective (in fact
more so) for software, as for natural language corpora, thus
suggesting that software is also natural. Language models
are central to the great success of NLP techniques in speech
recognition, translation and so on; thus Hindle et al ’s work
suggests great promise for the use of language models in
code. There have been substantial further applications of
statistical models for code, in areas such as coding stan-
dards mining and checking [1], code summarization [16], id-
iom mining [2, 36], and bug localization [40].

The key insight of this work is that identifier names are
natural ; meaning, that programmers choose “natural sound-
ing” identifier names, in regular, predictable, repetitive ways
that reflect the context of use, so as to convey a predictable,
unsurprising intent to the reader. Thus, even though Java-
script minifiers shorten variables to single letters, there is
su�cient information in the context to predict which names
make the most sense. Furthermore, even if minifiers might
contrive to map many di↵erent names in di↵erent, (or over-

lapping) contexts to the same single-letter names, there is
su�cient regularity in joint distribution of the context of
both “clear” and “minified” context that allows us to get
a good statistical prediction on what the unminified name
should be.

5.3 SMT in Software Engineering
There have been e↵orts to apply SMT to software engi-

neering problems along the two directions below.

Migration. It is straightforward to imagine a potential use
of SMT in software engineering: if programming languages
are “natural,” can we automatically translate between them
the way we translate from English to French?
Nguyen et al. [33] were among the first to address this

question, by experimenting with translation from Java to
C#. The authors treat source code as a sequence of lexical
tokens (each code token is the equivalent of a word; a method
is the equivalent of a sentence), which enables them to ap-
ply a standard phrase-based SMT model [7] out-of-the-box.
Empirical evaluation on a parallel corpus of around 13,000
Java-to-C# method translations, automatically mined from
two open-source projects available in both languages, found
the approach imperfect but promising: more than half of all
translated methods were syntactically incorrect, yet users
would not have to edit more than 16% of the total num-
ber of tokens in the translations in order to correct them.
Based on their experiments, the authors advocate for more
program-oriented SMTmodels instead of purely lexical ones.
In follow-up work, they propose several such models aimed
at migration of API usages [32,34,35].
Karaivanov et al. [24], as did Nguyen et al. [33], experi-

mented with translation from C# to Java on a parallel cor-
pus of around 20,000 C#-to-Java method translations mined
from open-source projects available in both languages. How-
ever, they also trained hybrid phrase and rule-based SMT
models that take the grammatical structure of the target lan-
guage into account. Experimental evaluation on a sample of
1,000 C# methods confirmed that the approach is promis-
ing: SMT was sometimes able to learn how to translate en-
tire methods, and map one set of API calls to another, espe-
cially with the more program-oriented models (roughly 60%
of the resulting translations compiled). Still, the authors
note that obtaining a parallel corpus of translated programs
is challenging.

Documentation. Pseudo-code written in natural language
can be a valuable resource during program comprehension
for developers unfamiliar with the source code programming
languages. Can we automatically translate source code into
pseudo-code using SMT? Oda et al. [18, 39] experimented
with generating English and Japanese pseudo-code from
Python statements, reporting positive outcomes. The au-
thors first created Python-to-English (18,000 statements)
and Python-to-Japanese (700 statements) parallel corpora,
by hiring programmers to add pseudo-code to existing source
code. Then, they trained di↵erent phrase-based SMT mod-
els that vary in their level of program orientation, ranging
from a purely lexical one to one that operates on modified
abstract syntax trees (ASTs). Experiments showed that all
models generate grammatically correct and fluent pseudo-
code for at least 50% of the statements, with the more
syntax-aware models performing better.

Original: error

AUTONYM err

JSNICE err

JSNAUGHTY err

Original: tuple

AUTONYM tuple

JSNICE key

JSNAUGHTY tuple

Original: headers

AUTONYM headers

JSNICE headers

JSNAUGHTY headers

Original: jsonStream

AUTONYM i

JSNICE s

JSNAUGHTY s

Original: req

AUTONYM req

JSNICE q

JSNAUGHTY req

Original: res

AUTONYM res

JSNICE r	

JSNAUGHTY res

Original: separator

AUTONYM data

JSNICE sep

JSNAUGHTY sep

Input
program
(minified)

Output
program

(un-minified)

Moses SMTOptional:
Pre-processor

Post-
processor

Autonym

JSNice

Aligned clear-text/
minified corpus

Language modelTranslation model

Clear-text corpus

M
od

el
 tr

ai
ni

ng

This material is based upon work supported by the National Science Foundation under Grant No. 1414172

.org

https://github.com/bvasiles/jsNaughty

• Identifier renaming using SMT, e.g.,
minified JS, decompiled C

• Generic, mature off-the-shelf
technology (Moses)

• Language dependence restricted
to tokenization and scope analysis
• dependency parse in JSNice

• Promising results: ~50% better than
JSNice on local names, on average

Machine translation for code

#	Python	
if	n	%	3	==	0:
Pseudo-code:
if n is divisible by 3

//	C#	
Console	.	WriteLine	("Hello	World!")	;	
//	Java	
System	.	out	.	println	("Hello	World!")	;

• Oda et al. (ASE ’15):
code to pseudocode

• Karaivanov et al. (Onward! ’14):
porting C# to Java

Machine translation for code

#	Python	
if	n	%	3	==	0:
Pseudo-code:
if n is divisible by 3

//	C#	
Console	.	WriteLine	("Hello	World!")	;	
//	Java	
System	.	out	.	println	("Hello	World!")	;

• Oda et al. (ASE ’15):
code to pseudocode

• Karaivanov et al. (Onward! ’14):
porting C# to Java

//	Java	
public	void	findResultEdges()	{	
for	(Iterator	it	=	dirEdgeList.iterator();	it.hasNext();)	{	
DirectedEdge	de	=	(DirectedEdge)	it.next();…}	

}	

//	C#	
public	void	FindResultEdges()	{	
foreach	(DirectedEdge	de	in	_dirEdgeList){…}	

}

• Nguyen et al. (FSE’ 13, ASE ’15):
porting Java to C#

