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Software ecosystems 
•  different projects 
•  different repositories per project (version control 

systems, mailing lists, …) 
•  same community of developers 

I know how 
to fix it! 

Test #14 fails 
sometimes 

The error should 
be somewhere 

here…  

Multiple aliases 
Contributors sign off using a <name,	
  email> alias. 
The same person often uses multiple aliases. 

 
Names: 
•  John Travolta 
•  Travolta John 
•  J Travolta 
•  John 
•  John Trabolta 
•  John J. Travolta 
•  John Joseph Travolta 
•  John “Bone” Travolta 

 
Emails: 
•  j.travolta@domainA 
•  john.travolta@domainB 
•  john DOT travolta AT 

domainC 
•  jtravolta@domainD 
•  john@domainE 

Identity merge algorithms 
Merge aliases belonging to the same “real” person. 

•  Goeminne & Mens (2011) – simple, state of the art 

 

•  Bird et al. (2006) – more complex, inspiring 
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Latent Semantic Analysis 
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Document-term matrix 

max similarity(jtravolta, {john,	
  johnt,	
  joseph,	
  travolta})  
= similarity(jtravolta, travolta) = 1 – Levenshtein(jtravolta, travolta)  
= 1 – 1/9 = 8/9 

Merge documents  
with high similarity! 

-  Singular value decomposition 
-  Rank (noise) reduction 
-  Cosine between documents 

Results for GNOME 
•  8618 different aliases 
•  only 4989 unique! 

•  LSA outperforms existing algorithms 

case, consisting of a subset of 673 “noisy” GNOME aliases,
expected to cause false negatives in the simple algorithm.
We have obtained this dataset by removing contributors with
only one alias, as well as contributors with intersecting�
name, prefix

 
sets. It is apriori not clear how the algorithm

by Bird et al. will behave on the worst-case dataset.
For each algorithm/scenario we performed training/testing

steps and repeated the process ten times. Training determines
optimal parameter values: for the simple algorithm we varied
minLen (1, 2, . . . , 10); for the algorithm by Bird et al. we
varied the Levenshtein similarity threshold t (0.05, 0.10, ..., 1);
for LSA, to avoid training on all combinations of the 4
parameters, we first performed a sensitivity analysis by fixing
3 and varying the remaining. After the sensitivity analysis
we restricted the range of minLen to {2, 3, 4}, levThr to
{0.5, 0.75}, cosThr to {0.65, 0.70, 0.75}, and k was fixed to
half of the number of terms. In the average case, for each of
the ten repetitions, training was performed on one tenth of the
GNOME aliases (' 860), and testing on ten random subsets
with the same size from the remaining aliases. Samples were
chosen instead of the entire remaining data for computational
efficiency reasons. In the worst case, because of fewer aliases
in the dataset (673), for each of the ten repetitions, training
was performed on one third of the data and testing on the other
two thirds. All algorithms have been implemented in Python
and, as well as the data, can be made available upon request.
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Fig. 1. The f -measures for the competing approaches. The f -measure ranges
between 0 and 1 (the higher the value, the better). LSA performs as well as
the simple algorithm in the average case, and significantly better in the worst
case. Note that both y-axes start at 0.75.

Figure 1 displays the results of the cross-validation. In
the average case (left) we observe that LSA performs as
well as the simple algorithm (Kruskal-Wallis test followed
by pairwise Wilcoxon tests with Bonferroni correction did
not reveal enough reasons to assume that the two produce
essentially different results at 0.05 significance level), followed
by the algorithm of Bird et al. Concurrent results have been
obtained in [6]: simple is better than Bird, and is the best
of all algorithms tested. LSA and the simple algorithm do,
however, behave differently. For example, the simple algorithm
does not merge hChristophe Michael Saout, csaout@domainAi
with hChristophe Saout, christophe@domainBi because the
two aliases are disjoint, while LSA does. However, the simple
algorithm correctly merges hGareth Owen, gowen@domainAi
with hgowen, gowen@domainBi, while LSA does not (the

cosine similarity between the documents corresponding to the
two is 0.69 and falls just outside the threshold, in this case
0.70). This observation suggests that further improvements of
the LSA algorithm, e.g., by using the simple algorithm in
a pre-processing step, might be possible, and are considered
as future work. On the other hand, the results in the worst
case (Figure 1 right) show a clear improvement of LSA
(median=0.935) over Bird et al’s (median=0.893) and the
simple algorithms (median=0.778), confirmed by the statistical
analysis described above.

VI. CONCLUSIONS

Our main contribution is a generic new identity merging
algorithm based on LSA, robust against many types of dis-
crepancies in VCS aliases. Empirical evaluation on GNOME
Git repositories has shown equally-good performance of our
algorithm as the state of the art in the average case, and better
performance in the worst case. We intend to integrate the
approach presented in FRASR, our tool for process mining
software repositories [10].
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