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In-IDE Code Generation from Natural Language:
Promise and Challenges

FRANK F. XU, BOGDAN VASILESCU, and GRAHAM NEUBIG, Carnegie Mellon University

A great part of software development involves conceptualizing or communicating the underlying procedures

and logic that needs to be expressed in programs. One major difficulty of programming is turning concept into

code, especially when dealing with the APIs of unfamiliar libraries. Recently, there has been a proliferation

of machine learning methods for code generation and retrieval from natural language queries, but these have

primarily been evaluated purely based on retrieval accuracy or overlap of generated code with developer-

written code, and the actual effect of these methods on the developer workflow is surprisingly unattested. In

this article, we perform the first comprehensive investigation of the promise and challenges of using such

technology inside the PyCharm IDE, asking, “At the current state of technology does it improve developer

productivity or accuracy, how does it affect the developer experience, and what are the remaining gaps and

challenges?” To facilitate the study, we first develop a plugin for the PyCharm IDE that implements a hybrid of

code generation and code retrieval functionality, and we orchestrate virtual environments to enable collection

of many user events (e.g., web browsing, keystrokes, fine-grained code edits). We ask developers with various

backgrounds to complete 7 varieties of 14 Python programming tasks ranging from basic file manipulation

to machine learning or data visualization, with or without the help of the plugin. While qualitative surveys

of developer experience are largely positive, quantitative results with regards to increased productivity, code

quality, or program correctness are inconclusive. Further analysis identifies several pain points that could

improve the effectiveness of future machine learning-based code generation/retrieval developer assistants

and demonstrates when developers prefer code generation over code retrieval and vice versa. We release all

data and software to pave the road for future empirical studies on this topic, as well as development of better

code generation models.
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1 INTRODUCTION

One of the major hurdles to programming is the time it takes to turn ideas into code [77]. All pro-
grammers, especially beginners but even experts, frequently reach points in a program where they
understand conceptually what must be done next, but do not know how to create a concrete imple-
mentation of their idea or would rather not have to type it in if they can avoid it. The popularity of
the Stack Overflow Q&A website is a great example of this need. Indeed, developers ask questions
about how to transform ideas into code all the time, e.g., “How do I check whether a file exists
without exceptions?,”1 “How can I merge two Python dictionaries in a single expression?,”2 and
so on. Moreover, this need is likely to continue in the future, as new APIs appear continuously,
and existing APIs change in non-backwards compatible ways [80], requiring recurring learning
effort [57, 84].

Despite early skepticism towards the idea of “natural language programming” [26], researchers
now widely agree on a range of scenarios where it can be useful to be able to formulate instructions
using natural language and have the corresponding source code snippets automatically produced.
For example, software developers can save keystrokes or avoid writing dull pieces of code [32, 86,
99, 115]; and non-programmers and practitioners in other fields, who require computation in their
daily work, can get help with creating data manipulation scripts [38, 62].

Given a natural language query carrying the intent of a desired step in a program, there are
two main classes of methods to obtain code implementing this intent, corresponding to two major
research thrusts in this area. On the one hand, code retrieval techniques aim to search for and re-
trieve an existing code fragment in a code base; given the abundance of code snippets online, on
platforms such as Stack Overflow, it is plausible that a lot of the code that one might write, espe-
cially for lower-level functionality and API usage primitives, already exists somewhere, therefore
the main challenge is search. On the other hand, code generation techniques aim to synthesize code
fragments given natural language descriptions of intent. This is typically a harder challenge than
retrieval and therefore more ambitious, but it may be particularly useful in practice if those exact
target code fragments do not exist anywhere yet and can be generated instead.

The early attempts at general-purpose code generation from natural language date back to the
early to mid 2000s and resulted in groundbreaking but relatively constrained grammatical and
template-based systems, e.g., converting English into Java [93] and Python [112]. Recent years
have seen an increase in the scope and diversity of such programming assistance tools, as re-
searchers have devised code generation techniques that promise to be more flexible and expres-
sive using machine (deep) learning models trained on data from “Big Code” repositories such as
GitHub and Stack Overflow; see Allamanis et al. [3] for an excellent survey of such techniques.
Code retrieval systems have also improved dramatically in recent years, thanks to the increas-
ing availability of source code online and more sophisticated information retrieval and machine
learning techniques; perhaps the most popular current code retrieval system is Microsoft’s Bing
Developer Assistant [115], which is an adaptation of the Bing search engine for code.

While both types of methods (generation and retrieval) for producing appropriate code given
natural language intents have received significant interest in machine learning circles, there is a
surprising paucity of research using human-centered approaches [83] to evaluate the usefulness
and impact of these methods within the software development workflow. An important open ques-
tion is to what extent the typically high accuracy scores obtained during automatic evaluations
on benchmark datasets will translate to real-world usage scenarios, involving software develop-
ers completing actual programming tasks. The former does not guarantee the latter. For example,

1https://stackoverflow.com/q/82831.
2https://stackoverflow.com/q/38987.
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an empirical study on code migration by Tran et al. [110] showed that the BLEU [89] accuracy
score commonly used in natural language machine translation has only weak correlation with the
semantic correctness of the translated source code [110].

In this article, we take one step towards addressing this gap. We implemented two state-of-the-
art systems for natural language to code (NL2Code) generation and retrieval as in-IDE devel-
oper assistants and carried out a controlled human study with 31 participants assigned to complete
a range of Python programming tasks with and without the use of the two varieties of NL2Code
assistance. Our results reveal that while participants in general enjoyed interacting with our IDE
plugin and the two code generation and retrieval systems, surprisingly there were no statistically

significant gains in any measurable outcome when using the plugin. That is, tasks with code frag-
ments automatically generated or retrieved using our plugin were, on average, neither completed
faster nor more correctly than tasks where participants did not use any NL2Code assistant. This in-
dicates that despite impressive improvements in the intrinsic performance of code generation and
retrieval models, there is a clear need to further improve the accuracy of code generation, and we
may need to consider other extrinsic factors (such as providing documentation for the generated
code) before such models can make sizable impact on the developer workflow.

In summary, the main contributions of this article are: (i) A hybrid code generation and code
retrieval plugin for the Python PyCharm IDE, which takes as input natural language queries. (ii) A
controlled user study with 31 participants observed across 7 types of programming tasks (14 con-
crete subtasks). (iii) An analysis of both quantitative and qualitative empirical data collected from
the user study, revealing how developers interact with the NL2Code assistant and the assistant’s
impact on developer productivity and code quality. (iv) A comparison of code snippets produced by
the two models, generation versus retrieval. (v) An anonymized dataset of events from our instru-
mented IDE and virtual environment, capturing multiple aspects of developers’ activity during the
programming tasks, including plugin queries and edits, web browsing activities, and code edits.

2 OVERVIEW OF OUR STUDY

The goal of our research is to elucidate to what extent and in what ways current natural lan-
guage programming techniques for code generation and retrieval can be useful within the devel-
opment workflow as NL2Code developer assistants. Our main interest is evaluating the usefulness
in practice of state-of-the-art NL2Code generation systems, which have been receiving significant
attention from researchers in recent years, but have so far only been evaluated on benchmark
datasets using standard NLP metrics. However, as discussed above, code generation and code re-
trieval are closely related problems, with increasingly blurred lines between them; e.g., recent ap-
proaches to align natural language intents with their corresponding code snippets in Stack Over-
flow for retrieval purposes [122] use similar deep learning technology as some code generation
techniques [123]. Therefore, it is important to also consider code retrieval systems when experi-
menting with and evaluating code generation systems.

Given this complementarity of the two tasks, we select as a representative example of state-of-
the-art techniques for code generation the semantic parsing approach by Yin and Neubig [123]. In
short, the approach is based on a tree-based neural network model that encodes natural language
utterances and generates corresponding syntactically correct target code snippets; for example,
the model can generate the Python code snippet “x.sort(reverse=True)” given the natural
language input “sort list x in reverse order.” We chose the approach by Yin and Neubig [123] over
similar approaches such as those of Iyer et al. [49] and Agashe et al. [1], as it is the most general
purpose and most naturally comparable to code retrieval approaches; see Section 9 for a discussion.
For code retrieval, the closest analogue is Microsoft’s proprietary Bing Developer Assistant [115],
which takes English queries as input and returns existing matching code fragments from the Web
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Fig. 1. Overview of our study.

using the Bing search engine. However, given the proprietary nature of this system, we build a
custom Stack Overflow code search engine inspired by it rather than use the system itself.

We then designed and carried out the controlled human study summarized in Figure 1. First, we
implement the two code generation and retrieval techniques as a custom plugin for the PyCharm3

IDE, which takes as input natural language text intents and displays as output the corresponding
code snippets generated and retrieved by the respective underlying models. Second, we compile 14
representative Python programming tasks across 7 task categories with varying difficulty, ranging
from basic Python to data science topics. Third, we recruit 31 participants with diverse experience
in programming in Python and with the different task application domains. Then, using an instru-
mented virtual environment and our IDE plugin, we collect quantitative and qualitative data about
task performance and subjective tool use from each participant, as well as over 170 person hours
of telemetry data from the instrumented environment.

Finally, we analyze these data to answer three research questions, as follows:

RQ1. How does using a NL2Code developer assistant affect task completion time and program cor-

rectness? This research question investigates quantitative differences in outcome variables be-
tween tasks completed in the treatment and control conditions. To this end, we use the log data
from our instrumented virtual environment to compute task completion times, and rubric-based
manual scoring of the solutions submitted by study participants to evaluate program correctness.
Then, we use multivariate mixed-effects regression modeling to analyze the data. We expect that
using the plugin developers can complete tasks faster, without compromising solution quality.

3https://www.jetbrains.com/pycharm/.
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RQ2. How do users query the NL2Code assistant, and how does that associate with their choice of

generated vs. retrieved code? This research question investigates quantitatively three dimensions
of the inputs and outputs of the NL2Code plugin. Again using log data from our instrumented
virtual environment, we first model how the natural language input queries differ when study par-
ticipants favor the code snippets returned by the code generation model over those returned by
the code retrieval model. Second, we evaluate the quality of the natural language queries input by
study participants in terms of their ability to be answerable by an oracle (human expert), which is
also important for the success of NL2Code systems in practice, in addition to the quality of the un-
derlying code generation or retrieval systems. Third, we study how the length and the frequency
of different types of tokens changes after study participants edit the candidate code snippets re-
turned by the NL2Code plugin, which could indicate ways in which even the chosen code snippets
are still insufficient to address the users’ needs.

RQ3. How do users perceive the usefulness of the in-IDE NL2Code developer assistant? Finally, this
research question investigates qualitatively the experience of the study participants interacting
with the NL2Code plugin and underlying code generation and retrieval models.

In the remainder of this article, Sections 3–4 describe our study setup in detail; then Sections 5–7
present our answers to the research questions; Section 8 discusses implications; and Section 9
discusses related work.

Following best practices for empirical software engineering research [107, 116], we make our
study replicable, publishing our plugin prototype, instrumented virtual environment, data extrac-
tion and analysis scripts, and the obtained anonymized raw data; see the online appendices at
https://github.com/neulab/tranX-plugin and https://github.com/neulab/tranX-study.

3 NL2CODE IDE PLUGIN DESIGN

We designed and built a joint NL2Code generation and retrieval plugin for PyCharm, a popular
Python IDE. Our plugin is open source and available online.4 As mentioned above, the plugin
takes as input an English query describing the user’s intent and gives as output a ranked list of the
most relevant code snippets produced by each of the two underlying code generation and retrieval
systems. Using IDE plugins to query Web resources such as Stack Overflow is expected to be less
disruptive of developers’ productivity than using an external Web browser, since it reduces context
switching [9, 91]. Moreover, there exist already a number of IDE plugins for Web/Stack Overflow
search and code retrieval [17, 91, 98, 115], therefore the human-computer interaction modality
should feel at least somewhat natural to study participants.
The Underlying Code Generation System. For code generation, we use the model by Xu et al.
[117] (available online5), which is an improved version of the tree-based semantic parsing model by
Yin and Neubig [124], further pre-trained on official API documentation in addition to the original
training on Stack Overflow questions and answers.6

This model reports state-of-the-art accuracy on the CoNaLa benchmark dataset [122], a bench-
mark dataset of intent/code pairs mined from Stack Overflow and standardly used to evaluate code
generation models. Accuracy is computed using the BLEU score [89], a standard metric used in
the NLP community, which measures the token-level overlap between the generated code and a
reference implementation. As discussed above, the BLEU score (and similar automated metrics) are
typically not sufficiently sensitive to small lexical differences in token sequence that can greatly

4At https://github.com/neulab/tranX-plugin.
5https://github.com/neulab/external-knowledge-codegen.
6We deployed the model on an internal research server and exposed a HTTP API that the plugin can access; queries are

fast enough for the plugin to be usable in real time.
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Table 1. Examples, where ✓ Is the Ground-truth Code Snippet, ♣ Is the Output from the

State-of-the-Art Code Generation Model, and ♠ Is the First Candidate Retrieved from

Stack Overflow Using Bing Search

Open a file “f.txt” in write mode.
✓ f = open('f.txt', 'w')
♣ f = open('f.txt', 'w')
♠ with open(''users.txt'', ''a'')as f: f.write(username + ''\n'')
Remove first column of dataframe df.
✓ df = df.drop(df.columns[[0]], axis=1)
♣ df.drop(df.columns[[0]])
♠ del df['column_name']
Lower a string text and remove non-alphanumeric characters aside from space.
✓ re.sub(r'[^ \sa−zA−Z0−9]', '', text).lower().strip()
♣ re.sub(r'[^ \sa−zA−Z0−9]', '', text)
♠ re.sub(r'[^ \sa−zA−Z0−9]', '', text).lower().strip()

alter the semantics of the code [110], hence our current human-centered study. Still, qualitatively,
it appears that the model can generate reasonable code fragments given short text inputs, as shown
in Table 1. Note how the model can generate syntactically correct code snippets by construction;
demonstrates ability to identify and incorporate a wide variety of API calls; and also has the ability
to copy important information such as string literals and variable names from the input natural
language intent, in contrast to the code retrieval results. When displaying multiple generation re-
sults in the plugin described below, these results are ordered by the conditional probability of the
generated code given the input command.
The Underlying Code Retrieval System. For code retrieval, similarly to a number of recent
works on the subject [17, 91, 115], we implement a wrapper around a general-purpose search
engine, specifically the Bing7 search engine.8 The wrapper queries this search engine for relevant
questions on Stack Overflow,9 the dominant programming Q&A community, and retrieves code
from the retrieved pages. A dedicated search engine already incorporates advanced indexing and
ranking mechanisms in its algorithms, driven by user interaction data, therefore it is preferable to
using the internal Stack Overflow search engine directly [115].

