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Abstract
Research Software Engineers (RSEs) have emerged as a critical pro-
fessional role bridging software engineering and scientific research.
Despite rapid growth in RSE positions globally, their impact on
scientific software quality and productivity remains understudied.
We are conducting a mixed-methods study combining qualitative
interviews with quantitative analysis of software repositories to
understand how RSEs influence scientific software development.
Our study examines RSE processes at research universities to un-
derstand collaboration challenges, impacts on software quality and
sustainability, adoption of best practices, and effects on scientific
productivity and knowledge transfer between RSEs and scientists.
We present preliminary findings from this study, including both
qualitative and quantitative data.

CCS Concepts
• Software and its engineering→ Collaboration in software
development; Software creation and management.
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1 Introduction
Science increasingly depends on software, with the quality of sci-
entific software profoundly influencing the replicability, validity,
and precision of scientific results [6]. The Research Software Engi-
neer (RSE) role has emerged to address the growing complexity of
scientific software development [1, 2]. RSEs bring deep software-
engineering expertise to scientific projects, bridging the gap be-
tween traditional software development and scientific practice [12,

This work is licensed under a Creative Commons Attribution 4.0 International License.
SERS ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2404-6/2026/04
https://doi.org/10.1145/3786172.3788360

13]. While thousands of RSEs now work on scientific projects glob-
ally [5] and the rapid expansion of RSE recruitment strongly sug-
gests that scientists and funding agencies see value in this approach,
the extent of impact on technology development and scientific pro-
ductivity has not been systematically investigated [4].

To fill this gap, we will address four key research questions in
our full study: (1) What challenges do RSEs and scientists face in
effective collaboration? (2) How does RSE collaboration impact soft-
ware development processes and culture? (3) What is the technical
impact on code quality and productivity? (4) What is the scientific
impact on scholarly output and software reuse? Answering these
questions is critical as funding agencies and research institutions
increasingly invest in RSE positions and centers. Here, we present
preliminary findings for this larger study. Specifically, we draw
on preliminary qualitative and quantitative data to outline some
dynamics and dimensions of variation between RSE groups that are
relevant to the questions of collaboration and impact stated above.

2 Background
Challenges in Scientific Software Development. Scientific software

development faces unique challenges that distinguish it from tra-
ditional software engineering. Requirements are often emergent
rather than well-defined upfront, evolving as scientific understand-
ing develops [12, 14]. Establishing shared understanding of software
requirements across scientific and software-engineering domains
and cultures proves difficult [13]. Scientists typically lack formal
training in software-engineering practices, while software engi-
neers may struggle to understand domain-specific scientific con-
cepts and methods. The scientific “reputation economy” creates
misaligned incentives, driving researchers to prioritize publica-
tions over the relatively low-payoff work of ensuring software
sustainability beyond a particular publication [9]. Making scientific
software publicly available presents additional challenges, as soft-
ware intended for reuse must address generalized use cases beyond
a particular publication, while also requiring considerable extra
work such as documentation, tutorials, user support, and continued
maintenance [10, 11, 15].

TheRSEMovement. Establishing the RSE role began over a decade
ago [1] and has experienced dramatic growth in recent years [5].
Professional associations like the US Research Software Engineer
Association1, the Society of Research Software Engineering2 in the

1https://us-rse.org/
2https://society-rse.org/
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UK, or the German Society for Research Software3 now provide
advocacy, support, and resources to the profession [3, 7]. These
organizations have focused on creating professional identity for
RSEs and establishing recognition for their role in scientific projects.
However, despite growth and institutional support, the impact of
RSEs on technical development and scientific productivity has not
been systematically investigated using rigorous empirical methods.
To improve the understanding and impact of RSEs, researchers
across the globe started to establish Research Software Engineering
Research as a dedicated new research area [7], and so our study
also falls into this research area.

3 Methodology
Research Design. Our study employs a mixed-methods approach

combining qualitative interviews with quantitative repository anal-
ysis. Our preliminary data collection focuses on three privately-
funded RSE teams at large research universities in the US. At these
universities, RSEs work on centralized teams and engage research
labs in short (3–15 months) projects, rather than being embedded
in research labs long term. For quantitative analysis, we will also
include a broader sample of RSEs, as we will describe below.

