
A security analyst’s guide to selecting training data
Luke Dramko

1

We build machine-learning based tools to help security researchers.

2

We build machine-learning based tools to help security researchers.

2

DIRE int v1 int size

We build machine-learning based tools to help security researchers.

2

DIRE int v1 int size

DIRTY _QWORD * struct point *

We build machine-learning based tools to help security researchers.

2

DIRE int v1 int size

DIRTY _QWORD * struct point *

VarCLR min

max
minimum

We build machine-learning based tools to help security researchers.

2

DIRE int v1 int size

DIRTY _QWORD * struct point *

VarCLR min

max
minimum

SILO

We build machine-learning based tools to help security researchers.

2

DIRE int v1 int size

DIRTY _QWORD * struct point *

VarCLR min

max
minimum

Idioms (coming soon!) *(_QWORD *) (a1 + 4120) ctrl->used_size

SILO

We studied how the characteristics of training data influence
these machine learning models.

3

We use DIRE in our case study.

4

DIRE

void *file_mmap(int v1, int v2) {

 void * v3;

 v3 = mmap(0, v2, 1, 2, v1, 0);

 if (v3 == (void *) -1) {

 perror("mmap")

 exit(1)

 }

 return v3;

}

void *file_mmap(int fd, int size) {

 void * buf;

 buf = mmap(0, size, 1, 2, fd, 0);

 if (buf == (void *) -1) {

 perror("mmap")

 exit(1)

 }

 return buf;

}

v1

v2

v3

fd

size

buf

DIRE is a machine-learning based tool which automatically suggests
variable names in decompiled code.

5

DIRE

void *file_mmap(int v1, int v2) {

 void * v3;

 v3 = mmap(0, v2, 1, 2, v1, 0);

 if (v3 == (void *) -1) {

 perror("mmap")

 exit(1)

 }

 return v3;

}

void *file_mmap(int fd, int size) {

 void * buf;

 buf = mmap(0, size, 1, 2, fd, 0);

 if (buf == (void *) -1) {

 perror("mmap")

 exit(1)

 }

 return buf;

}

v1

v2

v3

fd

size

buf

DIRE is trained on large amounts of code from .

6

DIRE

.c
.c

.c
Train

.c
.c

.c
.c

Which c programs do we select?

7

The composition of the training set is important.

8

The composition of the training set is important.

8

The composition of the training set is important.

8

The composition of the training set is important.

8

The composition of the training set is important.

8

The composition of the training set is important.

8

The composition of the training set is important.

8

We looked at ways to select and augment data to improve
performance, especially on rare and underrepresented variable names.

9

Domains Dataset Quality

Helping DIRE perform better
on domain-specific identifiers.

Carefully selecting training data
to improve generalizability.

http_response
socket

lexeme
ast

net
work

ing

.c .c.c .c.c

com
pile

r

+acc

+acc

We looked at ways to select and augment data to improve
performance, especially on rare and underrepresented variable names.

9

Domains Dataset Quality

Helping DIRE perform better
on domain-specific identifiers.

Carefully selecting training data
to improve generalizability.

http_response
socket

lexeme
ast

net
work

ing

.c .c.c .c.c

com
pile

r

+acc

+acc

Subproblem - Given a binary, how can we identify its domain?

10

We derived domain labels from tags.

11

Selected Domains

kernel

game

shell

network

compiler

embedded

graphics

Hand-selected 7 domains from among the most common
GitHub tags in our dataset

We built a simple classifier to predict software domain from individual
binaries.

12

.c

2.48

-3.92

…

For Each

2

Decompiler Embedding
Model

Then

Classify…

Strategy:

We built a simple classifier to predict software domain from individual
binaries.

12

.c

2.48

-3.92

…

For Each

2

Decompiler Embedding
Model

Then

Classify…

doc2vec
Strategy:

We built a simple classifier to predict software domain from individual
binaries.

12

.c

2.48

-3.92

…

For Each

2

Decompiler Embedding
Model

Then

Classify…

doc2vec

SVM with
RBF kernel

Strategy:

We built a simple classifier to predict software domain from individual
binaries.

12

.c

2.48

-3.92

…

For Each

2

Decompiler Embedding
Model

Then

Classify…

doc2vec

SVM with
RBF kernel

Strategy:
 Remove parts of the code

We built a simple classifier to predict software domain from individual
binaries.

12

.c

2.48

-3.92

…

For Each

2

Decompiler Embedding
Model

Then

Classify…

doc2vec

SVM with
RBF kernel

Strategy:
 Remove parts of the code
 Create Classifier

We built a simple classifier to predict software domain from individual
binaries.

