
Navigating
Dependency
Abandonment

1

Bogdan Vasilescu

Courtney Miller

Christian Kästner

August 3, 2024

FOSSY 2024, Portland, OR

@b_vasilescu

Associate Professor @CMU

Director of the Societal Computing PhD
program

STRUDEL research group

About me

Dark chocolate apple strudel, Poushe, Zurich, 2024

Open source software has become digital
infrastructure

3

Everybody uses open source:

• Fortune 500 companies

• Major software companies

• Startups

• Government

• …

Like any infrastructure, it needs regular upkeep
and maintenance

4

https://qz.com/646467/how-one-programmer-broke-the-

internet-by-deleting-a-tiny-piece-of-code/

Everybody uses open source:

• Fortune 500 companies

• Major software companies

• Startups

• Government

• …

If undermaintained:

• Brittle supply chains

• Risks for downstream users

• Slows down innovation

• …

Open-source sustainability

research has focused on

keeping projects and

ecosystems alive and

maintained.

improving funding

models, attracting

contributors, removing

barriers and culture, …

particular open

source projects

and ecosystems

sustainability research on …

• ICSE 2022 (Twitter)

• MSR 2020 (Twitter)

• CSCW 2019 (signals)

• ESEC/FSE 2015 (social

connections)

Attracting

contributors

• ESEC/FSE 2020

(diffusion of practices)

• CSCW 2019 (signals)

• ICSE 2018 (badges)

Transparency

and signaling

• CHASE 2023 (social

media)

• ICSE 2020 (forking)

• ESEC/FSE 2019 (forking)

• ESEC/FSE 2018

(abandonment factors)

Project practices

• ICSE 2020

(donations)

Funding models

• CHI 2023 (ClimateCoach)

• ICSE SEIS 2023 (census)

• ICSE 2019 (social capital)

• CHI 2015 (gender & tenure)

• CHASE 2015 (survey)

Diversity and inclusion

• ICSE 2022 (toxicity theory)

• ICSE SEIS 2022 (toxicity vs pushback)

• ICSE NIER 2020 (toxic language)

• ICSE 2019 (overwork)

• OSS 2019 (dropout, survival analysis)

Stress, burnout,

disengagement

Novelty and

innovation
• ICSE 2024 (atypical

combinations)

Network effects

• ICSE 2024 (innovation)

• ESEC/FSE 2023 (labor pools)

• ICSE 2022 (Twitter)

• ESEC/FSE 2020 (diffusion of

practices)

• ICSE 2019 (social capital)

• ESEC/FSE 2018

(abandonment factors)

• ESEC/FSE 2023

• ICSE 2025 (dealing

with abandonment)

Sunsetting

http://www.apple.com/
https://cmustrudel.github.io/papers/msr20tweets.pdf
https://cmustrudel.github.io/papers/cscw19signals.pdf
https://cmustrudel.github.io/papers/fse15onboarding.pdf
http://www.apple.com/
https://cmustrudel.github.io/papers/cscw19signals.pdf
https://cmustrudel.github.io/papers/icse18badges.pdf
http://www.apple.com/
https://cmustrudel.github.io/papers/zhou20forks.pdf
https://cmustrudel.github.io/papers/fse19forks.pdf
https://cmustrudel.github.io/papers/fse18sustainability.pdf
https://cmustrudel.github.io/papers/overney20donations.pdf
http://www.apple.com/
https://cmustrudel.github.io/papers/zhao_2023_seis.pdf
https://cmustrudel.github.io/papers/icse19social.pdf
https://cmustrudel.github.io/papers/chi15.pdf
https://cmustrudel.github.io/papers/chase15.pdf
https://cmustrudel.github.io/papers/osstoxicity22.pdf
https://cmustrudel.github.io/papers/seis22pushback.pdf
https://cmustrudel.github.io/papers/raman20toxicity.pdf
https://cmustrudel.github.io/papers/icse19stress.pdf
https://cmustrudel.github.io/papers/miller19dropout.pdf
https://cmustrudel.github.io/papers/fang2024innovation.pdf
https://cmustrudel.github.io/papers/fang2024innovation.pdf
https://cmustrudel.github.io/papers/fang2023laborpool.pdf
http://www.apple.com/
http://www.apple.com/
https://cmustrudel.github.io/papers/icse19social.pdf
https://cmustrudel.github.io/papers/fse18sustainability.pdf
https://cmustrudel.github.io/papers/miller2023winging.pdf

Maintainers often leave projects

for reasons we can't / shouldn’t

prevent:

switching jobs (voluntarily), starting a

family, losing interest, …

Often nobody steps up when

maintainers disengage.

More research should

focus on helping open-

source maintainers with

sunsetting, and helping

open-source users with

the effects of that.

abandoned

open-source

project

users dealing

with dependency

abandonment

user who is not yet

ready to deal with

dependency
abandonment

Today
How big is the problem? What do people do to prepare / deal with

it?

• Interviews with maintainers of Javascript, Python, and PHP projects with
abandoned upstream dependencies.

• A large-scale quantitative study of abandoned npm packages.

C. Miller, C. Kästner, and B. Vasilescu. “We feel like we’re winging it:” A study on navigating open-source dependency

abandonment. In International Conference on the Foundations of Software Engineering (FSE), page 1281–1293. ACM, 2023.

C. Miller, M. Jahanshahi, A. Mockus, B. Vasilescu, and C. Kästner. Understanding the Response to Open-Source Dependency

Abandonment in the npm Ecosystem. In International Conference on Software Engineering (ICSE). IEEE, 2025.

