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Variable Naming is Essential

 1| void read(char *a1) {
 2|   int v1 = 0;
 3|   char v2;
 4|   while (1) {
 5|     v2 = getchar();
 6|     if (v2 == EOF || v2 == '\n') {
 7|       a1[v1] = '\0';
 8|       break;
 9|     } else {
10|       a1[v1] = v2;
11|     }
12|     v1++;
13|   }
14| }
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 1| void read(char *out_buf) {
 2|   int loc = 0;
 3|   char cur;
 4|   while (1) {
 5|     cur = getchar();
 6|     if (cur == EOF || cur == '\n') {
 7|       out_buf[loc] = '\0';
 8|       break;
 9|     } else {
10|       out_buf[loc] = cur;
11|     }
12|     loc++;
13|   }
14| }



Variable Naming is Essential
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 1| void read(char *banana) {
 2|   int str = 0;
 3|   char moo;
 4|   while (1) {
 5|     moo = getchar();
 6|     if (moo == EOF || moo == '\n') {
 7|       banana[str] = '\0';
 8|       break;
 9|     } else {
10|       banana[str] = moo;
11|     }
12|     str++;
13|   }
14| }



DIRE

 1| file *f_open(char **filename, char *mode, int create) {
 2|   int fd;
 3|   if (!create)
 4|     return fopen(*filename, mode);
 5|   if (*mode != 119)
 6|     assert_fail("fopen");
 7|   fd = open(*filename, 577, 384);
 8|   if (fd >= 0)
 9|     return reopen(fd, mode);
10|   else
11|     return 0;
12| }

Hex-Rays Developer

a1 filename

a2 mode

a3 is_private
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Types Are Also Useful
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double func(int *a1, int *a2) {
  double v1, v2;
  v1 = pow((*a1 - *a2), 2);
  v2 = pow((a1[1] - a2[1]), 2);
  return sqrt(v1 + v2);
}
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double func(int *a1, int *a2) {
  double v1, v2;
  v1 = pow((*a1 - *a2), 2);
  v2 = pow((a1[1] - a2[1]), 2);
  return sqrt(v1 + v2);
}

typedef struct { 
  int x; 
  int y; 
} point; 

double func(point *a1, point *a2) {       
  double v1, v2;
  v1 = pow((a1->x - a2->x), 2); 
  v2 = pow((a1->y - a2->y), 2);
  return sqrt(v1 + v2); 
}



Predicting Types should be easier than names!
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typedef struct { 
  int x; 
  int y; 
} point; 

sizeof(char);   // 1 
sizeof(int);    // 4 
sizeof(float);  // 4 
sizeof(point);  // 8 
sizeof(int[2]); // 8
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Constraints Experiment
•Mine GitHub, creating the same dataset as for 

DIRE

•Also maintain a database of types including their 
substructure

•Train a model to predict a type based on its 
context and constrain by size

•Results: Quite Bad!
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The Problem: Padding Bytes
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void fun() {
  char x[3];
  int y;
  // ...
}

Original

void fun() {
  char x[4];
  int y;
  // ...
}

Decompiled

Stack

x ypad
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  char x[3];
  int y;
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}
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void fun() {
  char x[4];
  int y;
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DecompIled variable ReTYper (DIRTY) Architecture
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Method All Structures

Freq by Size 23.6 9.7

Hex-Rays 37.9 28.7

DIRTY 75.8 68.6



Compiler Optimization Performance
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-O0 -O1 -O2 -O3

48.20 46.01 46.04 46.00

Percent accuracy on 101 GNU Coreutils Programs



Predicting types and names simultaneously
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Method DIRE Data DIRT

DIRE 72.8 57.5

DIRTY 81.4 66.4



int find_unused_picture(int a1, int a2, int a3) {
  int i, j, v1;
  if (a3) {
    for (i = <NUM>;; ++i) {
      if (i > <NUM>)
        goto LABEL_13;
      if (!*(*(<NUM> * i + a2) + <NUM>))
        break;
    }
    v1 = i;
  } else {
    for (j = <NUM>;; ++j) {
      if (j > <NUM>) {
      LABEL_13:
        av_log(a1, <NUM>, <STR>);
//...
 

ID Developer DIRTY

a1 AVCodecContext 
*avctx MpegEncContext *s

a2 Picture *picture Picture *pic

a3 int shared int shared

v1 int result int result
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