VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

Jeremy Lacomis Edward J. Schwartz Graham Neubig Bogdan Vasilescu Claire Le Goues

> **Carnegie Mellon University** School of Computer Science

Qibin Chen

Variable Names are an Important Part of a Project

CommitStrip.com

Variable Names are Important to Human Programmers

```
def minimumTotal(self, t):
    return reduce(
        lambda a, b: [f + min(d,
e) for d, e, f in zip(a, a[1:],
b)], t[::-1]
    )[0]
```

120. Triangle

Medium ⓓ 4795 ♀ 380 ♡ Add to List ⓓ Share

Given a triangle array, return *the minimum path sum from top to bottom*.

For each step, you may move to an adjacent number of the row below. More formally, if you are on index i on the current row, you may move to either index i or index i + 1 on the next row.

Example 1:

```
Input: triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
Output: 11
Explanation: The triangle looks like:
        2
        3 4
        6 5 7
4 1 8 3
```

"Full word > abbreviation >> single character" (128 participants)

-Lawrie et al., 2006, "What's in a Name?"

Variable Names are Important to Name-based Analysis Tasks

This variety of applications have a shared underlying problem: Variable Representation

n:

What Properties Make Good Variable Representations?

- Character similarity
- Open vocabulary
- Subword importance and order
- A Relatedness
- Similarity (interchangeability)

Desired Property of Variable Representation: Character Similarity

Character Similarity Is Not Enough and Can Be Misleading

Desired Property of Variable Representation: Open Vocabulary

- Variables are like languages with no whitespaces
 - arrayListCompletedFromForm_withoutDuplicate
- Split by camelCase or snake_case?
- Arbitrary abbreviations and contractions
 - filenames, fnames, displayMessage, displayMsg

Desired Property: Subword Importance and Order

- Subword importance
- Subword importance can change dynamically
- Subword order affects the meaning

xMin

idx_to_word <----</pre>

xMax

yMin

word_to_idx

What Properties Make Good Variable Representations?

- Character similarity
- Open vocabulary
- Subword importance and order
- A Relatedness
- Similarity (interchangeability)

Desired Property of Variable Representation: Relatedness

`length` ----- `size`

Relatedness: The Distributional Hypothesis

- Words that occur in the same contexts tend to have similar meanings (Harris, 1954)
- "A word is characterized by the company it keeps" was popularized by (Firth, 1957)

J. R. Firth, English linguist

Relatedness: Evaluation Benchmarks and State-Of-The-Art Methods

- **IdBench** (Wainakh, et al., ICSE 2021)
 - Word2vec
 - FastText
 - Path-based

Identifiers: radians, angle 1) How related are the identifiers? Unrelated

Current Methods Are Effective at Representing Relatedness!

Limitation of Relatedness: It Is Not All You Need

V

minimum

https://projector.tensorflow.org/

Desired Property of Variable Representation: Similarity (substitutable)

`minimumText` related and similar

maxText` related but dissimilar

Desired Property of Variable Representation: Similarity (substitutable)

IdBench(`paddingTop`, `paddingRight`) ----- 0.89

IdBench(`minText`, `maxText`) $\longrightarrow 0.95$

Beware of the underlying assumption when borrowing ML methods as a black box!

What Properties Make Good Variable Representations?

- Character similarity
- Open vocabulary
- Subword importance and order
- A Relatedness
- Similarity (interchangeability)

VarCLR: Towards Better Variable Representations

Built on these SOTA approaches and improve the representations

With significantly improved similarity!