Part 1: Interviews

https://github.com/dimsemenov/Magnific-Popup

https://github.com/dimsemenov/Magnific-Popup

2+ years of activity 2+ years of complete inactivity

Considered “abandoned” here

https://github.com/dimsemenov/Magnific-Popup

2+ years of activity 2+ years of complete inactivity

Considered “abandoned” here

dependency

adoption

time

Timeline from the perspective of a consumer

pre-adoption

considerations

dependency

adoption

time

Timeline from the perspective of a consumer

dependency becomes

abandoned

dependency

adoption

time

Timeline from the perspective of a consumer

dependency becomes

abandoned

dependency identified

as abandoned

preparations

once adopted

dependency

adoption

time

Timeline from the perspective of a consumer

dependency becomes

abandoned

dependency identified

as abandoned

dealing with

abandonment

dependency

adoption

time

Timeline from the perspective of a consumer

dependency becomes

abandoned

dependency identified

as abandoned

response to

abandonment

impacts of

abandonment

dependency

adoption

time

Impacts of abandonment are debated

dependency becomes

abandoned

dependency identified

as abandoned

response to

abandonment

• Some concrete, e.g., language incompatibilities
(Python 2 to 3), missing needed features

• Many more anticipated, e.g., future updates,
security concerns

• Some expect no meaningful impact

Preparations post-adoption seem rare

dependency

adoption

time

dependency becomes

abandoned

dependency identified

as abandoned

response to

abandonment

E.g., building abstraction layers, minimizing dependencies, monitoring

Preparations post-adoption seem rare

dependency

adoption

time

dependency becomes

abandoned

dependency identified

as abandoned

response to

abandonment

Not all interviewees considered prep worth the effort

We are basically employing the strategy of

‘if it works it works, if it

breaks then I’ll fix the issues.’
- PID10

dependency

adoption

time

The most common way to deal with abandonment
is to switch to an alternative dependency

dependency becomes

abandoned

dependency identified

as abandoned

response to

abandonment

Another common solution was to
fork or vendor code

Dealing with abandonment typically required
trial-and-error

23

fork

seek support from others

switch to alternative

`

24

Common theme: Interviewees benefitted from
the actions of others

25

Possible (simple)

solution to

support creation

of community-

oriented solutions

Migration Discussion

Part 1 Summary:

Every time a project becomes abandoned, or we think it might be

abandoned, we feel like we’re winging it.

We feel like we’re dealing with it for the first time

- PID4

Part 2: Repository Mining

28,100 npm packages out of 1M+ in 2020

had at least one month with 10,000+ downloads

(4,108)

became abandoned

28,100 npm packages out of 1M+ in 2020

had at least one month with 10,000+ downloads

Observation window: Jan 2015 to Dec 2020

The distributions of peak download and current star counts for both

abandoned and non-abandoned packages are similar.

The abandoned projects impacted

~280k+ downstreams
on GitHub

of which

~78k+ were still active at
the time

How much do people downstream react?

Understanding the Response to Open-Source
Dependency Abandonment in the npm Ecosystem

Courtney Miller
courtneymiller@cmu.edu

Mahmoud Jahanshahi
mjahansh@vols.utk.edu

Audris Mockus
audris@utk.edu

Bogdan Vasilescu
vasilescu@cmu.edu

Christian Kästner

Carnegie Mellon University, Pittsburgh, PA, USA University of Tennessee, Knoxville, TN, USA

Abstract—Many developers relying on open-source digital
infrastructur e expect continuous maintenance, but even the most
cr itical packages can become unmaintained. Despite this, there
is little understanding of the prevalence of abandonment of
widely-used packages, of subsequent exposure, and of reactions
to abandonment in practice, or the factors that influence them.
We per form a large-scale quantitative analysis of all widely-used
npm packages and find that abandonment is common among
them, that abandonment exposes many projects which often do
not respond, that responses correlate with other dependency
management practices, and that removal is significantly faster
when a package’s end-of-life status is explicitly stated. We end
with recommendations to both researchers and practitioners who
are facing dependency abandonment or are sunsetting packages,
such as oppor tunities for low-effor t transparency mechanisms to
help exposed projects make better, more informed decisions.

I . INTRODUCTION

Many widely-used open source packages serve as digital

infrastructure for countless applications downstream [1]. Yet,

much of this infrastructure is maintained by a small number

of overburdened and underappreciated, often volunteer, devel-

opers who may disengage at any point [1]–[3]. Maintainers

often disengage for commonly-occurring reasons [4], such

as losing interest or switching jobs. More often than not,

when that happens, nobody else steps up and the package

becomes fully abandoned [5]. This suggests that dependency

abandonment will always be a risk that users of open-source

infrastructure will be exposed to. And indeed developers

worry about abandonment – e.g., because of the increasing

incompatibility with other changes and fear of not receiving

security patches [6], [7] – to the point that some organizations

have explicit policies to restrict the use of end-of-life software

components. The tension between this widespread reliance on

open source and the lack of certainty surrounding ongoing

maintenance efforts is at the heart of the question of open

source sustainability [1], [7].

Despite the widespread concerns surrounding dependency

abandonment, we know very little about its prevalence or how

developers react in practice. Research has primarily focused

on preventing or predicting abandonment by reducing disen-

gagement [4], [5], [8] or improving onboarding [9]–[11], rather

than studying what happens when abandonment occurs. A key

exception is our recent interview study with developers where

we studied their perceptions of abandonment, but without

quantifying the prevalence or reactions in practice [7].

0.00

0.25

0.50

0.75

1.00

0 25 50 75

Delay (In Months)

S
u

rv
iv

a
l
P

ro
b

a
b
ili

ty

Abandonment
Update
Security Patch

Fig. 1. Survival probability for event “dependency event is not resolved”
w.r.t. the date of event occurrence within dependent project’s lifetime.

In this paper, we report on a large-scale, quantitative study

exploring the prevalence of, impact of, and response to the

abandonment of widely-used packages in the JavaScript npm

ecosystem. Specifically, we design an approach to detect aban-

donment at scale, collect a large sample of dependent projects

that were exposed to abandonment across all of GitHub,

and observe their responses to abandonment. We compare

reactions to abandonment with other dependency management

practices of updating dependencies with and without known

vulnerabilities. Finally, we use statistical modeling to investi-

gate what factors impact likelihood and speed of abandoned

dependency removal.