Specifically, we add the “Python” prefix to all user queries to confine the search to the Python
programming language domain and add “site:stackoverflow.com” to confine the results to the Stack
Overflow platform. We do not structurally alter the queries otherwise, e.g., we do not remove
variables referenced therein, if any, although we do strip away grave accents that are part of the
code generation model’s syntax.10 For the query example mentioned above, the actual query string

7https://www.bing.com/.
8We chose Bing rather than other alternatives such as Google due to the availability of an easily accessible search API.
9https://stackoverflow.com/.
10To mitigate concerns that user queries using the specified syntax (command form sentences and including variable names)

may adversely affect the retrieval results, after the full study was complete, we modified 59 user-issued queries that were

indeed complete sentences with full variable names, converting them into short phrases without variable names and re-

ran the retrieval. We then compared the results and manually annotated the number of times the search engine returned a

result that we judged was sufficient to understand how to perform the programming task specified by the user’s intent. As

a result, the user-written full intent resulted in a sufficient answer 34/59 times, and the simplified intent without variable

names returned a sufficient answer 36/59 times, so it appears that including variable names has a marginal to no effect on

whether the search engine was able to provide a good top-1 result. We also measured the exact-match overlap between the

top-1 results and found it to be 22/59, and overlap between the top-7 result lists was 182/(59*7).
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Fig. 2. Screenshots of the in-IDE plugin taking a natural language query as input and listing code snippet

candidates from both code generation and code retrieval.

for Bing search would become “Python reverse a list x site:stackoverflow.com.” For each Stack
Overflow question page retrieved, we then extract the code snippets from the top three answers
into a ranked list, sorted descending by upvotes. The code snippet extraction procedure follows Yin
et al. [122] for identifying the code part of the answer, based on Stack Overflow-specific syntax
highlighting and heuristics. When displaying multiple retrieval results, these results are ordered
by the order they appeared in Bing search engine results, and the ordering of answers inside SO
posts is done by upvotes.

Table 1 shows a few example outputs. Note how the retrieval results sometimes contain spurious
code, not part of the natural language intent (first example), and otherwise seem to complement
the generation results. Indeed, in the second example the generation result is arguably closer to
the desired answer than the retrieval result, with the opposite situation in the third example.
Interacting with the Plugin. Figure 2 illustrates the plugin’s user interface. The user first acti-
vates the query interface by pressing a keyboard shortcut when the cursor is in the IDE’s editor.
A popup appears at the current cursor position (Figure 2(a)), and the user can enter a command in
natural language that they would like to be realized in code (e.g., “reverse a list `x`”11). The plugin
then sends the request to the underlying code generation and code retrieval systems and displays
a ranked list of results, with the top 7 code generation results at the top, followed by the top 7 code
retrieval results (Figure 2(b)); 14 results are displayed in total.12

11Note the special syntax used to mark explicit variables; see Appendix F for full syntax details.
12We note that the main motivation for this ordering is that the generation results tend to be significantly more concise

than the retrieval results (Figure 6). If we put the retrieval results first, then it is likely that the users would rarely scroll

past the retrieval results and view the generation results due to issues of screen real-estate. It is important to consider that

alternative orderings may result in different experimental results, although examining alternate orderings was not feasible

within the scope of the current study.
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Fig. 3. Screenshots of fixing the small errors in generated code and upload the correct snippet.

The number 7 was chosen subjectively, trying to maximize the amount and diversity of result-
ing code snippets while minimizing the necessary screen space to display them and, therefore, the
amount of scrolling expected from study participants looking to inspect all the plugin-returned
results. After completing the current study, we found that the most relevant code snippets are typ-
ically within the top 3 results, and thus a smaller number of candidates may be sufficient. While the
number and ordering of candidates has the potential to have a significant impact on the efficiency
and efficacy of the developer assistant, a formal evaluation of this impact is beyond the scope of
this work.

If a code snippet is selected, then the code snippet is then inserted in the current cursor’s position
in the code editor. The user’s selection is also recorded by our instrumentation in the back end.
Understandably, some returned code snippets may not be directly suitable for the context inside
the editor, so the user is welcome (and encouraged by the instructions we give as part of our
human study) to edit the auto-inserted code snippets to fit their specific intent. After the edit is
done, the user is asked to upload their edits to our server, along with the context of the code, using
a dedicated key combination or the IDE’s context menu. The process is illustrated in Figure 3.
The edit data enable us to analyze how many and what kind of edits the users need to make to
transform the auto-generated code to code that is useful in their context.13

4 HUMAN STUDY DESIGN

Given our NL2Code joint code generation and retrieval IDE plugin above, we designed and carried
out a human study with 31 participants assigned to complete a range of Python programming tasks
in both control (no plugin) and treatment (plugin) conditions.

4.1 Task Design

To emulate real world Python development activities, but also fit within the scope of a user study,
we compiled a set of 14 reasonably sized Python programming tasks, organized into 7 categories
(2 tasks per category) that span a diversity of levels of difficulty and application domains.

We started by identifying representative task categories that many users would encounter in
practice. To that end, we analyzed two sources. First, we manually reviewed all the Python pro-
gramming courses listed on three popular coding education websites (Udacity,14 Codecademy,15

13The edit data may also be helpful as training data for improving code generation and retrieval models. We release our

data publicly to encourage this direction in future work.
14https://www.udacity.com/courses/all.
15https://www.codecademy.com/catalog.
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Table 2. Overview of Our 14 Python Programming Tasks

Category Tasks

Basic Python
T1-1 Randomly generate and sort numbers and characters with dictionary
T1-2 Date & time format parsing and calculation with timezone

File
T2-1 Read, manipulate, and output CSV files
T2-2 Text processing about encoding, newline styles, and whitespaces

OS
T3-1 File and directory copying, name editing
T3-2 File system information aggregation

Web Scraping
T4-1 Parse URLs and specific text chunks from web page
T4-2 Extract table data and images from Wikipedia page

Web Server & Client
T5-1 Implement an HTTP server for querying and validating data
T5-2 Implement an HTTP client interacting with given blog post APIs

Data Analysis & ML
T6-1 Data analysis on automobile data of performance metrics and prices
T6-2 Train and evaluate a multi-class logistic regression model given dataset

Data Visualization
T7-1 Produce a scatter plot given specification and dataset
T7-2 Draw a figure with three grouped bar chart subplots aggregated from dataset

and Coursera16) to identify modules commonly taught across all websites that indicate common
usage scenarios of the Python language. Second, we cross-checked if the previously identified use
cases are well represented among frequently upvoted questions with the [python] tag on Stack
Overflow, which would further indicate real programmer needs. By searching the category name,
we found that each of our identified categories covers more than 300 questions with more than
10 upvotes on Stack Overflow. We iteratively discussed the emerging themes among the research
team, refining or grouping as needed, until we arrived at a diverse but relatively small set of use
cases, covering a wide range of skills a Python developer may need in practice.

In total, we identified seven categories of use cases, summarized in Table 2. For each of the 7
categories, we then designed two tasks covering use cases in the most highly upvoted questions
on Stack Overflow. To this end, we searched Stack Overflow for the “python” keyword together
with another keyword indicative of the task category (e.g., “python matplotlib,” “python pandas”),
selected only questions that were asking how to do something (i.e., excluding questions that ask
about features of the language or about how to install packages), and drafted and iteratively re-
fined after discussion among the research team tasks that would cover 3–5 of the most frequently
upvoted questions.

We illustrate this process with the following example task for the “Data visualization”
category17:

By running python3 main.py, draw a scatter plot of the data in shampoo.csv and save it to shampoo.png. The

plot size should be 10 inches wide and 6 inches high. The Date column is the x axis (some dates are missing from

the data and in the plot the x axis should be completed with all missing dates without sales data). The date string

shown on the plot should be in the format (YYYY-MM-DD). The Sales column is the y axis. The graph should have

the title “Shampoo Sales Trend.” The font size of the title, axis labels, and x & y tick values should be 20pt, 16pt, and

12pt, respectively. The scatter points should be colored purple.

This task covers some of the top questions regarding data visualization with matplotlib found
on Stack Overflow through the approach described above:

(1) How do you change the size of figures drawn with matplotlib?18

16https://www.coursera.org/.
17Corresponding to the search https://stackoverflow.com/search?tab=votes&q=python%20matplotlib.
18https://stackoverflow.com/questions/332289/how-do-you-change-the-size-of-figures-drawn-with-matplotlib.
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(2) How to put the legend out of the plot?19

(3) Save plot to image file instead of displaying it using Matplotlib?20

(4) How do I set the figure title and axes labels font size in Matplotlib?21

For each task designed, we also provide the user with required input data or directory struc-
ture for their program to work on, as well as example outputs (console print-outs, output files &
directories, etc.) so they could verify their programs during the user study.

Table 2 summarizes the 14 tasks. The full task descriptions and input/output examples can be
found online, as part of our replication package at https://github.com/neulab/tranx-study. The
tasks have varying difficulties, and on average each task would take about 15–40 minutes to
complete.

4.2 Participant Recruitment & Task Assignments

Aiming to recruit participants with diverse technical backgrounds but at least some programming
experience and familiarity with Python to be able to complete the tasks, we advertised our study
in two ways: (1) inside the university community through personal contacts, mailing lists, and
Slack channels, hoping to recruit researchers and students in computer science or related areas;
(2) on the freelancer platform Upwork,22 hoping to attract participants with software engineering
and data science experience. We promised each participant US $5 per task as compensation; each
participant was expected to complete multiple tasks.

To screen eligible applicants, we administered a pre-test survey to collect their self-reported lev-
els of experience with Python and with each of the 7 specific task categories above; see Appendix B
for the actual survey instrument. We only considered as eligible those applicants who reported at
least some experience programming in Python, i.e., a score of 3 or higher given the answer range
[1: very inexperienced] to [5: very experienced]; 64 applicants satisfied these criteria.

We then created personalized task assignments for each eligible applicant based on their self-
reported levels of experience with the 7 specific task categories (see Appendix C for the distribu-
tions of participants’ self reported experience across tasks), using the following protocol:

(1) To keep the study relatively short, we only assign participants to a total of 4 task categories
(8 specific tasks, 2 per category) out of the 7 possible.

(2) Since almost everyone eligible for the study reported being at least somewhat experienced
with the first 2 task categories (Basic Python and File), we assigned everyone to these 2
categories (4 specific tasks total). Moreover, we assigned these 2 categories first and second,
respectively.

(3) For the remaining 5 task categories, sorted in increasing complexity order,23 we rank them
based on a participant’s self-reported experience with that task genre, and then assign the
participant to the top 2 task categories with most experience (another 4 specific tasks total).

Note that this filtering by experience is conducive to allowing participants to finish the tasks in
a reasonable amount of time and reflective of a situation where a developer is working in their
domain of expertise. However, at the same time it also means that different conclusions might be
reached if novice programmers or programmers without domain expertise used the plugin instead.

Next, we randomly assigned the first task in a category to either the treatment condition, i.e.,
the NL2Code plugin is enabled in the virtual environment IDE and the participants are instructed

19https://stackoverflow.com/questions/4700614/how-to-put-the-legend-out-of-the-plot.
20https://stackoverflow.com/questions/9622163/save-plot-to-image-file-instead-of-displaying-it-using-matplotlib.
21https://stackoverflow.com/questions/12444716/how-do-i-set-the-figure-title-and-axes-labels-font-size-in-matplotlib.
22https://www.upwork.com/.
23The task identifiers in Table 2 reflect this order.
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to use it,24 or the control condition, i.e., the NL2Code plugin is disabled. The second task in the
same category is then automatically assigned to the other condition, e.g., if the plugin is on for
task1-1, then it should be off for task1-2. Therefore, each participant was asked to complete 4 tasks
out of 8 total using the NL2Code plugin, and 4 without.

Finally, we invited all eligible applicants to read the detailed study instructions, access the virtual
environment, and start working on their assigned tasks. Only 31 out of the 64 eligible applicants
after the pre-test survey actually completed their assigned tasks.25 Their backgrounds were rela-
tively diverse; of the 31 participants, 12 (39%) were software engineers and 11 (35%) were computer
science students, with the rest being researchers (2, 6%), and other occupations (6, 19%). Our results
below are based on the data from these 31 participants.

4.3 Controlled Environment

Participants worked on their assigned tasks inside a custom instrumented online virtual environ-
ment, accessible remotely. Our virtual machine is preconfigured with the PyCharm Community
Edition IDE26 and the Firefox Web browser; and it has our NL2Code plugin either enabled or dis-
abled inside the IDE, depending on the condition. See Appendix A for complete technical details.

In addition, the environment logs all of the user’s interactions with the plugin in the PyCharm
IDE, including queries, candidate selections, and edits; all of the user’s fine-grained IDE editor
activities; the user’s Web search/browsing activities inside Firefox; all other keystrokes inside the
VM; and the source code for each one of the user’s completed tasks.

