
Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues,
Graham Neubig, and Bogdan Vasilescu

Augmenting Decompiler Output
with Learned Variable Names
and Types USENIX Security Symposium

Variable Naming is Essential

 1| void read(char *a1) {
 2| int v1 = 0;
 3| char v2;
 4| while (1) {
 5| v2 = getchar();
 6| if (v2 == EOF || v2 == '\n') {
 7| a1[v1] = '\0';
 8| break;
 9| } else {
10| a1[v1] = v2;
11| }
12| v1++;
13| }
14| }

2

Variable Naming is Essential

3

 1| void read(char *out_buf) {
 2| int loc = 0;
 3| char cur;
 4| while (1) {
 5| cur = getchar();
 6| if (cur == EOF || cur == '\n') {
 7| out_buf[loc] = '\0';
 8| break;
 9| } else {
10| out_buf[loc] = cur;
11| }
12| loc++;
13| }
14| }

Variable Naming is Essential

4

 1| void read(char *banana) {
 2| int str = 0;
 3| char moo;
 4| while (1) {
 5| moo = getchar();
 6| if (moo == EOF || moo == '\n') {
 7| banana[str] = '\0';
 8| break;
 9| } else {
10| banana[str] = moo;
11| }
12| str++;
13| }
14| }

DIRE

 1| file *f_open(char **filename, char *mode, int create) {
 2| int fd;
 3| if (!create)
 4| return fopen(*filename, mode);
 5| if (*mode != 119)
 6| assert_fail("fopen");
 7| fd = open(*filename, 577, 384);
 8| if (fd >= 0)
 9| return reopen(fd, mode);
10| else
11| return 0;
12| }

Hex-Rays Developer

a1 filename

a2 mode

a3 is_private

5

Types Are Also Useful

6

double func(int *a1, int *a2) {
 double v1, v2;
 v1 = pow((*a1 - *a2), 2);
 v2 = pow((a1[1] - a2[1]), 2);
 return sqrt(v1 + v2);
}

Types Are Also Useful

6

double func(int *a1, int *a2) {
 double v1, v2;
 v1 = pow((*a1 - *a2), 2);
 v2 = pow((a1[1] - a2[1]), 2);
 return sqrt(v1 + v2);
}

typedef struct {
 int x;
 int y;
} point;

double func(point *a1, point *a2) {
 double v1, v2;
 v1 = pow((a1->x - a2->x), 2);
 v2 = pow((a1->y - a2->y), 2);
 return sqrt(v1 + v2);
}

Predicting Types should be easier than names!

7

typedef struct {
 int x;
 int y;
} point;

sizeof(char); // 1
sizeof(int); // 4
sizeof(float); // 4
sizeof(point); // 8
sizeof(int[2]); // 8

Constraints Experiment

8

Constraints Experiment
•Mine GitHub, creating the same dataset as for

DIRE

8

Constraints Experiment
•Mine GitHub, creating the same dataset as for

DIRE

•Also maintain a database of types including their
substructure

8

Constraints Experiment
•Mine GitHub, creating the same dataset as for

DIRE

•Also maintain a database of types including their
substructure

•Train a model to predict a type based on its
context and constrain by size

8

Constraints Experiment
•Mine GitHub, creating the same dataset as for

DIRE

•Also maintain a database of types including their
substructure

•Train a model to predict a type based on its
context and constrain by size

•Results: Quite Bad!
8

The Problem: Padding Bytes

9

void fun() {
 char x[3];
 int y;
 // ...
}

Original

void fun() {
 char x[4];
 int y;
 // ...
}

Decompiled

Stack

x ypad

The Problem: Padding Bytes

10

void fun() {
 char x[3];
 int y;
 // ...
}

Original

void fun() {
 char x[4];
 int y;
 // ...
}

Decompiled

Stack

x y

DecompIled variable ReTYper (DIRTY) Architecture

11

DecompIled variable ReTYper (DIRTY) Architecture

12

DecompIled variable ReTYper (DIRTY) Architecture

13

DecompIled variable ReTYper (DIRTY) Architecture

14

DecompIled variable ReTYper (DIRTY) Architecture

15

DecompIled variable ReTYper (DIRTY) Architecture

16

DecompIled variable ReTYper (DIRTY) Architecture

17

Evaluation
•DIRTY was evaluated on the Dataset for Idiomatic ReTyping (DIRT)

18

Evaluation
•DIRTY was evaluated on the Dataset for Idiomatic ReTyping (DIRT)

•Baselines were Hex-Rays and Frequency by Size

18

Evaluation
•DIRTY was evaluated on the Dataset for Idiomatic ReTyping (DIRT)

•Baselines were Hex-Rays and Frequency by Size

•Accuracy: the percentage of types that exactly match the ground truth,
including data layout, type name, and substructure, where applicable

18

Evaluation
•DIRTY was evaluated on the Dataset for Idiomatic ReTyping (DIRT)

•Baselines were Hex-Rays and Frequency by Size

•Accuracy: the percentage of types that exactly match the ground truth,
including data layout, type name, and substructure, where applicable

18

Method All Structures

Freq by Size 23.6 9.7

Hex-Rays 37.9 28.7

DIRTY 75.8 68.6

Compiler Optimization Performance

19

-O0 -O1 -O2 -O3

48.20 46.01 46.04 46.00

Percent accuracy on 101 GNU Coreutils Programs

Predicting types and names simultaneously

20

Evaluation
•DIRTY compared with DIRE

21

Evaluation
•DIRTY compared with DIRE

•Used the dataset from the original DIRE paper and also DIRT

21

Evaluation
•DIRTY compared with DIRE

•Used the dataset from the original DIRE paper and also DIRT

•Accuracy is the percentage of names that exactly match the developer’s
choice.

21

Evaluation
•DIRTY compared with DIRE

•Used the dataset from the original DIRE paper and also DIRT

•Accuracy is the percentage of names that exactly match the developer’s
choice.

21

Method DIRE Data DIRT

DIRE 72.8 57.5

DIRTY 81.4 66.4

int find_unused_picture(int a1, int a2, int a3) {
 int i, j, v1;
 if (a3) {
 for (i = <NUM>;; ++i) {
 if (i > <NUM>)
 goto LABEL_13;
 if (!*(*(<NUM> * i + a2) + <NUM>))
 break;
 }
 v1 = i;
 } else {
 for (j = <NUM>;; ++j) {
 if (j > <NUM>) {
 LABEL_13:
 av_log(a1, <NUM>, <STR>);
//...

ID Developer DIRTY

a1 AVCodecContext
*avctx MpegEncContext *s

a2 Picture *picture Picture *pic

a3 int shared int shared

v1 int result int result

BONUS
SLIDES

24

24