Even with a conservative operationalization, we find that the

abandonment of widely-used packages is prevalent, with 15%

of widely-used packages becoming abandoned within our six-

year observation window. Those abandoned packages expose

many dependents, but average direct exposure even for widely-

used packages is lower than might be expected, suggesting

that collaborative responsible sunsetting strategies might be

feasible. Developers seem to care about abandonment – 18%

of exposed projects remove the abandoned dependency, which

is roughly comparable with other dependency management

practices such as installing updates (cf. Fig. 1), but reactions

to abandonment tend to be delayed – in fact, removal of

abandoned dependencies strongly correlates with other good

development practices, including regular dependency updates.

Finally, making the abandonment status of a package clear

can help exposed projects react faster (58% higher chance of

reaction on average, at any point in time), suggesting opportu-

nities for low-effort transparency mechanisms to help exposed

projects make better, more informed decisions. Overall, our

results suggest many opportunities to foster responsible use

The rate of removing abandoned dependencies is similar to

random dependency updates, and slower than security

patch updates.

Which factors correlate with downstream
projects reacting faster?

B. Model Results

Regression results in Fig. 4 show five significant effects.

One is a strong positive effect of governance maturity (sup-

porting H6): For projects with one standard deviation higher

governance maturity score we expect to see about 43% in-

crease in the odds of removing the abandoned dependency.

The model also shows that higher technical lag is, on aver-

age, statistically significantly negatively associated with the

likelihood of removal (supporting H 2).

Projects with higher dependency churn are generally more

likely to remove abandoned dependencies (supporting H3). To

demonstrate the interpretation of the exponentiated regression

coefficient, for every factor e (' 2.72) increase in the amount

of dependency churn (note the log transformation), the odds of

removing the abandoned dependency for the average project

in our sample multiply by 1.15, holding all else constant.

Additionally, as expected we observed a significant effect for

both control variables project age and project size.

The explanatory variables num dependencies (H1), use of

dependency management tools (H 2), num commits (H3), num

maintainers (H 4), and num corporate commits (H 5) were not

significant in the model meaning we have insufficient evidence

to reject the null hypothesis that these factors do not impact

the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher

dependency churn, and keep more up to date on dependency

updates are more likely to remove abandoned dependencies

within two years.

VII . RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods

RQ4 extends RQ2 and RQ3 using the same data as RQ2,

except we model the distinction in responses to packages

that were explicitly declared as abandoned (explicit-notice) as

compared to packages that just stopped maintenance (activity-

based) as introduced in Sec. III. Similarly to RQ2, we again

apply survival analysis to model the time to removal of the

abandoned dependencies, except now we use a multivariate

Cox proportional-hazards model [88] to jointly control for all

factors modeled in RQ3 (see Sec. VI-A for factor definitions).

Cox regression is commonly used in medical research for

modeling the association between the survival time of patients

and one or more predictor variables. In our case, we use

Cox regression to estimate the effect of an explicit notice

of abandonment on the rate of dependency removal events

happening at a particular point in time, i.e., the “hazard rate.”

B. Results

We observe after controlling for all the factors we hypoth-

esized are associated with removing abandoned dependencies

in RQ2, that there is a statistically significant relationship

between the presence of an explicit notice of abandonment

for a given dependency and an increased likelihood of

the abandoned dependency being removed by downstream

projects (cf. Fig. 5). Holding the other covariates constant,

HR = 0.98

HR = 1.07

HR = 1.07

HR = 0.88

HR = 0.93*

HR = 1.16***

HR = 1.01

HR = 0.9***

HR = 1.21**

HR = 1.58***
Detection = Explicit Notice

Governance Maturity

Has Corporate Commits

Technical Lag (log)

Num Commits (log)

Num Maintainers (log)

Project Age (log)

Project Size (log)

Dependency Churn (log)

Uses Dep. Mgmt. Tools

0.0 0.5 1.0 1.5 2.0

Hazard Ratio Estimate (***p < 0.001, **p < 0.01, *p < 0.05)

Time to Removing Abandoned Dependencies

Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

having an explicit notice increases the removal hazard by

a factor of 1.58, or 58%, with a 95% confidence interval

of 1.26 to 1.98. This is in alignment with our expectations,

because explicit-notice abandoned packages provide a clear

signal to dependents and are more visible sooner.

Key Insights: Packages that provide an explicit-notice of

abandonment tend to be removed at significantly faster rates

compared to those that do not.

VII I . DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-

ment, even among widely-used npm packages, is fairly com-

mon. While many developers carefully analyze signals like the

number of stars, responsiveness to issues, or number of con-

tributors when adopting dependencies [61], [89] and past stud-

ies have shown several statistical predictors for survival [5],

[66], [68], we were surprised by the scale of abandonment

among packages that had healthy signals, were among the

most popular packages on npm, and were generally similar

in their distribution of stars and past activity to those with

sustained maintenance. Given that open source maintainers

may disengage for all sorts of reasons, such as losing interest,

changing jobs, and starting a family [4], users of open source

are likely not able to entirely escape abandoned dependencies

with careful upfront vetting, but may also need to actively

consider strategies to manage abandoned dependencies – an

area also called for in our recent interview study [7] for which

maintainers have with little existing support.

The Rippling Effects of Abandonment. Although

abandonment rates are fairly high, we were surprised at

the low rates of direct exposure. While GitHub’s Dependency

Insights page often show thousands to hundreds of thousands

of dependent projects for the abandoned packages, the actual

direct exposure of active dependent projects at the time of

abandonment was not that high (µ = 19, cf. Sec. IV-B).

Many additional dependents of abandoned packages were

abandoned even before the package’s abandonment, so they

9

B. Model Results

Regression results in Fig. 4 show five significant effects.