Qualitative Component. We will conduct approximately 80 in-
terviews (one per person) with RSEs and RSE managers as well as
researchers who worked with RSEs in the past. These will begin
with purposive sampling of RSEs in dedicated RSE groups, sam-
pling for variety in scientific domains, RSE team size, and the RSE’s
model of engagement with researchers (short rapid engagements
versus being embedded long-term with a research group, for in-
stance). We will then pursue snowball sampling of researchers
who have worked with these groups in the past. Interviews will be
semi-structured, with common questions across all interviews to
allow for comparison as well as some questions tailored to differ-
ent positions, such as for managers or for RSEs involved in short
versus long-term engagements. Interview protocols and qualitative
coding analyses will focus on challenges in scientist–RSE collabo-
ration, domain-knowledge transfer, how RSEs connect scientists to
software-engineering communities of practice, and the diffusion
and persistence of software-engineering best practices. The quali-
tative component will also direct us towards aspects of the digital
signature of RSEs (i.e., characteristics and behavioral aspects that
can help us to identify RSEs, such as their tasks or working times)
that we would otherwise miss.

Quantitative Component. We examine repository data from open-
source scientific software projects, including commit histories, con-
tributor information, issue discussions, and source-code evolution
over time. Because RSEs are not always explicitly identified as
such and sometimes work under different job titles (e.g., software
developer, research programmer, etc.), it is not straightforward to
identify people who take the role of an RSE in open-source software
repositories and obtain a comprehensive view of their work [2, 8].
To identify RSEs and RSE-like contributors in these repositories, we
will develop and validate heuristics, using ground-truth data from
the privately-funded RSE teams and other sources. Using analytical
techniques such as interrupted time-series analysis, we will mea-
sure the impact of RSEs on multiple dimensions: software practices
3https://de-rse.org/

(testing, continuous integration, code review, documentation), de-
velopment activity (commit patterns, issue resolution speed), scien-
tific outputs (publications mentioning the software, citation impact),
and community adoption (software reuse, external contributions).
To disambiguate common changes in software-development prac-
tices over time from those changes that occur specifically because
of RSE involvement, we aim to compile matched control groups of
scientific software projects without RSE involvement to support
causal inference about RSE impact.

4 Preliminary Results
At the time of submission, our study had just started. Our very pre-
liminary data so far suggest that different institutions adopt distinct
collaboration models. For example, team sizes vary significantly,
from three RSEs supporting individual scientists to larger teams
working onmulti-institutional projects. Dependent on project scope
and purpose, RSEs’ working-time allocations also vary: While
some RSEs adopt flexible working hours to accommodate scientists’
schedules, in the majority of our 26 investigated projects, their
commit patterns show that they tend to adhere to traditional 9-to-5
working hour schedules (in contrast to the majority of the scientists
who contribute to the source code in these projects). At this time,
these findings are specific to the teams investigated in this study
and may not capture patterns of RSE contributions in other teams
and contexts.

Our initial set of interviews (N=5) with organizers and man-
agers of these RSE teams has also surfaced dynamics relevant to
our larger questions of collaboration and impact. Firstly, our inter-
locutors described the demand on RSEs to perform multiple roles
(to wear “different hats”) as an important competency for making
RSE projects go well. In particular, RSEs must manage frequent
and ongoing user engagement and requirements development in
addition to software-development work. Secondly, different RSEs
had different levels of experience with both research processes
and industry development processes, having differently understood
benefits for enabling collaborations with researchers.

5 Expected Contributions and Outlook
With our research, we aim to make several important contributions
to understanding the RSE role in scientific software development.
Our work provides insights into the development processes, col-
laboration dynamics, and technical and scientific impacts of RSEs.
Leveraging a mixed-methods approach, we triangulate findings
from qualitative interviews and quantitative repository analysis
to build a comprehensive picture of RSE influence. This will en-
able us to develop heuristics for identifying RSEs in open-source
repositories, facilitating future large-scale studies. Our findings will
inform researchers and funding agencies on the benefits and chal-
lenges of research software engineering in scientific ecosystems,
targeting an improvement in the interaction between scientists and
RSEs, fostering knowledge transfer, and promoting the adoption of
software-engineering best practices in scientific research.
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