12

.c

2.48

-3.92

…

For Each

2

Decompiler Embedding
Model

Then

Classify…

doc2vec

SVM with
RBF kernel

Strategy:
 Remove parts of the code
 Create Classifier
 Evaluate

We built a simple classifier to predict software domain from individual
binaries.

12

.c

2.48

-3.92

…

For Each

2

Decompiler Embedding
Model

Then

Classify…

doc2vec

SVM with
RBF kernel

Strategy:
 Remove parts of the code
 Create Classifier
 Evaluate
 Repeat

We built a simple classifier to predict software domain from individual
binaries.

12

.c

2.48

-3.92

…

For Each

2

Decompiler Embedding
Model

Then

Classify…

doc2vec

SVM with
RBF kernel

Strategy:

Observe which parts of code
are most predictive of software
domain.

 Remove parts of the code
 Create Classifier
 Evaluate
 Repeat

In aggregate, string literals are highly indicative of software domain.

• The approach that led to the best
performance was to extract the string
literals run the classifier only on the
string literals.

• Test Accuracy: 83.54%

13

Dimensionality-reduced visualization of embeddings
generated (originally 64 dimensions)

We now know that string literals inform domain.

We can use this information to make DIRE predict domain-specific
identifiers more accurately

14

We modified the DIRE model to use string literals directly instead of
placeholders.

15

result = gf_log(“String");

result = gf_log("[Compositor] Failed to allocate svg gradient stack\n");

Orignal DIRE Model

Domain-Aware DIRE Model

We borrowed categorical labeling techniques from machine
translation to help inform our model of the domain of the data.

16

<english> I went to the store.

<japanese> 私は店に⾏った。

<graphics> __int64 __fastcall compositor_init_s…

<compiler> unsigned __int64 *__fastcall endian…

Machine Translation DIRE’s Variable Renamings

Labeled data is rare Train mostly on data with no known domain (label <unknown>)

Each modification applied to DIRE’s data serves a different purpose.

17

Domain labels Provides general, global information about software domain to
each function in the binary (even those without string literals).

String Literals Provides more specific information about a particular function’s
role and/or the role of certain variables in that function.

With these modifications, DIRE performs better across all domains.

18

Function Body not in Train Accuracy
Domain Control

(Original)
With
Modifications

Accuracy
Increase

unknown 35.89% 43.85% 7.96%

kernel 39.99% 46.07% 6.08%

game 22.40% 32.51% 10.11%

shell 19.63% 24.49% 4.86%

compiler 22.97% 27.42% 4.45%

network 20.13% 25.60% 5.47%

embedded 46.19% 54.33% 8.14%

graphics 18.58% 26.67% 8.09%

Mean (Domains) 27.13% 33.87% 6.74%

Function Body not in Train Accuracy

Ac
cu

ra
cy

0%

15%

30%

45%

60%

Domain

unknown
kernel
game

shell
compiler
network
embedded
graphics

Control (Original)
Experimental (With Modifications)

We improved DIRE to predict domain-specific variable names more
accurately.

19

ML models can struggle on rare or underrepresented
concepts like domain specific variable names.

In aggregate, string literals are highly indicative of a
given binary’s software domain.

<graphics> __int64 __fastcall compositor_init_s…

<compiler> unsigned __int64 *__fastcall endian…

We modified DIRE’s data to help it perform better on
domain-specific variable names.

The helps DIRE consistently outperform the original
version.

Bonus Slides - Methodology

20

We split each dataset into train and test sets.

21

Unknown
data

Test

Train

Domain-specific

Data (kernel,
network, etc.)

Test

Test

Train

Train

We train a control model and a model with interventions applied.

22

Train
Train

Train

Train
Train

Train Interventions Training

Training

We test each model against each test set.

23

for each in { }

for each in { }
Test

Test

…

∪ { Test }

Testing Accuracy

Number

,

Bonus Slides - Training Set Quality

24

How do we select “good” training data for DIRE and machine learning
models of code in general?

25

Variable names are labels for concepts present in code

26

listNode *

listSearchKey(list *list, void *key) {

 listIter iter;

 listNode *node;

 listRewind(list, &iter);

 while((node = listNext(&iter)) != NULL) {

 if (list->match) {

 if (list->match(node->value, key)) {

 return node;

 }

 } else {

 if (key == node->value) {

 return node;

 }

 }

 }

 return NULL;

}

Entities:list, key, iter, etc.

ngx_buf_t *

ngx_create_temp_buf(ngx_pool_t *pool, size_t size) {

 ngx_buf_t *b;

 b = ngx_calloc_buf(pool);

 if (b == NULL) {

 return NULL;

 }

 b->start = ngx_palloc(pool, size);

 if (b->start == NULL) {

 return NULL;

 }

 b->pos = b->start;

 b->last = b->start;

 b->end = b->last + size;

 b->temporary = 1;

 return b;

}

Entities: pool, size, start, etc.