One is a strong positive effect of governance maturity (sup-

porting H6): For projects with one standard deviation higher

governance maturity score we expect to see about 43% in-

crease in the odds of removing the abandoned dependency.

The model also shows that higher technical lag is, on aver-

age, statistically significantly negatively associated with the

likelihood of removal (supporting H 2).

Projects with higher dependency churn are generally more

likely to remove abandoned dependencies (supporting H3). To

demonstrate the interpretation of the exponentiated regression

coefficient, for every factor e (' 2.72) increase in the amount

of dependency churn (note the log transformation), the odds of

removing the abandoned dependency for the average project

in our sample multiply by 1.15, holding all else constant.

Additionally, as expected we observed a significant effect for

both control variables project age and project size.

The explanatory variables num dependencies (H1), use of

dependency management tools (H 2), num commits (H3), num

maintainers (H 4), and num corporate commits (H 5) were not

significant in the model meaning we have insufficient evidence

to reject the null hypothesis that these factors do not impact

the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher

dependency churn, and keep more up to date on dependency

updates are more likely to remove abandoned dependencies

within two years.

VII . RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods

RQ4 extends RQ2 and RQ3 using the same data as RQ2,

except we model the distinction in responses to packages

that were explicitly declared as abandoned (explicit-notice) as

compared to packages that just stopped maintenance (activity-

based) as introduced in Sec. III. Similarly to RQ2, we again

apply survival analysis to model the time to removal of the

abandoned dependencies, except now we use a multivariate

Cox proportional-hazards model [88] to jointly control for all

factors modeled in RQ3 (see Sec. VI-A for factor definitions).

Cox regression is commonly used in medical research for

modeling the association between the survival time of patients

and one or more predictor variables. In our case, we use

Cox regression to estimate the effect of an explicit notice

of abandonment on the rate of dependency removal events

happening at a particular point in time, i.e., the “hazard rate.”

B. Results

We observe after controlling for all the factors we hypoth-

esized are associated with removing abandoned dependencies

in RQ2, that there is a statistically significant relationship

between the presence of an explicit notice of abandonment

for a given dependency and an increased likelihood of

the abandoned dependency being removed by downstream

projects (cf. Fig. 5). Holding the other covariates constant,

HR = 0.98

HR = 1.07

HR = 1.07

HR = 0.88

HR = 0.93*

HR = 1.16***

HR = 1.01

HR = 0.9***

HR = 1.21**

HR = 1.58***
Detection = Explicit Notice

Governance Maturity

Has Corporate Commits

Technical Lag (log)

Num Commits (log)

Num Maintainers (log)

Project Age (log)

Project Size (log)

Dependency Churn (log)

Uses Dep. Mgmt. Tools

0.0 0.5 1.0 1.5 2.0

Hazard Ratio Estimate (***p < 0.001, **p < 0.01, *p < 0.05)

Time to Removing Abandoned Dependencies

Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

having an explicit notice increases the removal hazard by

a factor of 1.58, or 58%, with a 95% confidence interval

of 1.26 to 1.98. This is in alignment with our expectations,

because explicit-notice abandoned packages provide a clear

signal to dependents and are more visible sooner.

Key Insights: Packages that provide an explicit-notice of

abandonment tend to be removed at significantly faster rates

compared to those that do not.

VII I . DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-

ment, even among widely-used npm packages, is fairly com-

mon. While many developers carefully analyze signals like the

number of stars, responsiveness to issues, or number of con-

tributors when adopting dependencies [61], [89] and past stud-

ies have shown several statistical predictors for survival [5],

[66], [68], we were surprised by the scale of abandonment

among packages that had healthy signals, were among the

most popular packages on npm, and were generally similar

in their distribution of stars and past activity to those with

sustained maintenance. Given that open source maintainers

may disengage for all sorts of reasons, such as losing interest,

changing jobs, and starting a family [4], users of open source

are likely not able to entirely escape abandoned dependencies

with careful upfront vetting, but may also need to actively

consider strategies to manage abandoned dependencies – an

area also called for in our recent interview study [7] for which

maintainers have with little existing support.

The Rippling Effects of Abandonment. Although

abandonment rates are fairly high, we were surprised at

the low rates of direct exposure. While GitHub’s Dependency

Insights page often show thousands to hundreds of thousands

of dependent projects for the abandoned packages, the actual

direct exposure of active dependent projects at the time of

abandonment was not that high (µ = 19, cf. Sec. IV-B).

Many additional dependents of abandoned packages were

abandoned even before the package’s abandonment, so they

9

Factors

B. Model Results

Regression results in Fig. 4 show five significant effects.

One is a strong positive effect of governance maturity (sup-

porting H6): For projects with one standard deviation higher

governance maturity score we expect to see about 43% in-

crease in the odds of removing the abandoned dependency.

The model also shows that higher technical lag is, on aver-

age, statistically significantly negatively associated with the

likelihood of removal (supporting H 2).

Projects with higher dependency churn are generally more

likely to remove abandoned dependencies (supporting H3). To

demonstrate the interpretation of the exponentiated regression

coefficient, for every factor e (' 2.72) increase in the amount

of dependency churn (note the log transformation), the odds of

removing the abandoned dependency for the average project

in our sample multiply by 1.15, holding all else constant.

Additionally, as expected we observed a significant effect for

both control variables project age and project size.

The explanatory variables num dependencies (H1), use of

dependency management tools (H 2), num commits (H3), num

maintainers (H 4), and num corporate commits (H 5) were not

significant in the model meaning we have insufficient evidence

to reject the null hypothesis that these factors do not impact

the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher

dependency churn, and keep more up to date on dependency

updates are more likely to remove abandoned dependencies

within two years.

