
Understanding the Impact of Research Software Engineers on
Scientific Software Development: A Mixed-Methods Study

Thomas Bock
Carnegie Mellon University

Pittsburgh, PA, USA

Will Sutherland
University of Washington

Seattle, WA, USA

Curtis Atkisson
University of Washington

Seattle, WA, USA

Anissa Tanweer
University of Washington

Seattle, WA, USA

James D. Herbsleb
Carnegie Mellon University

Pittsburgh, PA, USA

Bogdan Vasilescu
Carnegie Mellon University

Pittsburgh, PA, USA

Abstract
Research Software Engineers (RSEs) have emerged as a critical pro-
fessional role bridging software engineering and scientific research.
Despite rapid growth in RSE positions globally, their impact on
scientific software quality and productivity remains understudied.
We are conducting a mixed-methods study combining qualitative
interviews with quantitative analysis of software repositories to
understand how RSEs influence scientific software development.
Our study examines RSE processes at research universities to un-
derstand collaboration challenges, impacts on software quality and
sustainability, adoption of best practices, and effects on scientific
productivity and knowledge transfer between RSEs and scientists.
We present preliminary findings from this study, including both
qualitative and quantitative data.

CCS Concepts
• Software and its engineering→ Collaboration in software
development; Software creation and management.

Keywords
Research Software Engineers, Scientific Software, Mixed Methods

ACM Reference Format:
Thomas Bock, Will Sutherland, Curtis Atkisson, Anissa Tanweer, James D.
Herbsleb, and Bogdan Vasilescu. 2026. Understanding the Impact of Research
Software Engineers on Scientific Software Development: A Mixed-Methods
Study. In 1st International Workshop on Software Engineering and Research
Software (SERS ’26), April 12–18, 2026, Rio de Janeiro, Brazil. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3786172.3788360

1 Introduction
Science increasingly depends on software, with the quality of sci-
entific software profoundly influencing the replicability, validity,
and precision of scientific results [6]. The Research Software Engi-
neer (RSE) role has emerged to address the growing complexity of
scientific software development [1, 2]. RSEs bring deep software-
engineering expertise to scientific projects, bridging the gap be-
tween traditional software development and scientific practice [12,

This work is licensed under a Creative Commons Attribution 4.0 International License.
SERS ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2404-6/2026/04
https://doi.org/10.1145/3786172.3788360

13]. While thousands of RSEs now work on scientific projects glob-
ally [5] and the rapid expansion of RSE recruitment strongly sug-
gests that scientists and funding agencies see value in this approach,
the extent of impact on technology development and scientific pro-
ductivity has not been systematically investigated [4].

To fill this gap, we will address four key research questions in
our full study: (1) What challenges do RSEs and scientists face in
effective collaboration? (2) How does RSE collaboration impact soft-
ware development processes and culture? (3) What is the technical
impact on code quality and productivity? (4) What is the scientific
impact on scholarly output and software reuse? Answering these
questions is critical as funding agencies and research institutions
increasingly invest in RSE positions and centers. Here, we present
preliminary findings for this larger study. Specifically, we draw
on preliminary qualitative and quantitative data to outline some
dynamics and dimensions of variation between RSE groups that are
relevant to the questions of collaboration and impact stated above.

2 Background
Challenges in Scientific Software Development. Scientific software

development faces unique challenges that distinguish it from tra-
ditional software engineering. Requirements are often emergent
rather than well-defined upfront, evolving as scientific understand-
ing develops [12, 14]. Establishing shared understanding of software
requirements across scientific and software-engineering domains
and cultures proves difficult [13]. Scientists typically lack formal
training in software-engineering practices, while software engi-
neers may struggle to understand domain-specific scientific con-
cepts and methods. The scientific “reputation economy” creates
misaligned incentives, driving researchers to prioritize publica-
tions over the relatively low-payoff work of ensuring software
sustainability beyond a particular publication [9]. Making scientific
software publicly available presents additional challenges, as soft-
ware intended for reuse must address generalized use cases beyond
a particular publication, while also requiring considerable extra
work such as documentation, tutorials, user support, and continued
maintenance [10, 11, 15].