To get a sense of how the source code evolves, whenever the user does not make modifications
to the code for at least 1.5 seconds, the plugin also automatically uploads the current snapshot of
the code to our server. The intuition behind this heuristic is that after a user makes some type
of meaningful edit, such as adding or modifying an argument, variable, or function, they usually
pause for a short time before the next edit. This edit activity granularity can be more meaningful
than keystroke/character level, and it is finer grained than intent level or commit level edits.

Given that it is identifiable, we record participants’ contact information (only for compensation
purposes) separately from their activity logs. This Human Subjects research protocol underwent
review and was approved by the Carnegie Mellon University Institutional Review Board.

4.4 Data Collection

To answer our research questions (Section 2), we collect the following sets of data:

Task Performance Data (RQ1). The first research question compares measurable properties of
the tasks completed with and without the help of our NL2Code IDE plugin and its underlying code
generation and code retrieval engines. One would expect that if such systems are useful in practice,
then developers would be able to complete programming tasks faster without compromising on
output quality. To investigate this, we measure two variables related to how well study participants
completed their tasks and the quality of the code they produced:

• Task Completion Time. Since all activity inside the controlled virtual environment is logged,
including all keystrokes and mouse movements, we calculate the time interval between when

24Despite these instructions, some participants did not use the plugin even when it was available and when instructed. We

discovered this while analyzing the data collected from the study and filtered out 8 participants that did not use the plugin

at all. They do not count towards the final sample of 31 participants we analyze data from, even though they completed

tasks.
25Note that 4 of the 31 participants did not complete all 8 of their assigned tasks. We include their data from the tasks they

completed and do not consider the tasks they did not finish.
26https://www.jetbrains.com/pycharm/download/.
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Fig. 4. Distributions of task completion times (in seconds) across tasks and conditions (w/ and w/o using the

plugin). The horizontal dotted lines represent 25% and 75% quartiles, and the dashed lines represent medians.

a participant started working on a task (first keystroke inside the IDE) and when they up-
loaded their final submission to our server.

Recall that participants worked asynchronously and they may have decided to take breaks;
we designed our virtual environment to account for this, with explicit pause/resume func-
tionality. To account for possible breaks and obtain more accurate estimates of time spent
on task, we further subtract the time intervals when participants used our explicit pause/re-
sume functionality, as well as all intervals of idle time in which participants had no mouse or
keyboard activity for two minutes or more (they may have taken a break without recording
it explicitly).

Figure 4 shows the distributions of task completion times across the two conditions (with
and without the plugin).

• Task Correctness. Following the common practice in computer science education [18, 25, 36],
we design a rubric for each task concurrently with designing the task and later score each
submission according to that rubric. We weigh all tasks equally, assigning a maximum score
of 10 points to each. For each task, the rubric covers both basic aspects (e.g., runs without
errors/exceptions; produces the same output as the example output provided in the task de-
scription) as well as implementation details regarding functional correctness (e.g., considers
edge cases, implements all required functionality in the task description).

For example, for the data visualization task described in Section 4.1, we created the follow-
ing rubric, with the number in parentheses representing the point value of an item, for a total
of 10 points: (i) Runs without errors (2); (ii) Correct image output format (png) (2); (iii) Read
in the raw data file in correct data structure (1); (iv) Correct plot size (1); (v) Correctly handle
missing data points (1); (vi) Date (x axis) label in correct format (1); (vii) Title set correctly
(1); (viii) Font size and color set according to specification (1).

To reduce subjectivity, we graded each submission blindly (i.e., not knowing whether it
came from the control or treatment condition) and we automated rubric items when pos-
sible, e.g., using input-output test cases for the deterministic tasks and checking if the ab-
stract syntax tree contains nodes corresponding to required types (data structures) such
as dictionaries. See our online appendix27 for the complete rubrics and test cases for all
tasks.

Figure 5 shows the distributions of scores across tasks, between the two conditions.

27https://github.com/neulab/tranx-study/blob/master/rubrics.md.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 29. Publication date: February 2022.

https://github.com/neulab/tranx-study/blob/master/rubrics.md


In-IDE Code Generation from Natural Language: Promise and Challenges 29:13

Fig. 5. Distributions of task correctness scores (0–10 scale) across tasks and conditions. The horizontal dotted

lines represent 25% and 75% quartiles, and the dashed lines represent medians.

Plugin Queries, Snippets, and User Edits (RQ2). We record user queries using the plugin,
both the generated and retrieved code snippet candidates returned for the query, and the user
selection from the candidates to insert into their source code. We use the data to analyze the NL
queries and whether users preferred to use generated vs. retrieved code. In addition, we also record
the user edits after inserting the code snippet from the plugin, along with the code context for the
analysis on post edits required after using the plugin.

Participant Perceptions of Tool Use (RQ3). We ran short post-test surveys after every task
and a final post-test survey at the end of the study as a whole (see Appendix D for instruments) to
collect data on the participants’ subjective impressions of using the NL2code plugin and interact-
ing with the code generation and code retrieval systems. We asked Likert-style and open-ended
questions about aspects of using the plugin the participants enjoyed and aspects they wish to see
improved.

Next, we describe how we analyzed these data and we answer each of our research questions.

5 RQ1: NL2CODE PLUGIN EFFECTS ON TASK COMPLETION TIME AND PROGRAM

CORRECTNESS

We start by describing our shared data analysis methodology, applied similarly to both variables
corresponding to RQ1, then present our results for each variable.

Methodology. Recall, we assign each participant a total of 8 tasks, 2 per task category, based
on their experience levels with those categories; in each category, we randomly assign one of the
2 tasks to the NL2Code plugin (treatment) condition and the other task to the no plugin (control)
condition. We then compute the three sets of outcome variables above.

The key idea behind our analysis is to compare the distributions of outcome variables between
tasks completed in the treatment and control conditions. However, this comparison is not straight-
forward. First, our study design imposes a hierarchical structure during data collection, therefore
the individual observations are not independent—by construction, the same participant will have
completed multiple tasks over the course of the study. Moreover, tasks vary in difficulty, again by
construction, therefore it is expected that their corresponding response variables, e.g., task comple-
tion times, can be correlated with the tasks themselves; e.g., on average, more complex tasks will
take longer to complete. Finally, the participants vary in their self reported levels of Python and
individual task category experience; we should separate experience-related effects from effects of
using the plugin, if any.

Therefore, we use mixed-effects [34] as opposed to the more common fixed-effects regression
models to analyze our data. Fixed-effects models assume that residuals are independently and
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identically distributed, which is an invalid assumption in our case given the hierarchical nature
of our data: E.g., responses for the different measurement occasions (tasks) within a given individ-
ual are likely correlated; a highly experienced Python programmer completing one task quickly is
more likely to complete other tasks quickly as well. Mixed-effects models address this issue by hav-
ing a residual term at each level, e.g., the observation level and the study participant level, in which
case the individual participant-level residual is the so-called random effect. This partitions the
unexplained residual variance into two components: higher-level variance between higher-level
entities (study participants) and lower-level variance within these entities, between measurement
occasions (tasks).

We consider two model specifications for each response variable. Our default model includes
random effects for the individual and task, per the rationale above, a fixed effect for task category
experience (e.g., participants with more machine learning experience should complete the machine
learning task faster, on average), and a dummy variable to indicate the condition (plugin vs. no
plugin). For example, for the task completion time response, we estimate the model:28

completion_time = experience + uses_plugin + (1|user) + (1|task). (1)

As specified, our default model may suffer from heterogeneity bias [13]. Task category experi-
ence, a higher-level (i.e., individual-level as opposed to observation-level) predictor, varies both
within and across study participants: Within participants, experience can vary across the 4 task
categories—a user may be more experienced with basic Python than with data science; and across
participants, experience with any given task category is likely to vary as well—some participants
report higher experience with data science-related tasks than others. This means that experience
(a fixed effect) and user (a random effect) may be “correlated.” In turn, this may result in biased
estimates, because both the within- and between-effect are captured in one estimate.

There are two sources of variation that can be used to explain changes in the outcome: (1) overall,
more experienced programmers may be more efficient at completing tasks (group-level pattern);
and (2) when becoming more experienced, programmers may also become more efficient at com-
pleting tasks (individual-level pattern). Therefore, to address potential heterogeneity bias, we split
our fixed effect (experience) into two variables, each representing a different source of variation: a
participant’s average experience across all task categories (experience_btw) and the deviation for
each task from the participants’s overall mean experience (experience_wi). This process is known
as de-meaning or person-mean centering [34]. This way, mixed-effects models can model both
within- and between-subject effects [13], as recommended for a long time by Mundlak [79]. Tak-
ing the same task completion time response variable as an example (other variables are modeled
analogously), our refined model becomes:

completion_time = experience_btw + experience_wi + uses_plugin + (1|user) + (1|task). (2)

In both cases, the estimated coefficient for uses_plugin indicates the effect of using the plugin,
while holding fixed the effects of experience and other random user and task effects.

For estimation, we used the functions lmer and lmer.test in R. We follow the traditional level
for statistical significance when interpreting coefficient estimates, i.e., p < 0.05. As indicators of
goodness of fit, we report a marginal (R2

m
) and a conditional (R2

c
) coefficient of determination for

generalized mixed-effects models [50, 85], as implemented in the MuMIn package in R: R2
m

describes
the proportion of variance explained by the fixed effects alone; R2

c
describes the proportion of

variance explained by the fixed and random effects together.

Threats to Validity. Besides potential threats to statistical conclusion validity arising from the
very nature of the data we are regressing over, discussed above and mitigated through our choice

28We are using the R syntax to specify random effects.
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Table 3. LMER Task Performance Models (Default Specification)

Dependent variable

Completion time Correctness score

(1) (2)

Experience −195.62 0.07
(183.11) (0.24)

Uses plugin 15.76 0.44
(196.11) (0.30)

Constant 3, 984.51∗∗∗ 5.88∗∗∗

(838.07) (1.03)

Observations 224 237
Num users 31 31
Num tasks 14 14
sd(user) 1,489.25 0.82
sd(task) 1,104.7 1.14
R2m 0.004 0.008
R2c 0.642 0.289
Akaike Inf. Crit. 3,987.14 1,106.66
Bayesian Inf. Crit. 4,007.61 1,127.46

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

of mixed-effects regression models and their specific designs, we note the standard threats to sta-
tistical conclusion validity affecting linear regression models in general. To mitigate these, we take
standard precautions. First, we removed as outliers the top 1% most extreme values. Second, we
checked for collinearity among the predictors we use the variance inflation factor (VIF) [22];
all were below 3, i.e., multicollinearity is not an issue [58]. Finally, we acknowledge that additional
time may be spent as the users are asked to upload their edits, increasing the amount of time
necessary in the plugin setting. However the time spent for uploading is minimal as the plugin au-
tomatically helps the user to remove the auto-generated comments with only a press of a keyboard
shortcut.

Results. Table 3 summarizes our default specification mixed-effects regressions for both re-
sponse variables; the models with our second specification (de-meaned task experience) are equiv-
alent (see Appendix G). All models include controls for the amount of users’ experience with the
respective task categories as well as other random user and task effects. In all cases, the models fit
the data reasonably well (ranging from R2

c
= 29% for task correctness scores, to R2

c
= 64% for task

completion time), with most of the variance explained attributable to the two random effects (task
and user)—there is significant user-to-user and task-to-task variability in all response variables.

Analyzing the models, we make the following observations: First, looking at the completion
time model (1), there is no statistically significant difference between the two conditions. Stated
differently, we do not find sufficient evidence to conclude that users in the plugin condition com-
plete their tasks with different speed on average than users in the control group, contrary to our
expectation.

Second, and this time in line with our expectation, there is no statistically significant difference
between the two conditions in task correctness scores (model (2)). That is, the code written by users
in the plugin condition appears statistically indistinguishably as correct from the code written by
users in the control group.
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We investigate more differences between the code written by study participants in each of the
two conditions in more detail in the next section.

6 RQ2: COMPARISON OF GENERATED VS. RETRIEVED CODE

In this section, we focus on how study participants are interacting with the code generation and
retrieval systems. Specifically, we dive deeper into both the inputs to and the outputs of the plugin,
i.e., we analyze the quality of the queries issued by study participants and of the code snippets
produced in return, contrasting code generation to retrieval throughout. We analyze these data
along three dimensions, detailed next.

6.1 For What Queries Do Users Tend to Favor Generation vs. Retrieval Answers

First, we investigate whether there are any discernible characteristics of the natural language
queries (and therefore tasks) that associate with study participants tending to favor the code snip-
pets returned by the code generation model over those returned by the code retrieval model.

Methodology. Using our instrumented environment, we collect all successful queries issued by
the study participants, i.e., those for which a code snippet from among the listed candidates was
selected, and we record which of the two sources (generation or retrieval) the snippet came from.
See Table 10 in Appendix H for the complete set of queries from our 31 participants, organized
per task. We then build a binary logistic regression model with snippet source as outcome variable
and bag-of-words features of the natural language input queries as predictors.

If this model is able to predict the source of the code snippet better than by chance, then we can
conclude that there is some correlation between the type of input query and the users’ preference
for generated versus retrieved code snippets. Moreover, the word feature weights in the logistic
regression model could shed some light on what features are the most representative of queries
that were effectively answered using generation or retrieval. For our analysis, we manually review
the top 20 (approximately 7%) contributing query features for each value of the outcome variable
(“generation” vs. “retrieval”) and discuss patterns we observe qualitatively, after thematic analysis.