VII . RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods

RQ4 extends RQ2 and RQ3 using the same data as RQ2,

except we model the distinction in responses to packages

that were explicitly declared as abandoned (explicit-notice) as

compared to packages that just stopped maintenance (activity-

based) as introduced in Sec. III. Similarly to RQ2, we again

apply survival analysis to model the time to removal of the

abandoned dependencies, except now we use a multivariate

Cox proportional-hazards model [88] to jointly control for all

factors modeled in RQ3 (see Sec. VI-A for factor definitions).

Cox regression is commonly used in medical research for

modeling the association between the survival time of patients

and one or more predictor variables. In our case, we use

Cox regression to estimate the effect of an explicit notice

of abandonment on the rate of dependency removal events

happening at a particular point in time, i.e., the “hazard rate.”

B. Results

We observe after controlling for all the factors we hypoth-

esized are associated with removing abandoned dependencies

in RQ2, that there is a statistically significant relationship

between the presence of an explicit notice of abandonment

for a given dependency and an increased likelihood of

the abandoned dependency being removed by downstream

projects (cf. Fig. 5). Holding the other covariates constant,

HR = 0.98

HR = 1.07

HR = 1.07

HR = 0.88

HR = 0.93*

HR = 1.16***

HR = 1.01

HR = 0.9***

HR = 1.21**

HR = 1.58***
Detection = Explicit Notice

Governance Maturity

Has Corporate Commits

Technical Lag (log)

Num Commits (log)

Num Maintainers (log)

Project Age (log)

Project Size (log)

Dependency Churn (log)

Uses Dep. Mgmt. Tools

0.0 0.5 1.0 1.5 2.0

Hazard Ratio Estimate (***p < 0.001, **p < 0.01, *p < 0.05)

Time to Removing Abandoned Dependencies

Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

having an explicit notice increases the removal hazard by

a factor of 1.58, or 58%, with a 95% confidence interval

of 1.26 to 1.98. This is in alignment with our expectations,

because explicit-notice abandoned packages provide a clear

signal to dependents and are more visible sooner.

Key Insights: Packages that provide an explicit-notice of

abandonment tend to be removed at significantly faster rates

compared to those that do not.

VII I . DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-

ment, even among widely-used npm packages, is fairly com-

mon. While many developers carefully analyze signals like the

number of stars, responsiveness to issues, or number of con-

tributors when adopting dependencies [61], [89] and past stud-

ies have shown several statistical predictors for survival [5],

[66], [68], we were surprised by the scale of abandonment

among packages that had healthy signals, were among the

most popular packages on npm, and were generally similar

in their distribution of stars and past activity to those with

sustained maintenance. Given that open source maintainers

may disengage for all sorts of reasons, such as losing interest,

changing jobs, and starting a family [4], users of open source

are likely not able to entirely escape abandoned dependencies

with careful upfront vetting, but may also need to actively

consider strategies to manage abandoned dependencies – an

area also called for in our recent interview study [7] for which

maintainers have with little existing support.

The Rippling Effects of Abandonment. Although

abandonment rates are fairly high, we were surprised at

the low rates of direct exposure. While GitHub’s Dependency

Insights page often show thousands to hundreds of thousands

of dependent projects for the abandoned packages, the actual

direct exposure of active dependent projects at the time of

abandonment was not that high (µ = 19, cf. Sec. IV-B).

Many additional dependents of abandoned packages were

abandoned even before the package’s abandonment, so they

9

Magnitude of correlation

B. Model Results

Regression results in Fig. 4 show five significant effects.

One is a strong positive effect of governance maturity (sup-

porting H6): For projects with one standard deviation higher

governance maturity score we expect to see about 43% in-

crease in the odds of removing the abandoned dependency.

The model also shows that higher technical lag is, on aver-

age, statistically significantly negatively associated with the

likelihood of removal (supporting H 2).

Projects with higher dependency churn are generally more

likely to remove abandoned dependencies (supporting H3). To

demonstrate the interpretation of the exponentiated regression

coefficient, for every factor e (' 2.72) increase in the amount

of dependency churn (note the log transformation), the odds of

removing the abandoned dependency for the average project

in our sample multiply by 1.15, holding all else constant.

Additionally, as expected we observed a significant effect for

both control variables project age and project size.

The explanatory variables num dependencies (H1), use of

dependency management tools (H 2), num commits (H3), num

maintainers (H 4), and num corporate commits (H 5) were not

significant in the model meaning we have insufficient evidence

to reject the null hypothesis that these factors do not impact

the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher

dependency churn, and keep more up to date on dependency

updates are more likely to remove abandoned dependencies

within two years.

VII . RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods

RQ4 extends RQ2 and RQ3 using the same data as RQ2,

except we model the distinction in responses to packages

that were explicitly declared as abandoned (explicit-notice) as

compared to packages that just stopped maintenance (activity-

based) as introduced in Sec. III. Similarly to RQ2, we again

apply survival analysis to model the time to removal of the

abandoned dependencies, except now we use a multivariate

Cox proportional-hazards model [88] to jointly control for all

factors modeled in RQ3 (see Sec. VI-A for factor definitions).

Cox regression is commonly used in medical research for

modeling the association between the survival time of patients

and one or more predictor variables. In our case, we use

Cox regression to estimate the effect of an explicit notice

of abandonment on the rate of dependency removal events

happening at a particular point in time, i.e., the “hazard rate.”

B. Results

We observe after controlling for all the factors we hypoth-

esized are associated with removing abandoned dependencies

in RQ2, that there is a statistically significant relationship

between the presence of an explicit notice of abandonment

for a given dependency and an increased likelihood of

the abandoned dependency being removed by downstream

projects (cf. Fig. 5). Holding the other covariates constant,

HR = 0.98

HR = 1.07

HR = 1.07

HR = 0.88

HR = 0.93*

HR = 1.16***

HR = 1.01

HR = 0.9***

HR = 1.21**

HR = 1.58***
Detection = Explicit Notice

Governance Maturity

Has Corporate Commits

Technical Lag (log)

Num Commits (log)

Num Maintainers (log)

Project Age (log)

Project Size (log)

Dependency Churn (log)

Uses Dep. Mgmt. Tools

0.0 0.5 1.0 1.5 2.0

Hazard Ratio Estimate (***p < 0.001, **p < 0.01, *p < 0.05)

Time to Removing Abandoned Dependencies

Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

having an explicit notice increases the removal hazard by

a factor of 1.58, or 58%, with a 95% confidence interval

of 1.26 to 1.98. This is in alignment with our expectations,

because explicit-notice abandoned packages provide a clear

signal to dependents and are more visible sooner.

