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We build machine-learning based tools to help security researchers.
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DIRE int v1 int size

DIRTY _QWORD * struct point *

VarCLR min

max
minimum

Idioms (coming soon!) *(_QWORD *) (a1 + 4120) ctrl->used_size
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We studied how the characteristics of training data influence 
these machine learning models.
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We use DIRE in our case study.
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DIRE

void *file_mmap(int v1, int v2) {

    void * v3;

    v3 = mmap(0, v2, 1, 2, v1, 0);

    if (v3 == (void *) -1) {

        perror("mmap")

        exit(1)

    }

    return v3;

}

void *file_mmap(int fd, int size) {

    void * buf;

    buf = mmap(0, size, 1, 2, fd, 0);

    if (buf == (void *) -1) {

        perror("mmap")

        exit(1)

    }

    return buf;

}

v1

v2

v3

fd

size

buf



DIRE is a machine-learning based tool which automatically suggests 
variable names in decompiled code.
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DIRE is trained on large amounts of code from           .        
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Which c programs do we select?
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The composition of the training set is important.
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We looked at ways to select and augment data to improve 
performance, especially on rare and underrepresented variable names.
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Domains Dataset Quality

Helping DIRE perform better 
on domain-specific identifiers.

Carefully selecting training data 
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Subproblem - Given a binary, how can we identify its domain?
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We derived domain labels from            tags.
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Selected Domains

kernel

game

shell

network

compiler

embedded

graphics

Hand-selected 7 domains from among the most common 
GitHub tags in our dataset



We built a simple classifier to predict software domain from individual 
binaries.
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We built a simple classifier to predict software domain from individual 
binaries.

12

.c

2.48

-3.92

…

For Each

2

Decompiler Embedding
Model

Then

Classify…

doc2vec

SVM with 
RBF kernel

Strategy:

Observe which parts of code 
are most predictive of software 
domain.

    Remove parts of the code
    Create Classifier
    Evaluate
    Repeat



In aggregate, string literals are highly indicative of software domain.

• The approach that led to the best 
performance was to extract the string 
literals run the classifier only on the 
string literals.

• Test Accuracy: 83.54%
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Dimensionality-reduced visualization of embeddings 
generated (originally 64 dimensions)



We now know that string literals inform domain.

We can use this information to make DIRE predict domain-specific 
identifiers more accurately
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We modified the DIRE model to use string literals directly instead of 
placeholders.
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result = gf_log(“String");

result = gf_log("[Compositor] Failed to allocate svg gradient stack\n");

Orignal DIRE Model

Domain-Aware DIRE Model



We borrowed categorical labeling techniques from machine 
translation to help inform our model of the domain of the data.
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<english> I went to the store.

<japanese> 私は店に⾏った。

<graphics> __int64 __fastcall compositor_init_s…

<compiler> unsigned __int64 *__fastcall endian…

Machine Translation DIRE’s Variable Renamings

Labeled data is rare Train mostly on data with no known domain (label <unknown>)



Each modification applied to DIRE’s data serves a different purpose.
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Domain labels Provides general, global information about software domain to 
each function in the binary (even those without string literals).

String Literals Provides more specific information about a particular function’s 
role and/or the role of certain variables in that function.



With these modifications, DIRE performs better across all domains.
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Function Body not in Train Accuracy
Domain Control 

(Original)
With 
Modifications

Accuracy 
Increase

unknown 35.89% 43.85% 7.96%

kernel 39.99% 46.07% 6.08%

game 22.40% 32.51% 10.11%

shell 19.63% 24.49% 4.86%

compiler 22.97% 27.42% 4.45%

network 20.13% 25.60% 5.47%

embedded 46.19% 54.33% 8.14%

graphics 18.58% 26.67% 8.09%

Mean (Domains) 27.13% 33.87% 6.74%

Function Body not in Train Accuracy

Ac
cu

ra
cy
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15%
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Domain

unknown
kernel
game

shell
compiler
network
embedded
graphics
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We improved DIRE to predict domain-specific variable names more 
accurately.
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ML models can struggle on rare or underrepresented 
concepts like domain specific variable names. 

In aggregate, string literals are highly indicative of a 
given binary’s software domain.

<graphics> __int64 __fastcall compositor_init_s…

<compiler> unsigned __int64 *__fastcall endian…

We modified DIRE’s data to help it perform better on 
domain-specific variable names.

The helps DIRE consistently outperform the original 
version.



Bonus Slides - Methodology
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We split each dataset into train and test sets.
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Unknown 
data

Test

Train

Domain-specific 

Data (kernel, 
network, etc.)

Test

Test

Train

Train



We train a control model and a model with interventions applied.
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Train
Train

Train

Train
Train

Train Interventions Training

Training



We test each model against each test set.
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for each in { }

for each in { }
Test

Test

…

∪ { Test }

Testing Accuracy

Number

,



Bonus Slides - Training Set Quality
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How do we select “good” training data for DIRE and machine learning 
models of code in general?
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Variable names are labels for concepts present in code
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listNode *

listSearchKey(list *list, void *key) {

    listIter iter;

    listNode *node;


    listRewind(list, &iter);

    while((node = listNext(&iter)) != NULL) {

        if (list->match) {

            if (list->match(node->value, key)) {

                return node;

            }

        } else {

            if (key == node->value) {

                return node;

            }

        }

    }

    return NULL;

}

Entities:list, key, iter, etc.

ngx_buf_t *

ngx_create_temp_buf(ngx_pool_t *pool, size_t size) {

    ngx_buf_t *b;


    b = ngx_calloc_buf(pool);

    if (b == NULL) {

        return NULL;

    }


    b->start = ngx_palloc(pool, size);

    if (b->start == NULL) {

        return NULL;

    }

    

    b->pos = b->start;

    b->last = b->start;

    b->end = b->last + size;

    b->temporary = 1;


    return b;

}

Entities: pool, size, start, etc.



Hypothesis:  Training data with a wider variety of variable names in 
code will lead to a more generalizable model.
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Names are labels for the entities present in code

More diverse labels More types of code are covered

More generalizable model



We measure training set diversity with entropy.
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To test our hypothesis, we tried training a model on code that has a 
high number of stars        on 
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• We suspected high-star repositories likely have better names

• We suspected high-star repositories may be more diverse

• High-star repositories are much less likely to be duplicates



We cloned repositories from            and sorted them by star count.
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Clone
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Repositories
Randomly 
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zero-star repos

Treatment group
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Entropy = 11.487

Entropy = 10.784



After separating out testing and validation sets, we trained a DIRE 
model on high-star code and low-star code
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We tested each model against each test set.
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We found that models trained on high-star        code tend to 
generalize better.
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Model Test Set Accuracy VarCLR

1 High Star High Star 33.6% 0.708

2 High Star Low Star 36.6% 0.719

3 Low Star High Star 15.6% 0.622

4 Low Star Low Star 39.6% 0.734
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