Specifically, for each query, we tokenize it, filter out English stop words, and compute a bag-of-
words and bag-of-bigrams vector representation, with each element of the vector corresponding
to the number of times a particular word or bigram (two-word sequence) occurred in the query.
The number of distinct words in all queries is 302, and the number of distinct bigrams in all queries
is 491, and thus the dimensionality of the query vector is 793.29 We then estimate the model:

Pr (chosen snippet is “generated”) =
exp(Xβ)

1 + exp(Xβ)
, (3)

where X here represents a k-dimensional bag-of-word vector representation of a given query, and
β are the weights to be estimated. To this end, we randomly split all the collected query and
candidate selection pairs into training (70% of the data) and held-out test (30%) sets. We then train
the model using 5-fold cross-validation until it converges, and subsequently test it on the held-out
set. We use 0.5 as a cutoff probability for our binary labels. In addition, we also build a trivial
baseline model that always predicts “retrieval.”

The baseline model is 55.6% accurate (among the successful queries in our sample there are
slightly more code snippets retrieved rather than generated). Our main logistic regression model
is 65.9% accurate, i.e., the model was able to learn some patterns of differences between those
queries that result in code generation results being chosen over code retrieval ones and vice versa.

29We also experimented with other features, e.g., query length, query format compliance, and so on, but did not notice a

significant difference in prediction accuracy.
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Threats to Validity. One potentially confounding factor is that the plugin always displays
code generation results first, before code retrieval. Ordering effects have been reported in other
domains [102] and could also play a role here. Specifically, users who inspect query results linearly,
top-down, would see the code generation results first and might select them more frequently than
if the results were displayed in a different order. That is, we might infer that users prefer code
generation to retrieval only because they see code generation results first, thus overestimating the
users’ preference for code generation versus retrieval.

Even though testing ordering effects experimentally was not practical with our study design,
we could test a proxy with our log data—to what extent the code generation results overlap with
the code retrieval ones. High overlap could indicate that code retrieval results might have been
chosen instead of code generation ones, if presented earlier in the candidates list. Whenever study
participants chose a snippet returned by the code generation model, we compared (as strings) the
chosen snippet to all candidates returned by the code retrieval engine. Only 6 out of 173 such
unique queries (~3.5%) also contained the exact chosen code generation snippet among the code
retrieval results, therefore, we conclude that this scenario is unlikely.30

Another potentially confounding factor is that an icon indicative of generation or retrieval is
displayed next to each result in the plugin UI. This means that users know which model produced
which candidate snippet and might choose a snippet because of that reason rather than because of
the snippet’s inherent usefulness. More research is needed to test these effects. We hypothesize that
biases may occur in both directions. On the one hand, holding other variables like ordering fixed,
users might prefer code generation results because of novelty effects. On the other hand, users
might prefer code retrieval results because of general skepticism towards automatically generated
code, as has been reported, e.g., about automatically generated unit tests [33, 103].

Regarding the analysis, we use an interpretable classifier (logistic regression) and follow stan-
dard practice for training and testing (cross-validation, held-out test set, etc.), therefore, we do not
expect extraordinary threats to validity related to this part of our methodology. However, we do
note the typical threats to trustworthiness in qualitative research related to our thematic analysis
of top ranking classifier features [88]. To mitigate these, we created a clear audit trail, describing
and motivating methodological choices, and publishing the relevant data (queries, top ranking fea-
tures after classification, etc.). Still, we note potential threats to transferability that may arise if
different features or different classifiers are used for training, or a different number/fraction of top
ranking features is analyzed qualitatively for themes.

Results. In Table 4, we show the top features that contributed to predicting each one of the two
categories, and their corresponding weights. Inspecting the table, we make two observations:

First, we observe that for code generation, the highest ranked features (most predictive tokens
in the input queries) refer mostly to basic Python functionality, e.g., “open, read csv, text file” (open-
ing and reading a file), “sort, list, number, dictionary, keys” (related to basic data structures and
operations in Python), “random number” (related to random number generation), “trim” (string
operations), and so on. For example, some stereotypical queries containing these tokens that re-
sult in the code generation snippets being chosen are “open a csv file `data.csv` and read the data,”
“get date and time in gmt,” “list all text files in the data directory,” and so on.

In contrast, we observe that many queries that are more likely to succeed through code retrieval
contain terms related to more complex functionality, some usually requiring a series of steps to
fulfill. For example, “datetime” (regarding date and time operations), “cross validation, sklearn,
column csv” (regarding machine learning and data analysis), “matplotlib” (data visualization), and

30Note that this only considers exact substring matches. There may be additional instances of functionally equivalent code

that is nonetheless not an exact match.
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Table 4. Most Important 20 Features and Their Weights from the Logistic Regression Modeling Whether

Successful Plugin Queries Result in Generated or Retrieved Code Snippets

Generation Retrieval

Weight Feature Weight Feature Weight Feature Weight Feature

0.828 open 0.352 current 0.471 letters 0.294 extract

0.742 time 0.345 delete row 0.442 copy 0.289 set

0.676 sort 0.345 random number 0.438 matplotlib 0.289 plt set

0.590 read csv 0.339 trim 0.437 datetime 0.282 read file

0.556 list 0.330 text file 0.410 python 0.282 cross-validation

0.507 number 0.326 keys 0.365 column csv 0.274 scikit

0.402 search 0.310 round 0.361 bar 0.274 dataframe csv

0.399 open file 0.293 numbers 0.344 copy files 0.274 sklearn

0.385 dictionary 0.291 row dataframe 0.334 delete column 0.272 digit

0.353 read 0.290 load csv 0.302 write file 0.270 folders

so on, are all among the top features for queries where users more often chose the code retrieval
snippets.

In summary, it seems predictable (substantially more so than by random chance) whether natu-
ral language user queries to our NL2Code plugin are more likely to succeed through code genera-
tion vs. code retrieval on average, given the contents (words) of the queries.

6.2 How Well-specified Are the Queries

Search is a notoriously hard problem [47, 69], especially when users do not start knowing ex-
actly what they are looking for, and therefore are not able to formulate clear, well-specified search
queries. In this subsection, we investigate the quality of the input natural language queries, and
attempt to delineate it from the quality of the underlying code generation and retrieval systems—
either one or both may be responsible for failures to obtain desirable code snippets for a given
task.

Anecdotally, we have observed that input queries to our NL2Code plugin are not always well-
specified, even when the participants selected and inserted into their code one of the candidate
snippets returned by the plugin for that query. A recurring issue seems to be that study participants
sometimes input only a few keywords as their query (e.g., “move file”), perhaps as they are used
to interacting with general purpose search engines like Google, instead of more detailed queries
as expected by our plugin. For example, study participants sometimes omit (despite our detailed
instructions) variable names part of the intent but defined elsewhere in the program (e.g., “save
dataframe to csv” omits the DataFrame variable name). Similarly, they sometimes omit flags and
arguments that need to be passed to a particular API method (e.g., “load json from a file” omits the
actual JSON filename).

Methodology. The key idea behind our investigation here is to replace the underlying code
generation and retrieval systems with an oracle assumed to be perfect—a human expert Python
programmer—and study how well the oracle could have produced the corresponding code snippet
given a natural language input query. If the oracle could successfully produce a code snippet imple-
menting the intent, then we deem the query “good enough,” or well-specified; otherwise, we deem
the query under-specified. The fraction of “good enough” queries to all queries can be considered
as an upper bound on the success rate of a perfect code generation model.

Concretely, we randomly sampled 50 queries out of all successful queries issued during the
user study (see Table 11 in Appendix I for the sample) and had the first author of this article, a
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proficient programmer with eight years of Python experience, attempt to generate code based on
each of them. The oracle programmer considered two scenarios: (1) generating code given the
input query as is, without additional context; (2) if the former attempt failed, then generating
code given the input query together with the snapshot of the source file the study participant was
working in at the time the query was issued, for additional context.

For each query, we record three binary variables: two indicating whether each of the oracle’s
attempts succeeded, without and with additional context, respectively,31 and the third indicating
whether the code snippet actually chosen by the study participant for that query came from the
code generation model or the code retrieval one; see Table 11 in Appendix I.32

We then measure the correlation, across the 50 queries, between each of the two oracle success
variables and the code snippet source variable, using the phi coefficient ϕ [23], a standard measure
of association for two binary variables similar to the Pearson correlation coefficient in its inter-
pretation. This way, we can assess how close the code generation model is from a human oracle
(the good enough as is scenario) and whether contextual information from the source code the de-
veloper is currently working on might be worth incorporating into code generation models in the
future (the good enough with context scenario); note that the code generation model we used in
this study [117, 124] does not consider such contextual information.

Threats to Validity. We follow standard practice for the statistical analysis in this section, there-
fore, we do not anticipate notable threats to statistical conclusion validity. Due to the limitations
of our telemetry system, we did not record unsuccessful queries (i.e., queries that the user entered
but no candidate is selected). As a result, queries that favor neither generation nor retrieval cannot
be compared. However, we acknowledge three other notable threats to validity. First, we used only
one expert programmer as oracle, which may introduce a threat to construct validity given the level
of subjectivity in determining which queries are “good enough.” To mitigate this, we discussed
among the research team, whenever applicable, queries for which the expert programmer was
not highly confident in the determination. Second, our random sample of 50 queries manually re-
viewed by the expert programmer is only representative of the population of 397 queries with 95%
confidence and 13% margin of error, which may introduce a threat to internal validity. However,
the relatively small sample size was necessary for practical reasons, given the high level of manual
effort involved in the review. Finally, we note a potential threat to construct validity around the bi-
nary variable capturing the source (generation or retrieval) of the candidate code snippets selected
by the study participants. There is an implicit assumption here that study participants know what
the right answer (code snippet) should be given a natural language query and are able to recognize
it among the candidates provided by the NL2Code plugin; therefore, we assume that the snippet
source variable captures actual quality differences between code snippets produced by the genera-
tion and retrieval models, respectively. However, this may not be the case. To test this, we reviewed
all the candidate snippets returned by the plugin for the first 6 among the 50 queries analyzed.
Across the 6 · 2 models (generation/retrieval) · 7 candidates per model = 84 candidate snippets, we
only discovered one case where the study participant could have arguably chosen a more relevant

31The former implies the latter but not vice versa.
32Note that on the surface, when looking at the data in Table 11, the values of the former two binary variables (the oracle’s

determination) may not always seem intuitive given the query. For example, the oracle determined the query “pandas to

csv” to be not good enough, even with context, while the query “pandas output csv,” seemingly equivalent, was found to

be good enough with context. In both cases, the intent appears to be exporting a pandas dataframe (a popular data science

Python library) as a csv file. However, in the first example the snapshot of the source file the study participant was working

in at the time of the query did not yet include any such dataframe objects; the user appears to have issued the query ahead

of setting up the rest of the context. A context-aware code generation model would also not be able to extract any additional

information in this case, similarly to the human oracle.
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Table 5. Contingency Tables for the Two Oracle

Comparison Scenarios in Section 6.2

Snippet Query

Generation
Good enough as is Good enough w/ context

False True False True

False 23 8 15 16
True 7 12 1 18

See Table 10 in Appendix H for the actual queries.

snippet. Therefore, we expect the incidence of violations of this assumption to be rare enough to
not materially affect our results.

Results. Table 5 shows contingency tables for each of the two oracle comparison scenarios.
Note that the “good enough with context” category includes all queries that are “good enough as
is,” by construction. Inspecting the results in the table, we make the following observations:

First, the natural language queries analyzed are more often than not insufficiently well-specified
for even the human expert to be able to write code implementing those intents; only 20 out of 50
queries (40%) are deemed “good enough as is” by the oracle. Representative examples of failures
from Table 11 are the queries consisting of a few keywords (e.g., “csv writer,” “defaultdict”) rather
than queries containing sufficient details about the user’s intent (e.g., “remove first column from
csv file”). Considering the source file the user was editing at query time helps, with 34 (68%) of the
queries now being deemed “good enough with context” by the oracle.

Second, there is moderately high and statistically significant association between the success
of the code generation model (i.e., the study participant choosing one of those candidate code
snippets) and the quality of queries in both scenarios: ϕ = 0.37 (p = 0.008) for already well-
specified queries and ϕ = 0.45 (p = 0.001) for queries that become informative enough given
additional context. This suggests that input query quality can have a big impact on the performance
of the code generation model, and that incorporating additional contextual information may help.

Analyzing the failure rate of the code generation model (generation = False), we observe that
it is relatively high in general (31 out of 50 queries, or 62%). However, most of these cases are in
response to under-specified queries (23 out of the 31 failures; 74%), for which even the human
oracle failed to generate the corresponding code. Still, there are 8 (26%) failure cases where the
human expert could directly implement the natural language intent without additional context:
“date now,” “for loop on range 100,” “generate random letters,” “get now one week from now,” “get
time and date,” “open “data.csv” file,” “how to remove an item from a list using the index,” and “plt
create 3 subplots.” All but the last one seem to refer to basic Python functionality. These queries
are targets where further improved code generation techniques could improve the utility of the
plugin.

Interestingly, we also observe a non-trivial number of under-specified queries (7 out of 30;
23%) for which the code generation model succeeded despite the human oracle failing: “call
`pick_with_replacement`,” “copy a file to dist,” “pandas round value,” “pandas to csv,” “rename
column pandas,” “plt ax legend,” and “scatter.”

6.3 How Much the Code Snippets Are Edited after Plugin Use

Choosing (and inserting into the IDE source file) one of the candidate code snippets returned by
the NL2Code plugin indicates that the code snippet was generally useful. However, while useful,
the code snippet may still be far from an ideal solution to the user’s query. To get a sense of how
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appropriate the accepted code snippets are given the user intent, we compare the distributions of
snippet lengths before (i.e., as returned by the plugin) and after potential edits in the IDE.

Methodology. When inserting a code snippet a user selected from among the plugin-returned
candidates, we also insert special code comments in the source file around the snippet to mark the
start and end of the code fragment corresponding to that particular intent (as shown in Figure 3).
Study participants are instructed to use a certain key combination when they are done editing that
code fragment to remove the delimiters and submit the edited version of the code fragment back
to our server. Our analysis in this section compares the length of code snippets and types of tokens
present between these two versions.