Key Insights: Packages that provide an explicit-notice of

abandonment tend to be removed at significantly faster rates

compared to those that do not.

VII I . DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-

ment, even among widely-used npm packages, is fairly com-

mon. While many developers carefully analyze signals like the

number of stars, responsiveness to issues, or number of con-

tributors when adopting dependencies [61], [89] and past stud-

ies have shown several statistical predictors for survival [5],

[66], [68], we were surprised by the scale of abandonment

among packages that had healthy signals, were among the

most popular packages on npm, and were generally similar

in their distribution of stars and past activity to those with

sustained maintenance. Given that open source maintainers

may disengage for all sorts of reasons, such as losing interest,

changing jobs, and starting a family [4], users of open source

are likely not able to entirely escape abandoned dependencies

with careful upfront vetting, but may also need to actively

consider strategies to manage abandoned dependencies – an

area also called for in our recent interview study [7] for which

maintainers have with little existing support.

The Rippling Effects of Abandonment. Although

abandonment rates are fairly high, we were surprised at

the low rates of direct exposure. While GitHub’s Dependency

Insights page often show thousands to hundreds of thousands

of dependent projects for the abandoned packages, the actual

direct exposure of active dependent projects at the time of

abandonment was not that high (µ = 19, cf. Sec. IV-B).

Many additional dependents of abandoned packages were

abandoned even before the package’s abandonment, so they

9

Automation: no effect

Project size: no effect

Corporate involvement: no effect

B. Model Results

Regression results in Fig. 4 show five significant effects.

One is a strong positive effect of governance maturity (sup-

porting H6): For projects with one standard deviation higher

governance maturity score we expect to see about 43% in-

crease in the odds of removing the abandoned dependency.

The model also shows that higher technical lag is, on aver-

age, statistically significantly negatively associated with the

likelihood of removal (supporting H 2).

Projects with higher dependency churn are generally more

likely to remove abandoned dependencies (supporting H3). To

demonstrate the interpretation of the exponentiated regression

coefficient, for every factor e (' 2.72) increase in the amount

of dependency churn (note the log transformation), the odds of

removing the abandoned dependency for the average project

in our sample multiply by 1.15, holding all else constant.

Additionally, as expected we observed a significant effect for

both control variables project age and project size.

The explanatory variables num dependencies (H1), use of

dependency management tools (H 2), num commits (H3), num

maintainers (H 4), and num corporate commits (H 5) were not

significant in the model meaning we have insufficient evidence

to reject the null hypothesis that these factors do not impact

the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher

dependency churn, and keep more up to date on dependency

updates are more likely to remove abandoned dependencies

within two years.

VII . RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods

RQ4 extends RQ2 and RQ3 using the same data as RQ2,

except we model the distinction in responses to packages

that were explicitly declared as abandoned (explicit-notice) as

compared to packages that just stopped maintenance (activity-

based) as introduced in Sec. III. Similarly to RQ2, we again

apply survival analysis to model the time to removal of the

abandoned dependencies, except now we use a multivariate

Cox proportional-hazards model [88] to jointly control for all

factors modeled in RQ3 (see Sec. VI-A for factor definitions).

Cox regression is commonly used in medical research for

modeling the association between the survival time of patients

and one or more predictor variables. In our case, we use

Cox regression to estimate the effect of an explicit notice

of abandonment on the rate of dependency removal events

happening at a particular point in time, i.e., the “hazard rate.”

B. Results

We observe after controlling for all the factors we hypoth-

esized are associated with removing abandoned dependencies

in RQ2, that there is a statistically significant relationship

between the presence of an explicit notice of abandonment

for a given dependency and an increased likelihood of

the abandoned dependency being removed by downstream

projects (cf. Fig. 5). Holding the other covariates constant,

HR = 0.98

HR = 1.07

HR = 1.07

HR = 0.88

HR = 0.93*

HR = 1.16***

HR = 1.01

HR = 0.9***

HR = 1.21**

HR = 1.58***
Detection = Explicit Notice

Governance Maturity

Has Corporate Commits

Technical Lag (log)

Num Commits (log)

Num Maintainers (log)

Project Age (log)

Project Size (log)

Dependency Churn (log)

Uses Dep. Mgmt. Tools

0.0 0.5 1.0 1.5 2.0

Hazard Ratio Estimate (***p < 0.001, **p < 0.01, *p < 0.05)

Time to Removing Abandoned Dependencies

Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

having an explicit notice increases the removal hazard by

a factor of 1.58, or 58%, with a 95% confidence interval

of 1.26 to 1.98. This is in alignment with our expectations,

because explicit-notice abandoned packages provide a clear

signal to dependents and are more visible sooner.

Key Insights: Packages that provide an explicit-notice of

abandonment tend to be removed at significantly faster rates

compared to those that do not.

VII I . DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-

ment, even among widely-used npm packages, is fairly com-

mon. While many developers carefully analyze signals like the

number of stars, responsiveness to issues, or number of con-

tributors when adopting dependencies [61], [89] and past stud-

ies have shown several statistical predictors for survival [5],

[66], [68], we were surprised by the scale of abandonment

among packages that had healthy signals, were among the

most popular packages on npm, and were generally similar

in their distribution of stars and past activity to those with

sustained maintenance. Given that open source maintainers

may disengage for all sorts of reasons, such as losing interest,

changing jobs, and starting a family [4], users of open source

are likely not able to entirely escape abandoned dependencies

with careful upfront vetting, but may also need to actively

consider strategies to manage abandoned dependencies – an

area also called for in our recent interview study [7] for which

maintainers have with little existing support.