Hypothesis: Training data with a wider variety of variable names in
code will lead to a more generalizable model.

27

Hypothesis: Training data with a wider variety of variable names in
code will lead to a more generalizable model.

27

Names are labels for the entities present in code

Hypothesis: Training data with a wider variety of variable names in
code will lead to a more generalizable model.

27

Names are labels for the entities present in code

More diverse labels

Hypothesis: Training data with a wider variety of variable names in
code will lead to a more generalizable model.

27

Names are labels for the entities present in code

More diverse labels More types of code are covered

Hypothesis: Training data with a wider variety of variable names in
code will lead to a more generalizable model.

27

Names are labels for the entities present in code

More diverse labels More types of code are covered

More generalizable model

We measure training set diversity with entropy.

28

fd

fd
fd
fd
fd

len
len
len

str
str

fd

fd
fd
fd
fd

len
len
len

str name fd
namestr

fd
fd

len
len
len

str name

Fr
eq

ue
nc

y

Name Name Name

We measure training set diversity with entropy.

28

fd

fd
fd
fd
fd

len
len
len

str
str

fd

fd
fd
fd
fd

len
len
len

str name fd
namestr

fd
fd

len
len
len

str name

Entropy

1.49 bits

Fr
eq

ue
nc

y

Name Name Name

We measure training set diversity with entropy.

28

fd

fd
fd
fd
fd

len
len
len

str
str

fd

fd
fd
fd
fd

len
len
len

str name fd
namestr

fd
fd

len
len
len

str name

Entropy

1.49 bits

Entropy

1.69 bits

Fr
eq

ue
nc

y

Name Name Name

We measure training set diversity with entropy.

28

fd

fd
fd
fd
fd

len
len
len

str
str

fd

fd
fd
fd
fd

len
len
len

str name fd
namestr

fd
fd

len
len
len

str name

Entropy

1.49 bits

Entropy

1.69 bits

Entropy

1.97bits

Fr
eq

ue
nc

y

Name Name Name

To test our hypothesis, we tried training a model on code that has a
high number of stars on

29

• We suspected high-star repositories likely have better names

• We suspected high-star repositories may be more diverse

• High-star repositories are much less likely to be duplicates

We cloned repositories from and sorted them by star count.

30

High-Star Dataset

Low-Star Dataset

Clone

Stars ≥ 50

Stars = 0

Repositories

We cloned repositories from and sorted them by star count.

30

High-Star Dataset

Low-Star Dataset

Clone

Stars ≥ 50

Stars = 0

Repositories

Treatment group

We cloned repositories from and sorted them by star count.

30

High-Star Dataset

Low-Star Dataset

Clone

Stars ≥ 50

Stars = 0

Repositories

Treatment group

Control group

We cloned repositories from and sorted them by star count.

30

High-Star Dataset

Low-Star Dataset

Clone

Stars ≥ 50

Stars = 0

Repositories
Randomly

sample among

zero-star repos

Treatment group

Control group

We cloned repositories from and sorted them by star count.

30

High-Star Dataset

Low-Star Dataset

Clone

Stars ≥ 50

Stars = 0

Repositories
Randomly

sample among

zero-star repos

Treatment group

Control group

Entropy = 11.487

We cloned repositories from and sorted them by star count.

30

High-Star Dataset

Low-Star Dataset

Clone

Stars ≥ 50

Stars = 0

Repositories
Randomly

sample among

zero-star repos

Treatment group

Control group

Entropy = 11.487

Entropy = 10.784

After separating out testing and validation sets, we trained a DIRE
model on high-star code and low-star code

31

Train

Val Test

Train

Train
Train

Val Test

We tested each model against each test set.

32

Test

Test

Test

Test

Experiment 1

Experiment 2

Experiment 3

Experiment 4

We found that models trained on high-star code tend to
generalize better.

33

Model Test Set Accuracy VarCLR

1 High Star High Star 33.6% 0.708

2 High Star Low Star 36.6% 0.719

3 Low Star High Star 15.6% 0.622

4 Low Star Low Star 39.6% 0.734

Test

We found that models trained on high-star code tend to
generalize better.

33

Model Test Set Accuracy VarCLR

1 High Star High Star 33.6% 0.708

2 High Star Low Star 36.6% 0.719

3 Low Star High Star 15.6% 0.622

4 Low Star Low Star 39.6% 0.734

Test