Specifically, we first tokenize and tag each version of a code snippet using a Python tokenizer
and then compare the pairs of distributions of lengths before and after edits for code snippets origi-
nating from each of the two underlying models, generation and retrieval, using the non-parametric
Wilcoxon signed-rank test; in addition, as a measure of effect size, we compute the median differ-
ence between members of the two groups, i.e., the Hodges–Lehman estimator [46]. We also com-
pute and report on the Levenshtein edit distance between the two versions, in terms of number of
tokens. Figure 6 visualizes these different distributions.

Threats to Validity. We note two potential threats to construct and external validity related
to the analysis in this section. First, we have no way of enforcing that study participants contain
their code edits related to a particular intent to the section of the source file specially delimited
by code comments for this purpose. One may include unrelated edits in the same code region or
make related edits outside of the designated region. Therefore, our measurement of snippet length

post edits may not accurately reflect the construct of snippet length as related to a particular in-
tent. To mitigate this, we gave clear instructions to participants at the beginning of the study and
manually reviewed a small sample of the edited versions of a snippet, not discovering any obvious
noise. Second, not all study participants followed our instructions every time they used the plugin
and submitted their final (edited or not) version of the snippet back to our server. Only 303 out
of the 397 successful queries recorded (76.3%) had final code snippets uploaded back to our server.
Since this was not a random sample, our findings on this sample may not generalize to the entire
population of 397 successful queries. To assess the severity of this potential threat, we compared
the distributions of plugin-returned code snippet lengths between all successful queries and just
the 303 queries where study participants uploaded their edits onto our server; for both generated
(Wilcoxon p = 0.54) and retrieved (p = 0.93) code snippets, we found the respective two distribu-
tions statistically indistinguishable, therefore, we expect this to not be a sizable threat to validity.

Results. Comparing the two distributions of token lengths for acceptable code snippets from the
code generation model before and after edits, we do not find any statistically significant differences
in their mean ranks (p = 0.345). The mean edit distance between the two versions of these snippets
is 5.2 tokens (min 0, max 130, median 1).

In contrast, comparing the two distributions of token lengths for acceptable code snippets from
the code retrieval engine before and after edits, we find a statistically significant difference in
their mean ranks (p = 1.195e−7). The Hodges–Lehman median difference between the edited and
unedited versions of these snippets is 18 tokens, with a 95% confidence interval from 11 to 23
tokens. The edit distance metric paints a similar picture—acceptable code snippets from the code
retrieval engine, before and after edits, are at a mean edit distance of 13.2 tokens from each other
(min 0, max 182, median 0).

We also note that code retrieval snippets tend to be longer than code generation ones both before
(p < 2.2e−16; median difference 18 tokens, with a 95% confidence interval from 14 to Infinity) and
after edits (p = 2.657e−14; median difference 10 tokens, with a 95% confidence interval from 7 to
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Fig. 6. Split violin plots comparing the length (in tokens) of the code snippets chosen by the study partic-

ipants across all successful queries, before and after potential edits in the IDE. The horizontal dotted lines

represent 25% and 75% quartiles, and the dashed lines represent medians.

Infinity). This may help explain why the retrieved snippets require more edits to correct the code
to better suit the current programming code context, compared to the generated snippets.

Diving deeper into the edits to the plugin-supplied version of the different snippets, we compute
the frequency distribution of tokens in both versions (plugin and final), normalized based on total
token count in each corpus. Table 6 highlights the tokens with the greatest increases and decreases
in relative frequency during editing. We observe that study participants seem to add common
keywords such as “in, for, if, with,” built-in names and functions such as “key, print,” and common
variable names such as “line, filename” to the generated/retrieved candidates. Stated differently, in
these cases the code snippets seem to miss substantive parts and relevant functionality, which also
may be partly due to the lack of specificity described in the previous section.

In contrast, study participants seem to delete number and string literals from the code snippets.
This may be explained by the fact that the tool used retrieved code snippets as they appeared on
Stack Oveflow, and thus many retrieved code snippets contain additional boilerplate code required
for initialization or setup and hard-coded example inputs and outputs. We also observe some com-
monly used variable names like “df, plt” that get deleted, suggesting that variable replacement is
one of the common operations when reusing the code snippets. An interesting observation here is
that “In” and “Out” are getting deleted frequently. We find that it is mostly due to some of the code
snippets retrieved from Stack Overflow being in the format of IPython REPL, which uses “In” and
“Out” to separate the Python source code and execution outputs. When integrating these snippets,
the users will have to remove this superfluous text. Figure 7 shows a representative example of
such user edits after selecting a candidate snippet, which involves deleting IPython REPL contents,
variable replacement and addition, as well as literal replacements.

Furthermore, following the previous observations on actual tokens, we are interested in how
the frequency of different types of tokens changes before and after users edit the plugin-returned
code snippets. We use the tokenize33 Python 3 library to parse and tag the code snippets and
compare the frequency changes by token type, similar to the previous analysis.34 The results are
shown in Table 7. We find that users add new NAME (identifiers, keywords) tokens the most, with
the frequency of STRING (string literal) tokens slightly increased, and COMMENT (comment strings)

33https://docs.python.org/3/library/tokenize.html.
34Three of the retrieved snippets cannot be parsed and thus are omitted. See full explanation of different token types at

https://www.asmeurer.com/brown-water-python/tokens.html. We also left out some uninteresting token types, such as

ENCODING, ENDMARKER, NL.
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Table 6. Most Frequently Added/Deleted Tokens after User Edits to Plugin-returned Code Snippets

Addition Deletion

ΔFreq. Token ΔFreq. Token ΔFreq. Token ΔFreq. Token

0.0040 in 0.0016 w –0.0071 2 –0.0016 In

0.0037 for 0.0015 with –0.0071 1 –0.0016 11

0.0030 line 0.0015 `` –0.0043 a –0.0015 y

0.0024 file 0.0015 days –0.0038 0 –0.0014 Seattle

0.0023 key 0.0015 cur_v –0.0034 3 –0.0014 12

0.0023 os.path.join 0.0015 company_info –0.0025 plt –0.0013 4

0.0021 dic 0.0015 n –0.0023 50 –0.0013 iris

0.0021 filename 0.0014 output –0.0021 id_generator –0.0013 string.digits

0.0018 print 0.0014 codecs.open –0.0018 Out –0.0013 10

0.0017 if 0.0014 v –0.0017 df –0.0013 matplotlib.pyplot

Table 7. Frequency Changes of Different Token Types after User Edits to

Plugin-returned Code Snippets

ΔFreq. Type ΔFreq. Type ΔFreq. Type ΔFreq. Type

0.0138 NAME 0.0053 DEDENT 0.0004 COMMENT –0.0095 OP
0.0053 INDENT 0.0022 STRING –0.0049 NEWLINE –0.0248 NUMBER

Sorted in descending order, positive number represents addition and negative number represents

deletion.

Fig. 7. Representative example of user edits to a code snippet retrieved from Stack Overflow.

tokens staying roughly the same after the edits. NUMBER (numeric literal) tokens are deleted the
most, in line with the observation above, again suggesting that many plugin-returned snippets
are not tailored to specific identifiers and parameters that the user desires. Interestingly, we also
see a slight decrease in frequency of NEWLINE tokens, representing a decrease in the number of
logical lines of Python code after edits. This suggests that the plugin-returned code snippets are
not concise enough in some cases.

7 RQ3: USER PERCEPTIONS OF THE NL2CODE PLUGIN

Our last research question gauges how study participants perceived working with the NL2Code
plugin, their pain points, and their suggestions for improvement.

Methodology. As part of our post-test survey, we asked the participants open-ended questions
about what worked well when using the plugin and, separately, what they think should be im-
proved. In addition, we asked participants to rate their overall experience using the plugin on a
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Likert scale, ranging from 1 (very bad) to 5 (very good). We then qualitatively coded the answers
to open-ended questions to identify themes in the responses for the 31 who completed all their
assigned tasks.

Threats to Validity. We acknowledge usual threats to trustworthiness and transferability from
qualitatively analyzing a relatively small set of open-ended survey data [88], as also discussed
above. In particular, we note that only one researcher was involved in coding. To mitigate these
threats, we release all verbatim survey responses as part of our replication package.

Results. Overall, study participants report having a neutral (15/31; 48.4%) or at least somewhat
positive (15/31; 48.4%) experience using the NL2Code plugin, with only one participant rating their
experience as somewhat negative.

Among the aspects the participants report as positive, we distill two main themes:

The plugin helps find code snippets the developer is aware of but cannot fully remember. (P1, P2,
P8, P10, P11, P19, P20, P21, P22, P30, P31) These tend to be small commands or less familiar API
calls and API usage patterns that users have seen before. Two participants summarize this well:

“On a few occasions, the plugin very conveniently gave me the snippet of code I was looking
for, [which] was “on the tip of my tongue.” (P10)

“Sometimes I just cannot remember the exact code, but I remember the shape. I could
select the correct one easily.” (P2)

Respondents expressed appreciation for both the generation and retrieval results, and there was
little expression of preference for one method over the other, e.g.:

“Even just having the snippets mined from Stack Overflow visible in the IDE was a good
memory refresher / source of ideas.” (P10)

“It was somewhat convenient to not have to switch tabs to Google things, ..., based on my
memory, that most of the suggestions I got were from the internet anyway.” (P5)

“It has all resources needed at one place.” (P6)

Using an in-IDE plugin is less disruptive than using a web browser. (P1, P4, P5, P6, P7, P10, P18,
P20, P24, P27) Many of our respondents who were positive about the plugin reiterate expected
context-switching benefits of not leaving the IDE while programming, e.g.:

“I like that the plugin stops me having to go and search online for solutions. [...] It can be
very easy to get distracted when searching for solutions online.” (P20)

“Compared with manual search, this is faster and less disruptive.” (P1)

Participants also describe many aspects of the plugin that could be improved.

The quality of code generation and retrieval results could be higher. (P3, P4, P5, P7, P9, P13, P14,
P23, P27, P29, P31) Respondents mentioned that it was “rare” (P7) when they could directly use
code from plugin, without modifications. In some cases, results from the plugin were “not related
to the search” (P14), and users “didn’t find what [they were] searching for” (P31). As one respondent
humbly summarized it:

“The model needs some improvements.” (P4)

The insufficient quality of the plugin’s results was especially felt as the tasks became more
complex and involved APIs with complex usage patterns. One participant summarized this well:

“For easy tasks, like walking through a directory in the filesystem, the plugin saves me time
because what I did previously was to go to Stack Overflow and copy the code. But for
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difficult tasks like data processing or ML, the plugin is not helpful. Most snippets are not
useful and I have to go to the website of sklearn to read the full doc to understand what I
should do.” (P3)

A particular related pain point is that the snippets from the code retrieval engine often contain
spurious elements (as also noted above). In one participant’s words:

“When inserting the code into my program, I would like to **not** copy the input/output
examples, and I can’t imagine ever wanting those in the program itself.” (P5)

Users could benefit from additional context. (P3, P5, P8, P18, P19, P20, P24, P26, P27) Some re-
spondents mention that it would be useful to include additional (links to) explanations and docu-
mentation alongside the returned code snippets so the user could understand what the snippet is
supposed to do, or even “which of the suggestions is the correct one when you are not familiar with a
module” (P11). In two participants’ words:

“It would be nice if the examples from the internet could contain the relevant context of the
discussion (e.g., things to consider when using this suggestion), as well as the input/output
examples.” (P5)

“I hope the generated code snippet can have more comments or usage [examples]. Otherwise
I still need to search the web to understand what it is.” (P3)

A closely related theme is that using the plugin assumes one has a “good background understanding
of the underlying principles/modules/frameworks” (P11), and they primarily need help with “look[ing]
up little syntax bits that you have forgotten” (P11). (P1, P11, P16, P25) One participant was especially
critical:

“For more complex problems, I think the plugin does not help at all, because the programmer
needs to know the theoretical background.” (P16)

The plugin could benefit from additional context. (P4, P9, P10, P17, P30) Some participants suggest
that the plugin could be “smarter” if it becomes more aware of the local context in the developer’s
IDE, e.g.:

“Sometimes I want to generate an expression to be inserted somewhere, to be assigned to a
variable, or to match the indentation level, without having to tell the plugin this explicitly.
I didn’t feel like the plugin was aware of context.” (P10)

Participants also comment on how the plugin’s query syntax takes some getting used to (P2, P12,
P15), referring in particular to the way the code generation model expects queries to include vari-
ables, while the web search code retrieval engine allows users to only use keywords. For example:

“[It became] useful to me towards the end when I got the hang of it and could formulate
questions in the correct way (which I feel is somewhat of a skill in itself).” (P15)

“It is not very natural for me to ‘instantiate’ my questions, I mostly like to search [using]
keywords or just a description of what I want to achieve.” (P2)

Querying the plugin could be interactive. (P11, P20, P30) Finally, some participants suggest to
make querying interactive, dialogue-based, rather than unidirectional. This could with refining
queries until they are sufficiently well-specified, or to decompose complex functionality into
smaller steps, e.g.:

“A chatbot [...] could identify the rough area in which the user needs assistance, [and] could
help narrow it down further, helping to pinpoint an exact solution.” (P20)
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8 DISCUSSION AND IMPLICATIONS

Recent years have seen much progress from machine learning and software engineering re-
searchers developing techniques to better assist programmers in their coding tasks, which exploit
the advancements in (deep) learning technology and the availability of very large amounts of
data from Big Code repositories such as GitHub and Stack Overflow. A particularly promising
research direction in this space has been that addressing the decades-old problem of “natural lan-
guage programming” [26], i.e., having people instruct machines in the same (natural) language
they communicate in with each other, which can be useful in many scenarios, as discussed in
the Introduction. However, while excited about this research direction and actively contributing
to it ourselves, we are also questioning whether the most impact from such work can be had by
focusing primarily on making technological advancements (e.g., as we write this, a one-trillion
parameter language model has just been announced [28], as only the most current development
in a very rapidly evolving field) without also carefully considering how such proposed solutions
can fit within the software development workflow, through human-centered research.