The Rippling Effects of Abandonment. Although

abandonment rates are fairly high, we were surprised at

the low rates of direct exposure. While GitHub’s Dependency

Insights page often show thousands to hundreds of thousands

of dependent projects for the abandoned packages, the actual

direct exposure of active dependent projects at the time of

abandonment was not that high (µ = 19, cf. Sec. IV-B).

Many additional dependents of abandoned packages were

abandoned even before the package’s abandonment, so they

9

Six governance best practices: having a README, a

license, issue templates, pull request templates,

contributing guidelines, and a code of conduct

B. Model Results

Regression results in Fig. 4 show five significant effects.

One is a strong positive effect of governance maturity (sup-

porting H6): For projects with one standard deviation higher

governance maturity score we expect to see about 43% in-

crease in the odds of removing the abandoned dependency.

The model also shows that higher technical lag is, on aver-

age, statistically significantly negatively associated with the

likelihood of removal (supporting H 2).

Projects with higher dependency churn are generally more

likely to remove abandoned dependencies (supporting H3). To

demonstrate the interpretation of the exponentiated regression

coefficient, for every factor e (' 2.72) increase in the amount

of dependency churn (note the log transformation), the odds of

removing the abandoned dependency for the average project

in our sample multiply by 1.15, holding all else constant.

Additionally, as expected we observed a significant effect for

both control variables project age and project size.

The explanatory variables num dependencies (H1), use of

dependency management tools (H 2), num commits (H3), num

maintainers (H 4), and num corporate commits (H 5) were not

significant in the model meaning we have insufficient evidence

to reject the null hypothesis that these factors do not impact

the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher

dependency churn, and keep more up to date on dependency

updates are more likely to remove abandoned dependencies

within two years.

VII . RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods

RQ4 extends RQ2 and RQ3 using the same data as RQ2,

except we model the distinction in responses to packages

that were explicitly declared as abandoned (explicit-notice) as

compared to packages that just stopped maintenance (activity-

based) as introduced in Sec. III. Similarly to RQ2, we again

apply survival analysis to model the time to removal of the

abandoned dependencies, except now we use a multivariate

Cox proportional-hazards model [88] to jointly control for all

factors modeled in RQ3 (see Sec. VI-A for factor definitions).

Cox regression is commonly used in medical research for

modeling the association between the survival time of patients

and one or more predictor variables. In our case, we use

Cox regression to estimate the effect of an explicit notice

of abandonment on the rate of dependency removal events

happening at a particular point in time, i.e., the “hazard rate.”

B. Results

We observe after controlling for all the factors we hypoth-

esized are associated with removing abandoned dependencies

in RQ2, that there is a statistically significant relationship

between the presence of an explicit notice of abandonment

for a given dependency and an increased likelihood of

the abandoned dependency being removed by downstream

projects (cf. Fig. 5). Holding the other covariates constant,

HR = 0.98

HR = 1.07

HR = 1.07

HR = 0.88

HR = 0.93*

HR = 1.16***

HR = 1.01

HR = 0.9***

HR = 1.21**

HR = 1.58***
Detection = Explicit Notice

Governance Maturity

Has Corporate Commits

Technical Lag (log)

Num Commits (log)

Num Maintainers (log)

Project Age (log)

Project Size (log)

Dependency Churn (log)

Uses Dep. Mgmt. Tools

0.0 0.5 1.0 1.5 2.0

Hazard Ratio Estimate (***p < 0.001, **p < 0.01, *p < 0.05)

Time to Removing Abandoned Dependencies

Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

having an explicit notice increases the removal hazard by

a factor of 1.58, or 58%, with a 95% confidence interval

of 1.26 to 1.98. This is in alignment with our expectations,

because explicit-notice abandoned packages provide a clear

signal to dependents and are more visible sooner.

Key Insights: Packages that provide an explicit-notice of

abandonment tend to be removed at significantly faster rates

compared to those that do not.

VII I . DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-

ment, even among widely-used npm packages, is fairly com-

mon. While many developers carefully analyze signals like the

number of stars, responsiveness to issues, or number of con-

tributors when adopting dependencies [61], [89] and past stud-

ies have shown several statistical predictors for survival [5],

[66], [68], we were surprised by the scale of abandonment

among packages that had healthy signals, were among the

most popular packages on npm, and were generally similar

in their distribution of stars and past activity to those with

sustained maintenance. Given that open source maintainers

may disengage for all sorts of reasons, such as losing interest,

changing jobs, and starting a family [4], users of open source

are likely not able to entirely escape abandoned dependencies

with careful upfront vetting, but may also need to actively

consider strategies to manage abandoned dependencies – an

area also called for in our recent interview study [7] for which

maintainers have with little existing support.

The Rippling Effects of Abandonment. Although

abandonment rates are fairly high, we were surprised at

the low rates of direct exposure. While GitHub’s Dependency

Insights page often show thousands to hundreds of thousands

of dependent projects for the abandoned packages, the actual

direct exposure of active dependent projects at the time of

abandonment was not that high (µ = 19, cf. Sec. IV-B).

Many additional dependents of abandoned packages were

abandoned even before the package’s abandonment, so they

9

Updates to dependencies in the year before exposure

Average lag of dependencies

B. Model Results

Regression results in Fig. 4 show five significant effects.

One is a strong positive effect of governance maturity (sup-

porting H6): For projects with one standard deviation higher

governance maturity score we expect to see about 43% in-

crease in the odds of removing the abandoned dependency.

The model also shows that higher technical lag is, on aver-

age, statistically significantly negatively associated with the

likelihood of removal (supporting H 2).