The minimum score of an accepted ICSE paper is 3

Contrastive Learning: A Motivating Example

X

3 is the minimum score of an accepted ICSE paper

The minimum ··· rejected ··· is 1

3 is the minimum score of an accepted ICSE paper

X

The minimum score of an accepted ICSE paper is 3

Contrastive Learning: A Motivating Example

··· is 1

3 is the minimum score of an accepted ICSE paper

The minimum score of an accepted ICSE paper is 3

Contrastive Learning: A Motivating Example

What Is Contrastive Learning

- Given similar (and dissimilar) pairs

 Learn an embedding space where similar sample pairs are close to each other while dissimilar ones are far apart

Fantastic Positive Pairs and Where to Find Them

- Image: augmentations (random crop, resize, clip, color jittering)
- Text: word dropouts, NLI labels (entailment / contradiction)
- Image-text: captions (OpenAl CLIP)

VarCLR GitHubRenames: **Collecting Positive Variable Name Pairs**

- Collected 66,855 pairs from 568 high star C# projects
- Where the only change in a diff block is the variable name

VarCLR GithubRenames: Example

\checkmark \div	6	<pre>docs/samples/Microsoft.ML.Samples/Static/FastTreeRegression.cs </pre>	Viewed
		<pre>@@ -38,9 +38,9 @@ public static void FastTreeRegression()</pre>	
38	38	<pre>.Append(r => (r.label, score: mlContext.Regression.Trainers.FastTree(</pre>	
39	39	r.label,	
40	40	r.features,	
41		<pre></pre>	
42		<pre>- numLeaves: 20, // try: (int) 2-128</pre>	
43		<pre>- minDatapointsInLeaves: 10, // try: (int) 1-10</pre>	0
	41	+ // try: (int) 20-2000	
	42	+ numberOfLeaves: 20, // try: (int) 2–128	
	43	+	1-100
44	44	<pre>learningRate: 0.2, // try: (float) 0.025-0.4</pre>	
45	45	<pre>onFit: p => pred = p)</pre>	
46	46)	
+			

a) Variable Pairs

b) Mini-batch

positives

c) Representations

d) Scores

a) Variable Pairs

b) Mini–batch

positives

in-batch negatives

c) Representations

d) Scores

a) Variable Pairs

b) Mini-batch

positives

in-batch negatives

encoders

positives

in-batch negatives

encoders

InfoNCE objective

VarCLR: Experiment Setup

- Benchmark: IdBench
 - Relatedness vs. Similarity
 - Small/Medium/Large
- Metric: Spearman's rank correlation
- IdBench baselines
 - Levenshtein distance, Word2vec, FastText, Path-based
- VarCLR Model Choices
 - Word2vec, LSTM, CodeBERT

VarCLR Results: Improving Relatedness

$0.73 \rightarrow 0.80$

IdBench-Large

0.35 - 0.53

VarCLR Results: Improving Similarity

IdBench-Small

VarCLR: Effect of Contrastive Training

SCAN ME

VarCLR: Effect of Training Data

SCAN ME

VarCLR: Effect of Training Data

SCAN ME

More Tasks: Similarity Search and Spelling Error Correction

Variable Representation

Relatedness Scoring

Similarity Search

Spelling Error Correction

build passing

VarCLR: Variable Representation Pre-training via Contrastive Learning

New: Paper accepted by ICSE 2022. Preprint at arXiv!

This repository contains code and pre-trained models for VarCLR, a contrastive learning based approach for learning semantic representations of variable names that effectively captures variable similarity, with state-ofthe-art results on IdBench@ICSE2021.

- VarCLR: Variable Representation Pre-training via Contrastive Learning
 - Step 0: Install
 - Step 1: Load a Pre-trained VarCLR Model
 - Step 2: VarCLR Variable Embeddings

VarCLR Is Easy to Use! code style black stars 22 license MIT

SCAN ME

Off-the-shelf pre-trained embeddings and models!

STR

No GPU required!

VarCLR Is Easy to Use!

build passing stars 22 license MIT code style black

VarCLR: Variable Representation Pre-training via Contrastive Learning

New: Paper accepted by ICSE 2022. Preprint at arXiv!

This repository contains code and pre-trained models for VarCLR, a contrastive learning based approach for learning semantic representations of variable names that effectively captures variable similarity, with state-ofthe-art results on IdBench@ICSE2021.

- VarCLR: Variable Representation Pre-training via Contrastive Learning embeddings and • Step 0: Install
 - Step 1: Load a Pre-trained VarCLR Model
 - Step 2: VarCLR Variable Embeddings

Off-the-shelf pro

No GPU require

squaresLab