In this spirit, we have presented the results of a controlled experiment with 31 participants with
diverse background and programming expertise, observed while completing a range of Python
programming tasks with and without the help of a NL2Code IDE plugin. The plugin allows users
to enter descriptions of intent in natural language, and have corresponding code snippets, ideally
implementing said intent, automatically returned. We designed the plugin with two research goals
in mind. First, we sought to evaluate, to our knowledge for the first time using a human-centered
approach, the performance of some NL2Code generation model with state-of-the-art performance
on a benchmark dataset, but unknown performance “in the wild.” Second, we sought to contrast the
performance and user experience interacting with such a relatively sophisticated model to those of
a relatively basic NL2Code retrieval engine, which “merely” retrieves existing code snippets from
Stack Overflow given natural language search queries. This way, we could estimate not only how
far we are from not having to write any code while programming, but also how far we have come
on this problem given the many recent advancements in learning and availability of datasets.

Main Results. Overall, our results are mixed. First, after careful statistical analysis in RQ1,
comparing tasks completed with and without using the NL2Code plugin (and either of its underly-
ing code generation or retrieval systems), we found no statistically significant differences in task
completion times or task correctness scores.

The results for code metrics (SLOC and CC) can be seen as mixed. On the one hand, the code
containing automatically generated or retrieved fragments is not, on average, any more complex
or any less maintainable than the code written manually, insofar as the CC and SLOC metrics
can distinguish. On the other hand, one could have expected the opposite result, i.e., that since
NL2Code tools are typically trained on idiomatic code, using them should lead to “better,” more
idiomatic code overall, which might suggest lower SLOC and CC values, on average.

Among the possible explanations for why we do not find supporting evidence for the “better
code” hypothesis, two stand out: (i) the two metrics are only crude approximations of the complex,
multifaceted concept of code quality; and (ii) even when writing code “manually,” developers still
consult the Web and Stack Overflow (i.e., the same resources that these NL2Code tools were trained
on) and copy-paste code therein. To better understand the interaction between using the plugin
and using a traditional Web browser, we used the event logs from our instrumented environment
and compared the distributions of in-browser Web searches between tasks where the 31 study
participants used the NL2Code plugin (median 3, mean 5, min 0, max 35 searches per user per
task) and tasks where they did not (median 4, mean 7, min 0, max 48). A mixed-effects regression
model similar to the ones in Section 5, controlling for individual self-reported experience and with
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random effects for user and task, reveals a statistically significant effect of using the plugin on the
number of in-browser Web searches: On average, using the plugin is associated with 2.8 fewer in-
browser Web searches; however, this effect is smaller than the standard deviation of the random
user intercept (~4 in-browser Web searches). We conclude that developers still search the Web
when using the plugin, even if slightly less than when not using the plugin.

Using a similar argument, the result for task correctness scores can be seen as mixed. Code
containing automatically generated or retrieved snippets is not, on average, any less appropriate
for a given task as per our rubric than code written manually. However, using the NL2Code plugin
does not seem to help our study participants significantly improve their scores either, despite there
being room for improvement. Even though across our sample the median score per task was 7 out
of 10 when using the plugin and 6 when not using the plugin, the multivariate regression analysis
did not find the difference to be statistically significant.

The result for task completion times can be seen as negative and, thus, is perhaps the most
surprising of our results: On average, study participants do not complete their tasks statistically
significantly faster when using the NL2Code plugin compared to when they are not using it. There
are several possible explanations for this negative result. First, we acknowledge fundamental lim-
itations of our study design, which we hope future researchers can improve on. In particular, our
tasks, despite their diversity and, we believe, representativeness of real-world Python use, may not
lend themselves sufficiently well to NL2Code queries and, therefore, study participants may not
have sufficient opportunities to use, and benefit from, the plugin. Moreover, our study population
(31 participants) may not be large enough for us to detect effects with small sizes, should they exist.

However, even with these limitations, considering also our results for RQ2 and RQ3, we argue
that another explanation is plausible: Our NL2Code plugin and its main underlying code generation

technology, despite state-of-the-art (BLEU-score) performance on a benchmark dataset, is not devel-

oped enough to be markedly useful in practice just yet. Our telemetry data (RQ2) shows not only that
study participants still carry out in-browser Web searches even though the NL2Code plugin was
available, as discussed above, but also that the code snippets returned by the plugin, when used, un-
dergo edits after insertion in the IDE, suggesting insufficient quality to begin with. Our qualitative
survey data (RQ3) paints a similar picture of overall insufficient quality of the NL2Code results.

Implications. While our study suggests that state-of-the-art learning-based natural language
to code generation technology is ways away from being useful in practice, our results should be
interpreted more optimistically.

First, we argue that the problem is worth working on. In contemporary software develop-
ment, which involves countless and constantly changing programming languages and APIs, natu-
ral language can be a useful medium to turn ideas into code, even for experienced programmers.
A large fraction of our study participants commended NL2Code developer assistants for helping
them remember the precise syntax or sequence of API calls and their arguments, required to imple-
ment some particular piece of functionality. When integrated into the development workflow, e.g.,
through an IDE plugin, such systems can help developers focus by reducing the need for context
switching, further improving their productivity. Our quantitative task performance results for the
current version of this NL2Code plugin, while negative, do not imply that future, better perform-
ing such systems will also not be markedly useful in practice; the qualitative data from our our
study participants already suggests otherwise, as does quantitative data from prior research on the
usefulness of in-IDE code search plugins [92].

Second, we argue that this particular style of code generation is worth working on. Our
analysis of input queries and resulting code snippets for RQ2 shows that the code generation
model produces fundamentally different results than the (simple) code retrieval engine we used
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for comparison, and that study participants choose snippets returned by the code generation model
almost as frequently as they do snippets from the code retrieval engine. In turn, this suggests that,
at least within the scope of the current study, one type of model cannot be used as a substitute for
the other. As discussed above, the code generation model does almost always produce different
results than the code retrieval model. However, it was unclear from that analysis whether the
generated code snippets reflect some fundamentally higher level of sophistication inherent to the
code generation model, or whether the code retrieval engine we used for comparison is simply too
naive.

To further test this, we performed an additional analysis. Specifically, we looked up the chosen
code generation snippets in the manually labeled Stack Overflow dataset used for training the code
generation model to assess whether the model is simply memorizing the training inputs. Only 13
out of the 173 unique queries (~7.5%) had as the chosen code fragment snippets found verbatim
in the model’s training dataset. Therefore, the evidence so far suggests that the code generation
model does add some level of sophistication, and customization of results to the developers’ intent
(e.g., composing function calls), compared to what any code retrieval engine could.

Third, we provide the following concrete future work recommendations for researchers and
toolsmiths in this area, informed by our results:

• Combine code generation with code retrieval. Our results suggest that some queries may be
better answered through code retrieval techniques, and others through code generation. We
recommend that future research continue to explore these types of approaches jointly, e.g.,
using hybrid models [40, 41] that may be able to combine the best of both worlds.

• Consider the user’s local context as part of the input. Our oracle comparison revealed that
users’ natural language queries can often be disambiguated by considering the local context
provided by the source files they were working in at the time, which in turn could lead
to better performance of the code generation model. There is already convincing evidence
from prior work that considering a user’s local context provides unique information about
what code they might type next [111]. In addition, some work on code retrieval has also
considered how to incorporate context to improve retrieval results [17]; this may be similarly
incorporated.

• Consider the user’s local context as part of the output. Considering where in their local IDE
users are when invoking an NL2Code assistant can also help with localizing the returned
code snippets for that context. Some transformations are relatively simple, e.g., pretty print-
ing and indentation. Other transformations may require more advanced program analysis
but are still well within reach of current technology, e.g., renaming variables used in the
returned snippet to match the local context (the Bing Developer Assistant code retrieval
engine [115] already does this), or applying coding conventions [2].

• Provide more context for each returned snippet. Our study shows that NL2Code generation or
retrieval systems can be useful when users already know what the right answer is, but they
need help retrieving it. At the same time, many of our study participants reported lacking
sufficient background knowledge, be it domain-specific or API-specific, to recognize when a
plugin-returned code snippet is the right one given their query, or what the snippet does in
detail. Future research should consider incorporating more context and documentation to-
gether with the plugin’s results, which allows users to better understand the code, e.g., links
to Stack Overflow, official documentation pages, explanations of domain-specific concepts,
other API usage examples. One example of this is the work of Moreno et al. [78], which
retrieves usage examples that show how to use a specific method.
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• Provide a unified and intuitive query syntax. We observed that users are not always formulat-
ing queries in the way that we would expect, perhaps because they are used to traditional
search engines that are more robust to noisy inputs and designed for keyword-based search.
The NL2Code generation model we experimented with in this study was trained on natural
language queries that are not only complete English sentences, but also include references to
variables or literals involved with an intent, specially delimited by dedicated syntax (grave
accents). As our respondents commented in the post-test survey, getting used to formulat-
ing queries this way takes some practice. Future research should consider not only what
is the most natural way for users to describe their intent using natural language, but also
how to provide a unified query syntax for both code generation and code retrieval, to mini-
mize confusion. Robust semantic parsing techniques [8, 95] may also help with interpreting
ill-specified user queries.

• Provide dialogue-based query capability. Dialogue-based querying could allow users to refine
their natural language intents until they are sufficiently precise for the underlying models
to confidently provide some results. Future systems may reference work on query refor-
mulation in information retrieval, where the user queries are refined to improve retrieval
results both for standard information retrieval [7] and code retrieval [39, 45]. In addition, in
the NLP community there have been notable advancements recently in interactive semantic
parsing [51, 119], i.e., soliciting user input when dealing with missing information or ambi-
guity while processing the initial natural language query, which could be of use as well.

• Consider new paradigms of evaluation for code generation and retrieval systems. Usage log data,
such as the ones we collected here, is arguably very informative and useful for researchers
looking to evaluate NL2Code systems. However, compared to automated metrics such as
BLEU, such data is much less readily available. We argue that such data is worth collecting
even if only in small quantities. For example, with little but high-quality data, one could still
train a reranker [125] to try to select the outputs that a human user selected; if the predictive
power exceeds that of BLEU alone, then the trained reranker could be used to automatically
evaluate the quality of the generated or retrieved code more realistically than by using BLEU.

9 RELATED WORK

Finally, we more extensively discuss how this work fits in the landscape of the many other related
works in the area.

9.1 NL2Code Generation

While we took a particular approach to code generation, there are a wide variety of other op-
tions. Researchers have proposed that natural language dialogue could be a new form of human-
computer interaction, since nearly the advent of modern computers [26, 35, 44, 76]. The bulk of
prior work either targeted domain-specific languages (DSLs), or focused on task-specific code
generation for general-purpose languages, where more progress could be made given the relatively
constrained vocabulary and output code space. Examples include generating formatted input file
parsers [63]; structured, idiomatic sequences of API calls [96]; regular expressions [60, 74, 90];
string manipulation DSL programs [100]; card implementations for trading card games [68]; and
solutions to the simplest of programming competition-style problems [10].

With the recent boom of neural networks and deep learning in natural language processing,
generating arbitrary code in a general-purpose language [123, 124] are becoming more feasible.
Some have been trained on both official API documentation and Stack Overflow questions and
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answers [117]. There are also similar systems35 able to generate class member functions given
natural language descriptions of intent and the programmatic context provided by the rest of the
class [49], and to generate the API call sequence in a Jupyter Notebook code cell given the natural
language and code history up to that particular cell [1].

9.2 NL2Code Retrieval

Code retrieval has similarly seen a wide variety of approaches. The simplest way to perform re-
trieval is to start with existing information retrieval models designed for natural language search
and adapt them specifically for the source code domain through query reformulation or other
methods [39, 45, 52, 71, 113, 115]. Other research works utilize deep learning models [4, 37, 47, 48]
to train a relevance model between natural language queries and corresponding code snippets. It
is also possible to exploit code annotations to generate additional information to help improve
code retrieval performance [120] or extracted abstract programming patterns and associated nat-
ural language keywords for more content-based code search [52]. Many of the models achieve
good performance on human-annotated relevance benchmark datasets between natural language
and code snippets. Practically, however, many developers simply rely on generic natural-language
search engines like Google to find appropriate code snippets by first locating pages that contain
code snippets through natural language queries [104] on programming QA websites like Stack
Overflow.

9.3 Evaluation of NL2Code Methods

To evaluate whether NL2Code methods are succeeding, the most common way is to create a “refer-
ence” program that indeed implements the desired functionality, and measure the similarity of the
generated program to this reference program. Because deciding whether two programs are equiva-
lent is, in the general case, undecidable [101], alternative means are necessary. For code generation
in limited domains, this is often done by creating a small number of input-output examples and
making sure that the generated program returns the same values as the reference program over
these tests [15, 59, 114, 118, 126–130]. However, when scaling to broader domains, creating a thor-
ough and comprehensive suite of test cases over programs that have a wide variety of assumptions
about the input and output data formats is not trivial.

As a result, much research work on code generation and retrieval take a different tack. Specif-
ically, many code generation methods [1, 49, 117, 123] aim to directly compare generated code
snippets against ground truth snippets, using token sequence comparison metrics borrowed from
machine translation tasks, such as BLEU score [89]. However, many code snippets are equivalent
in functionality but differ quite largely in terms of token sequences, or differ only slightly in token
sequence but greatly in functionality, and thus BLEU is an imperfect metric of correctness of a
source code snippet [110].