Projects with higher dependency churn are generally more

likely to remove abandoned dependencies (supporting H3). To

demonstrate the interpretation of the exponentiated regression

coefficient, for every factor e (' 2.72) increase in the amount

of dependency churn (note the log transformation), the odds of

removing the abandoned dependency for the average project

in our sample multiply by 1.15, holding all else constant.

Additionally, as expected we observed a significant effect for

both control variables project age and project size.

The explanatory variables num dependencies (H1), use of

dependency management tools (H 2), num commits (H3), num

maintainers (H 4), and num corporate commits (H 5) were not

significant in the model meaning we have insufficient evidence

to reject the null hypothesis that these factors do not impact

the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher

dependency churn, and keep more up to date on dependency

updates are more likely to remove abandoned dependencies

within two years.

VII . RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods

RQ4 extends RQ2 and RQ3 using the same data as RQ2,

except we model the distinction in responses to packages

that were explicitly declared as abandoned (explicit-notice) as

compared to packages that just stopped maintenance (activity-

based) as introduced in Sec. III. Similarly to RQ2, we again

apply survival analysis to model the time to removal of the

abandoned dependencies, except now we use a multivariate

Cox proportional-hazards model [88] to jointly control for all

factors modeled in RQ3 (see Sec. VI-A for factor definitions).

Cox regression is commonly used in medical research for

modeling the association between the survival time of patients

and one or more predictor variables. In our case, we use

Cox regression to estimate the effect of an explicit notice

of abandonment on the rate of dependency removal events

happening at a particular point in time, i.e., the “hazard rate.”

B. Results

We observe after controlling for all the factors we hypoth-

esized are associated with removing abandoned dependencies

in RQ2, that there is a statistically significant relationship

between the presence of an explicit notice of abandonment

for a given dependency and an increased likelihood of

the abandoned dependency being removed by downstream

projects (cf. Fig. 5). Holding the other covariates constant,

HR = 0.98

HR = 1.07

HR = 1.07

HR = 0.88

HR = 0.93*

HR = 1.16***

HR = 1.01

HR = 0.9***

HR = 1.21**

HR = 1.58***
Detection = Explicit Notice

Governance Maturity

Has Corporate Commits

Technical Lag (log)

Num Commits (log)

Num Maintainers (log)

Project Age (log)

Project Size (log)

Dependency Churn (log)

Uses Dep. Mgmt. Tools

0.0 0.5 1.0 1.5 2.0

Hazard Ratio Estimate (***p < 0.001, **p < 0.01, *p < 0.05)

Time to Removing Abandoned Dependencies

Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

having an explicit notice increases the removal hazard by

a factor of 1.58, or 58%, with a 95% confidence interval

of 1.26 to 1.98. This is in alignment with our expectations,

because explicit-notice abandoned packages provide a clear

signal to dependents and are more visible sooner.

Key Insights: Packages that provide an explicit-notice of

abandonment tend to be removed at significantly faster rates

compared to those that do not.

VII I . DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-

ment, even among widely-used npm packages, is fairly com-

mon. While many developers carefully analyze signals like the

number of stars, responsiveness to issues, or number of con-

tributors when adopting dependencies [61], [89] and past stud-

ies have shown several statistical predictors for survival [5],

[66], [68], we were surprised by the scale of abandonment

among packages that had healthy signals, were among the

most popular packages on npm, and were generally similar

in their distribution of stars and past activity to those with

sustained maintenance. Given that open source maintainers

may disengage for all sorts of reasons, such as losing interest,

changing jobs, and starting a family [4], users of open source

are likely not able to entirely escape abandoned dependencies

with careful upfront vetting, but may also need to actively

consider strategies to manage abandoned dependencies – an

area also called for in our recent interview study [7] for which

maintainers have with little existing support.

The Rippling Effects of Abandonment. Although

abandonment rates are fairly high, we were surprised at

the low rates of direct exposure. While GitHub’s Dependency

Insights page often show thousands to hundreds of thousands

of dependent projects for the abandoned packages, the actual

direct exposure of active dependent projects at the time of

abandonment was not that high (µ = 19, cf. Sec. IV-B).

Many additional dependents of abandoned packages were

abandoned even before the package’s abandonment, so they

9

Strongest effect: Explicit notice of abandonment
(Github archive flag, no-maintenance-intended badge, other mention in README)

http://unmaintained.tech

• Abandonment, even among widely-used npm packages,

is fairly common.

• It can have rippling effects, especially when considering

transitive impact.

• People seem to care about abandoned dependencies

(many remove them), but may not notice them. It’s also

unclear what to do after.

• At the very least, we recommend that:

• Maintainers place an explicit notice of abandonment

somewhere visible.

• Platforms implement features to help with migration.

• It’s time to establish best practices for responsible

sunsetting of packages, rather than insisting on

indefinite maintenance!

Parting Thoughts

Courtney Miller

@courtneyelta

https://courtney-e-miller.github.io

Bogdan Vasilescu

@b_vasilescu

https://bvasiles.github.io

Our papers:

https://cmustrudel.github.io/publications/

Our sponsors:

	Slide 1: Navigating Dependency Abandonment
	Slide 2: About me
	Slide 3: Open source software has become digital infrastructure
	Slide 4: Like any infrastructure, it needs regular upkeep and maintenance
	Slide 5
	Slide 6: sustainability research on …
	Slide 7
	Slide 8
	Slide 9: Today
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Timeline from the perspective of a consumer
	Slide 15: Timeline from the perspective of a consumer
	Slide 16: Timeline from the perspective of a consumer
	Slide 17: Timeline from the perspective of a consumer
	Slide 18: Timeline from the perspective of a consumer
	Slide 19: Impacts of abandonment are debated
	Slide 20: Preparations post-adoption seem rare
	Slide 21: Preparations post-adoption seem rare
	Slide 22: The most common way to deal with abandonment is to switch to an alternative dependency
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Parting Thoughts