Code retrieval, however, is the task of retrieving relevant code given a natural language query,
which is related to other information retrieval tasks. Since code retrieval is often used to search
for vague concepts and ideas, human-annotated relevance annotations are needed for evaluation.
The common methods used in research work [37, 47, 121] compare the retrieved code snippet
candidates given a natural language query, with a human-annotated list of code snippet relevance,
using common automatic information retrieval metrics such as NDCG, MRR, and so on [73]. The
drawback of this evaluation method is that the cost of retrieval relevance annotation is high and

35This is, of course, among the many other use cases for neural network models of code and natural language such as code

summarization [48, 121] or embedding models that represent programming languages together with natural languages [30].

Allamanis et al. [3] provide a comprehensive survey of the use cases of machine learning models in this area.
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often requires experts in the specific area. Also, since the candidate lists are usually long, only a
few unique natural language queries could be annotated. For example, one of the most recent large-
scale code search challenge CodeSearchNet [47] contains only 99 unique natural language queries,
along with their corresponding code snippet relevance expert annotations, leading to smaller cov-
erage of real-world development scenarios in evaluation.

Regardless of the automatic metrics above, in the end our final goal is to help developers in
their task of writing code. This article fills the gap of the fundamental question of whether these
methods will be useful within the developer workflow.

9.4 In-IDE Plugins

Similarly, many research works on deploying plugins inside IDEs to help developers have been per-
formed. Both Ponzanelli et al. [91] and Ponzanelli et al. [92] focus on reducing context switching
in IDE by incorporating Stack Overflow by using the context in the IDE to automatically retrieve
pertinent discussions from Stack Overflow. Subramanian et al. [109] propose a plugin to enhance
traditional API documentation with up-to-date source code examples. Rahman and Roy [97] and
Liu et al. [70] design the plugin to help developers find solutions on the Internet to program excep-
tions and errors. Following the similar route, Brandt et al. [16] study opportunistic programming
where programmers leverage online resources with a range of intentions, including the assistance
that could be accessed from inside the IDE.

Besides plugin developed to reduce context-switching to other resources in developer work-
flows, Amann et al. [5] focus on collecting data of various developer activities from inside the IDE
that fuel empirical research on the area [94].

This article proposes an in-IDE plugin that incorporates code generation in addition to code
retrieval to test the user experience in the real development workflow. In the meantime it also
collects fine-grained user activities interacting with the plugin as well as editing the code snippet
candidates to provide public data for future work.

9.5 End-user Development

The direction of exploring using natural language intents to generate code snippets is closely re-
lated to end-user development [67], which allows end-users (people who are not professional soft-
ware developers) to program computers. The work of Cypher et al. [24] is among the first that
enables end-user to program by demonstration.

Traditionally, programming has been performed by software developers who write code directly
in programming languages for the majority of functionality they wish to implement. However, ac-
quiring the requisite knowledge to perform this task requires time-consuming training and prac-
tice, and even for skilled programmers, writing programs requires a great amount of time and
effort. To this end, there have been many recent developments on no-code or low-code software
development platforms that allow both programmers and non-programmers to develop in modal-
ities of interaction other than code [105]. Some examples include visual programming languages
such as Scratch [72], which offers a building-block style graphical user interface to implement
logic. In specific domains such as user interface design and prototyping, recent advances in deep
learning models also enable developers to sketch the user interface visually and then automatically
generates user interface code with the sketch [14] or using existing screenshots [87].

Besides visual no-code or low-code programming interfaces, there has also been much progress
on program synthesis [12, 29, 31, 108], which uses input-output examples, logic sketches, and so on,
to automatically generate functions, with some recent advances that use machine learning mod-
els [10, 21, 27, 106]. Some works also generate programs from easier-to-write pseudo-code [59, 129].
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There are other works in the area. Barman et al. [11], Chasins et al. [19, 20] make web automation
accessible to non-coders through programming by demonstration, while [64–66] automate mobile
applications with multimodal inputs including demonstration and natural language intents. Head
et al. [43] combine teacher expertise with data-driven program synthesis techniques to learn bug-
fixing code transformations in classroom scenarios. Head et al. [42] help users extract executable,
simplified code from existing code. Ko and Myers [55, 56] provide a debugging interface for asking
questions about program behavior. Myers and Stylos [82] discuss API designers should consider
usability as a step towards enabling end-user programming. Kery et al. [53], Kery and Myers [54]
enable data scientists to explore data easily with exploratory programming. Our article’s plugin of
using both state-of-the-art code generation and code retrieval to provide more natural program-
ming experience to developers, with the potential future of enabling end-user programming, is
related to Myers et al. [81], which envisions natural language programming.

9.6 Code Completion

Many developers use Integrated Development Environments (IDEs) as a convenient solution
to help with many aspects during development. Most importantly, many developers actively rely
on intelligent code-completion aid like IntelliSense36 for Visual Studio [6, 94] to help developers
learn more about the code, keep track of the parameters, and add calls to properties and meth-
ods with only a few keystrokes. Many of intelligent code-completion tools also consider the cur-
rent code context where the developer is editing. With the recent advances in machine learning
and deep learning, example tools such as IntelliCode37 for Visual Studio, Codota,38 and TabNine39

present AI-assisted code-suggestion and code-completion based on the current source code con-
text, learned from abundant amounts of projects over the Internet. The scope of our article is to
investigate generating or retrieving code using natural language queries, rather than based on the
context of the current source code.

10 CONCLUSION

In this article, we performed an extensive user study of in-IDE code generation and retrieval, de-
veloping an experimental harness and framework for analysis. This demonstrated challenges and
limitations in the current state of both code generation and code retrieval; results were mixed with
regards to the impact on the developer workflow, including time efficiency, code correctness, and
code quality. However, there was also promise: Developers subjectively enjoyed the experience of
using in-IDE developer management tools and provided several concrete areas for improvement.
We believe that these results will spur future, targeted development in productive directions for
code generation and retrieval models.

APPENDICES

A USER STUDY ENVIRONMENT DESIGN

To control the user study’s development environment for different users as much as possible, and
to enable data collection and activity recording outside the IDE (e.g., web browsing activity during
the development), we design a complete virtual machine-based environment for users to access
remotely and perform the user study on. We build the virtual machine based on a lot of open

36https://docs.microsoft.com/en-us/visualstudio/ide/using-intellisense.
37https://visualstudio.microsoft.com/services/intellicode.
38https://www.codota.com/.
39https://www.tabnine.com/.
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source software, including Ubuntu 18.04 operating system40 with XFCE 4.1 desktop environment.41

The virtual machine software is VirtualBox 6.1.10,42 and we use Vagrant software43 for automatic
virtual machine provisioning.

Inside the Linux virtual machine, we install and configure a set of programs for data collection
and workflow control during the user study:

(1) Python environment. Python 3.644 is installed inside the VM, alongside with pip package
manager and several commonly used Python packages for the user study tasks. The user is
free to install any additional packages they need during the development.

(2) IDE with plugin. PyCharm Community Edition 2020.1, with the plugin described in Sec-
tion 3 is installed. This provides consistent Python development environment for the user
study and the testing of the code generation and retrieval. The plugin also handles various
data collection processes inside the IDE.

(3) Man-in-the-middle proxy. We install mitmproxy45 in the VM, along with our customized
script sending logs back to our server. This infrastructure enables interception and data col-
lection of both HTTP and secured HTTPS requests. With this, we can collect users’ complete
web browsing activities during the user study.

(4) Web browser. We install Firefox browser,46 configured to use the proxy mentioned above
so all users’ browsing activities could be logged for analysis.

(5) Keylogger. We develop a program that runs in the background during the user study and
logs all the user’s keystrokes along with the timestamps to our server. With the keylogger,
we can collect data outside the IDE about the users’ activities. This data is useful for mining
and analyzing developer activity patterns in terms of keyboard operations, for example, copy
and pasting shortcuts.

(6) User study control scripts. We provide users a handful of scripts for easy and fully au-
tomatic retrieval, start and submission of the tasks. The scripts allow user to check their
completion status of the whole study, as well as to pause and resume during a task for a
break. All the user’s task start, pause, resume, and submission events are logged so the com-
pletion time of each task for the user could be calculated.

B PRE-TEST SURVEY DETAILS

For each of the prospective participants, we asked them about two parts of the information in
a pre-study survey, apart from personal information for contact purposes. The first is regarding
programming experience, used to determine if the participants have enough expertise in Python
as well as the categories of tasks that we designed. The questions are:

(1) Which of the following best describes your current career status: Student (computer science),
Student (other field), Software Engineer, Data Scientist, Researcher, Other.

(2) How do you estimate your programming experience? (1: very inexperienced to 5: very ex-
perienced)

(3) How experienced are you with Python? (1: very inexperienced to 5: very experienced)

40https://releases.ubuntu.com/18.04/.
41https://www.xfce.org/.
42https://www.virtualbox.org/wiki/Downloads.
43https://www.vagrantup.com/.
44https://www.python.org/.
45https://mitmproxy.org/.
46https://www.mozilla.org/en-US/firefox/.
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(4) How experienced are you with each of the following tasks in Python? (1: very inexperienced
to 5: very experienced) Basic Python, File, OS, Web Scraping, Web Server & Client, Data
Analysis & Machine Learning, Data Visualization.

The second part of the information is about their development preferences, used to ask for their
preferences with IDE and assistive tools. The questions are:

(1) What editor/IDE do you use for Python projects? Vim, Emacs, VSCode, PyCharm, Jupyter
Notebook, Sublime Text, other.

(2) Do you use any assistive tools or plugins to improve your coding efficiency? Some examples
are code linting, type checking, snippet search tools, etc. If yes, what are they?

C PARTICIPANTS PROGRAMMING EXPERIENCE

The detailed participants’ programming experience responded in the survey is shown in Figure 8.

Fig. 8. The experience and expertise for overall Python programming and 7 specific areas that we design

different tasks for, from all the participants that completed the survey. 1 represents very inexperienced and

5 represents very experienced.
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D POST-STUDY SURVEY DETAILS

After each task, we ask the following questions to all users (disregarding using the plugin or not)
about the task design, self-assessment, as well as the help needed during the process:

(1) How difficult did you feel about the task? (1: very easy to 5: very hard)
(2) How would you evaluate your performance on the task? (1: very bad to 5: very good)
(3) How often did you need to look for help during the task, including web search, looking up

API references, etc.? (1: not at all to 5: very often)

For users that completed the current task with plugin enabled, the following additional questions
about the plugin user experience are asked:

(1) How do you think the plugin impacted your efficiency timewise, if at all? (1: hindered sig-
nificantly, to 3: neither hindered nor helped, to 5: helped significantly)

(2) How do you think the plugin impacted your quality of life, with respect to ease of coding,
concentration, etc., if at all? (1: hindered significantly, to 3: neither hindered nor helped, to
5: helped significantly)

After all assigned tasks are completed for the user, we ask them to complete a form about the
overall experience with the user study and the evaluation of the plugin, as well as soliciting com-
ments and suggestions.

(1) What did you think of the tasks assigned to you in general?
(2) Overall, how was your experience using this plugin? (1: very bad to 5: very good)
(3) What do you think worked well, compared with your previous ways to solve problems dur-

ing programming?
(4) What do you think should be improved, compared with your previous ways to solve prob-

lems during programming?
(5) Do you have any other suggestions/comments for the plugin?

E PLUGIN EFFECT ON CODE COMPLEXITY METRICS

We also analyze the plugin’s effect on code complexity metrics, following the same methods used
in Section 5. We measure two standard proxies for code complexity of the Python programs
produced by our study participants in each of their assigned tasks, i.e., the number of source

lines of code (SLOC) and McCabe’s cyclomatic complexity (CC), a measure of the number of
linearly independent paths through a program’s source code [75]; in real programs, CC depends
a lot on the “if”-statements, as well as conditional loops and whether these are nested. The two
measures tend to be correlated, but not strongly enough to conclude that CC is redundant with
SLOC [61]. We use the open-source library Radon47 to calculate CC.

One could expect that code produced by our NL2Code plugin may be more idiomatic (possibly
shorter and less complex) than code written by the participants themselves.

Figure 9 shows the distributions of CC values across tasks and conditions. Figure 10 shows the
distributions of SLOC values across tasks and conditions.

Table 8 summarizes our default specification mixed-effects regressions with CC and SLOC vari-
ables included; the models with our second specification (de-meaned task experience) are shown
in Appendix G. The models fit the data reasonably well (R2

c
= 50% for SLOC, R2

c
= 27% for CC).

Analyzing the models, we make the following observations: There is no statistically significant
difference between the two conditions in cyclomatic complexity values (model (4)). That is, the

47https://github.com/rubik/radon.
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Fig. 9. Distributions of cyclomatic complexity values across tasks and conditions. The horizontal dotted lines

represent 25% and 75% quartiles, and the dashed lines represent medians.

Fig. 10. Distributions of SLOC values across tasks and conditions. The horizontal dotted lines represent 25%

and 75% quartiles, and the dashed lines represent medians.

code written by users in the plugin condition appears statistically indistinguishably as correct and
as complex from the code written by users in the control group.

We note a small effect of using the plugin on code length (model (3)). On average, the code
written by users in the plugin condition is ~4 source lines of code longer than the code written
by users without using the plugin. However, this effect is quite small, smaller than the standard
deviation of the random user intercept (~6 source lines of code).

F NL2CODE PLUGIN QUERY SYNTAX

For the best results from the code generation model, we also instruct the users to write queries as
expected by the model with the following rules:

• Quote variable names in the query with grave accent marks: ... `variable_name` ...
• Quote string literals with regular quotation marks: ... “Hello World!” ...
• Example query 1: open a file “yourfile.txt” in write mode.
• Example query 2: lowercase a string `text` and remove non-alphanumeric characters aside

from space.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 29. Publication date: February 2022.



In-IDE Code Generation from Natural Language: Promise and Challenges 29:37

Table 8. LMER Task Performance Models (Default Specification, w/code Complexity Metrics)

Dependent variable
Completion time Correctness score SLOC CC

(1) (2) (3) (4)

Experience −195.62 0.07 −0.62 −0.21
(183.11) (0.24) (1.61) (0.46)

Uses plugin 15.76 0.44 4.16∗∗ 0.73
(196.11) (0.30) (1.91) (0.58)

Constant 3,984.51∗∗∗ 5.88∗∗∗ 27.15∗∗∗ 5.64∗∗∗

(838.07) (1.03) (7.40) (1.95)
Observations 224 237 237 237
Num users 31 31 31 31
Num tasks 14 14 14 14
sd(user) 1,489.25 0.82 6.16 1.18
sd(task) 1,104.7 1.14 12.65 2.33
R2m 0.004 0.008 0.011 0.006
R2c 0.642 0.289 0.502 0.27
Akaike Inf. Crit. 3,987.14 1,106.66 2,002.42 1,417.27
Bayesian Inf. Crit. 4,007.61 1,127.46 2,023.23 1,438.08

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

G TASK PERFORMANCE MODELS (DE-MEANED SPECIFICATION)

Table 9 summarizes our alternative specification (de-meaned task experience) mixed-effects regres-
sions for two response variables in the main article, plug two response variables (CC and SLOC)
introduced in Appendix E.

Table 9. LMER Task Performance Models (De-meaned Experience, w/code Complexity Metrics)

Dependent variable
Completion time Correctness score SLOC CC

(1) (2) (3) (4)

Experience BTW −478.55 −0.04 −1.47 0.04
(566.62) (0.43) (2.98) (0.74)

Experience WI −166.14 0.12 −0.30 −0.35
(191.33) (0.29) (1.87) (0.56)

Uses plugin 14.47 0.44 4.15∗∗ 0.74
(196.07) (0.30) (1.90) (0.58)

Constant 5,142.42∗∗ 6.32∗∗∗ 30.59∗∗ 4.62
(2,348.61) (1.77) (12.60) (3.07)

Observations 224 237 237 237
Num users 31 31 31 31
Num tasks 14 14 14 14
sd(user) 1,482.32 0.81 6.15 1.17
sd(task) 1,107.9 1.13 12.69 2.32
R2m 0.012 0.008 0.012 0.007
R2c 0.643 0.287 0.504 0.269
Akaike Inf. Crit. 3,988.86 1,108.56 2,004.30 1,419.09
Bayesian Inf. Crit. 4,012.74 1,132.84 2,028.58 1,443.36

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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H USER QUERIES

Table 10. Unique Successful User Queries to the NL2Code Plugin, Per Task, for the 31 Study Participants

Task Queries
T1-1 call `pick_with_replacement` how to generate random letter

create a dictionary with keys `random_letters`
and values `random_numbers`

import library random

create dictionary list to dict
create empty dictionary loop on numbers from 0 to 100
create list "a_list" loop over a range of `count`
defaultdict merge 2 dictionaries
dictionary of characters and int pair characters in `characters` and numbers in

`numbers`
for loop on range 100 print `dic` keys on each line
generat integers 1–20 print `dic` keys sorted
generate 100 integers (1–20 inclusive). print `dic` sorted by keys
generate 100 random lower-cased leters print a to z
generate 100 random lowercase letters print list
generate 100 random numbers print list as string
generate 100 random numbers from 1 to 20 print list elements
generate a rondom lower case character print without newline
generate char lower case random
generate dict random character between a and z
generate list of random charachters random characters
generate lowercase char random integer between 1 and 20
generate random random number
generate random between 0 and 20 random sample with replacement
generate random charachter randomly generate 100 letters
generate random int randomly pick an item from `seq`
generate random letters rearrange dictionary keys into alphabetic order
generate random lower case letters sort a list
generate random nu,ber sort a list into ascending order
generate random number sort a list x into ascending order
generate random numbers sort dict by key
generate random numbers between 1-20 inclusive sort key of dict
get a random letter sort list
given list `letters` and `integers`, create a

dicitonary such that the values in `letters` are
keys and values in `integers` are values

sort list ’values’ into ascending order

how to append value in dict squence of integers from 1 to 20 inclusive
how to check if a key is in a dictionay zip 2 lists
how to generate random int in range between 1
and 20

zip `hundred_characters` with
`hundred_numbers`

T1-2 add a week to a datetime get gmt timezone
add days to time get now one week from now
assign current date and time to `now` get the current date in utc
change date format get the current time in utc
change datetime format of `week_date` to

mm-dd-yyyy hh:mm
get the date and time a week from now in gmt

convert `week_date` to GMT timezone and assign
to `GMT_week_date`

get time and date

convert date timezone get time and date in gmt in `date`
date from 7 days get time and date one week from now
date gmt get time now
date now gmt
datetime gmt time 24
display `week_date` in format mm-dd-yyyy hh:mm import datetime
format datetime import time
format datetime 24 hour mm-dd-yyyy
format time print current date time
get current datetime print date and time in GMT in 24hr format
get date 7 days from today print datetime in mm-dd-yyyy hh:mm format
get date and time in gmt time add
get date and time one week from now time and date
get date time one week from now time and date in certain
get datetime timedelta

(Continued)
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Table 10. (continued)

Task Queries
T2-1 copy column from "data.csv" file to another

"output.csv"
new line

copy column from "data.csv" to "output.csv" number of columns of csv
create ’output.csv’ csv file open "data.csv" file
csv write open a csv file `data.csv` and read the data
csv writer open csv
cvs open csv file `data.csv`
cvs files open csv file with read and write
delete a column in csv open file
delete column from csv pandas read csv
delete column from csv file pandas read csv named "data.csv"
delete first and last column in csv file print csv without row numbers
delete first and last column of `df` python make dir
delete first and last row from the dataframe `df` read "data.csv" file
delete first row from dataframe `df` read csv file "data.csv"
delete row in csv read csv file using pandas
delete the first column in csv file `df` read csv pure python
file to csv read cvs
get current path remove columns from csv file and save it to another csv

file
get specific columns by index in pandas data frame remove first column from csv file
headers in a dataframe save `df` to a file `output.csv` in a new directory

`example_output`
how to delete a column in a dataframe python save dataframe to csv
how to delete columns in dataframe save pandas dataframe to a file
how to save a dataframe in csv file save this dataframe to a csv
if dir exist write `output` to csv file
if directory "output" exists write csv `output_f` to file "output/output.csv"
make directory write output to csv file "output.csv"
make directory "output" if it doesn’t exist write to csv file

T2-2 change directory list files in folder
change directory to "data" list of filenames from a folder
check file encoding move file to other directory
check if directory exists normalize newlines to \n
convert binary decoded string to ascii open file
convert file encoding open text file
convert file to utf read a file and iterate over its contents
convert latin-1 to utf-8 read all files under a folder
convert str to utf-8 read file
convert text file encoding read ISO-8859-15
convert text files from encoding ISO-8859-15 to

encoding UTF-8.
readline encoding

copy a file redirect
copy file remove header
copy file `ddd.png` remove heading white space
copy file to other folder text normalize newlines to \n
covert file to utf traverse a directory
find character travverse list of files
get all files in directory trim heading whitespace
get the file extension trim the heading and trailing whitespaces and

blank lines for all text files
iterating files in a folder unkown encoding
list all text files in the data directory write to file
list files in directory

T3-1 check if `file` is a directory match regex year month day
check if string has specific pattern move file
copy a file to dist move files from directory to directory
copy all files and directories from one folder to another recursive copy files and folders
copy directory to another directory recursively iterate over all files in a directory
copy directory to directory regex dd-mm-yy
copy directory tree from source to destination regex digit python
copy file from `src_path` to `dest_path` regex for date
copy files regex replace capture group
copy files and directories under `data` directory regexp date
copy files creating directory rename file

(Continued)
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Table 10. (continued)

Task Queries
copy files from folder rename file with regex
create file rename files
create folder replace pattern in string
datetime to string search all matches in a string
extract year month day from string regex search for pattern "%d%d-%d%d" in `file`
get all files and folders walk all files in a directory
get the files that inside the folders walk all nested files in the directory "data"
list all filepaths in a directory walke all files in a directory
make a folder recersively write to file

T3-2 add entry to json file load json file
check if file `output_file` exists load json from a file
check if file ends with .json read a json file named `f`
convert dict to string sorting a dictionary by key
convert list to dictionary write into txt file
import json parsing library write json in `ret` to file `outfile`

T4-1 find all bold text from html `soup` parse all hyperlinks from `r` using bs4
find all hrefs from `soup` visit `url` and extract hrefs using bs4
find all red colored text from html `soup` visit the given url `url` and extract all hrefs from there
go to a url visit the url `url`
how to get page urls beautifulsoup

T4-2 create directory regex []
download an image request save dict to csv
extract imafe from html save table beautifulsoup
http reques get html

T5-1 add json file to a list check email correctness
T5-2 argparse subprogram print format

exit program request with params
gET request to

"https://jsonplaceholder.typicode.com/posts"
with argument userId

T6-1 a list of dictionary to pandas dataframe pandas change dataframe column name
add a new column to a dataframe row pandas create buckets by column value
average by group pandas pandas dropnan
cast a float to two decimals pandas get average of column
cast a list to a dataframe pandas group by
column to integer pandas pandas join dataframes
create a dataframe from a list pandas join series into dataframes
csv pandas output csv
csv write pandas print with two decimals
delete coloumn pd pandas read from csv
df set column to 7 decimals pandas round value
filter df with two conditions pandas save csv two decimal
filter values in pandas df pandas to csv
find unique data from csv pandas to csv decimal
findall pandas write df to csv
floating data in csv group in digit pandas write to csv file
format output to 2 decimal pandas write to file decimal
get average of row values in pandas dataframe read csv
get average value from group of data in csv read csv file
get the head of dataframe `df` remove repeated column in csv file
group by range pandas rename column pandas
group of data from csv rename pandas df columns
how to combine 2 lists into a dictionary round a variable to 2dp
how to remove an item from a list using the index save `compan_df` dataframe to a file
import pandas save `compand_df` dataframe to a file
list to an entry in pandas dataframe sort dataframe `jdf` by `scores`
load csv file with pandas sort dataframe `jdf` by the values of column

’scores’
loop files recursive sort pandas dataframe
newline space standard deviation from group of data in csv
pandas add new column based on row values two deciaml place
pandas calculate mean write `final_data` to csv file "price.csv"

T6-2 cross validation in scikit learn multinomial logistic regression model
cross validation mean accuracy numpy load from csv
disable warnings run 5-fold accuracy

(Continued)
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Table 10. (continued)

Task Queries
how to determine cross validation mean in scikit learn set numpy random seed to 0
how to split dataset in scikit learn sklearn 5 fold cross validation
how to split dataset in scikit learn sklearn 5-fold cross validation
linear regressor 5 folder cross validation sklearn cross validation x, y for 5 folds
load wine dataset sklearn ignore warnings

T7-1 how to choose plot size in inches plt set x axis tick range
how to choose plot title in matplotlib plt set xtick font size
how to create ascatter plot using matplotlib reformat date
how to draw scatter plot for data in csv file save plot as image
plt create figure with size save plt figure
plt date as x axis scatter
plt set x axis label scatter plot purple

T7-2 bar graph side by side plot bar
bar plot with multiple bars per label plot size
get height of bars in subplot bar gaphs plot title
get labels above bars in subplots plt ax legend
group pandas df by two columns plt ax xlabel
horizontal subplot plt create 3 subplots
import matplotlib plt set title for subplot figure
matplotlib grouped bar chart plt set x tick labels
matplotlib multiple histograms plt show values on bar plot
matplotlib theme pyplot subplots
pandas dataframe from csv select row pandas
pandas dataframe groupby column

Queries for which the participant chose a snippet produced by the code generation model are shown in boldface, and in

the remainder a retrieved snippet was used.

I RANDOMLY SAMPLED USER QUERIES FOR THE ORACLE ANALYSIS

Table 11. Sampled User Queries for the Oracle Analysis

Task Queries
T1-1 call `pick_with_replacement` ◦ defaultdict

generate lowercase char •◦ for loop on range 100 •◦
generate random between 0 and 20 •◦ generate char lower case
random sample with replacement •◦ generate random letters •◦
sort key of dict •◦ random characters

T1-2 change datetime format of `week_date` to
mm-dd-yyyy hh:mm •◦

format datetime

convert `week_date` to GMT timezone and assign
to `GMT_week_date` •◦

get gmt timezone ◦

print datetime in mm-dd-yyyy hh:mm format •◦ get now one week from now •◦
date now •◦ get time and date •◦

T2-1 remove first column from csv file •◦ how to delete columns in dataframe ◦
csv writer open "data.csv" file •◦
how to delete a column in a dataframe python ◦

T2-2 traverse a directory ◦
T3-1 copy a file to dist ◦ recursive copy files and folders ◦

match regex year month day regexp date
T4-2 download an image request save dict to csv
T5-2 exit program •◦ argparse subprogram
T6-1 load csv file with pandas •◦ how to remove an item from a list using the index •◦

pandas round value ◦ pandas create buckets by column value
pandas to csv pandas group by
read csv file •◦ pandas output csv ◦
rename column pandas ◦ pandas to csv decimal ◦
filter df with two conditions pandas write df to csv

T6-2 load wine dataset
T7-1 plt create figure with size •◦ scatter ◦
T7-2 plt ax legend ◦ plt create 3 subplots •◦

bar plot with multiple bars per label ◦

Queries for which the user chose a snippet from the code generation model are shown in boldface. • denotes queries

“good enough” on their own; ◦ denotes queries good enough given the rest of the source file as context; the former is a

strict subset of the latter.
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