TheRSEMovement. Establishing the RSE role began over a decade
ago [1] and has experienced dramatic growth in recent years [5].
Professional associations like the US Research Software Engineer
Association1, the Society of Research Software Engineering2 in the

1https://us-rse.org/
2https://society-rse.org/

https://orcid.org/0000-0001-6906-3489
https://orcid.org/0000-0002-3731-3129
https://orcid.org/0000-0003-3575-6871
https://orcid.org/0000-0002-8868-4288
https://orcid.org/0000-0002-7159-7524
https://orcid.org/0000-0003-4418-5783
https://doi.org/10.1145/3786172.3788360
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3786172.3788360
https://us-rse.org/
https://society-rse.org/


SERS ’26, April 12–18, 2026, Rio de Janeiro, Brazil Bock et al.

UK, or the German Society for Research Software3 now provide
advocacy, support, and resources to the profession [3, 7]. These
organizations have focused on creating professional identity for
RSEs and establishing recognition for their role in scientific projects.
However, despite growth and institutional support, the impact of
RSEs on technical development and scientific productivity has not
been systematically investigated using rigorous empirical methods.
To improve the understanding and impact of RSEs, researchers
across the globe started to establish Research Software Engineering
Research as a dedicated new research area [7], and so our study
also falls into this research area.

3 Methodology
Research Design. Our study employs a mixed-methods approach

combining qualitative interviews with quantitative repository anal-
ysis. Our preliminary data collection focuses on three privately-
funded RSE teams at large research universities in the US. At these
universities, RSEs work on centralized teams and engage research
labs in short (3–15 months) projects, rather than being embedded
in research labs long term. For quantitative analysis, we will also
include a broader sample of RSEs, as we will describe below.

Qualitative Component. We will conduct approximately 80 in-
terviews (one per person) with RSEs and RSE managers as well as
researchers who worked with RSEs in the past. These will begin
with purposive sampling of RSEs in dedicated RSE groups, sam-
pling for variety in scientific domains, RSE team size, and the RSE’s
model of engagement with researchers (short rapid engagements
versus being embedded long-term with a research group, for in-
stance). We will then pursue snowball sampling of researchers
who have worked with these groups in the past. Interviews will be
semi-structured, with common questions across all interviews to
allow for comparison as well as some questions tailored to differ-
ent positions, such as for managers or for RSEs involved in short
versus long-term engagements. Interview protocols and qualitative
coding analyses will focus on challenges in scientist–RSE collabo-
ration, domain-knowledge transfer, how RSEs connect scientists to
software-engineering communities of practice, and the diffusion
and persistence of software-engineering best practices. The quali-
tative component will also direct us towards aspects of the digital
signature of RSEs (i.e., characteristics and behavioral aspects that
can help us to identify RSEs, such as their tasks or working times)
that we would otherwise miss.

Quantitative Component. We examine repository data from open-
source scientific software projects, including commit histories, con-
tributor information, issue discussions, and source-code evolution
over time. Because RSEs are not always explicitly identified as
such and sometimes work under different job titles (e.g., software
developer, research programmer, etc.), it is not straightforward to
identify people who take the role of an RSE in open-source software
repositories and obtain a comprehensive view of their work [2, 8].
To identify RSEs and RSE-like contributors in these repositories, we
will develop and validate heuristics, using ground-truth data from
the privately-funded RSE teams and other sources. Using analytical
techniques such as interrupted time-series analysis, we will mea-
sure the impact of RSEs on multiple dimensions: software practices
3https://de-rse.org/

(testing, continuous integration, code review, documentation), de-
velopment activity (commit patterns, issue resolution speed), scien-
tific outputs (publications mentioning the software, citation impact),
and community adoption (software reuse, external contributions).
To disambiguate common changes in software-development prac-
tices over time from those changes that occur specifically because
of RSE involvement, we aim to compile matched control groups of
scientific software projects without RSE involvement to support
causal inference about RSE impact.

4 Preliminary Results
At the time of submission, our study had just started. Our very pre-
liminary data so far suggest that different institutions adopt distinct
collaboration models. For example, team sizes vary significantly,
from three RSEs supporting individual scientists to larger teams
working onmulti-institutional projects. Dependent on project scope
and purpose, RSEs’ working-time allocations also vary: While
some RSEs adopt flexible working hours to accommodate scientists’
schedules, in the majority of our 26 investigated projects, their
commit patterns show that they tend to adhere to traditional 9-to-5
working hour schedules (in contrast to the majority of the scientists
who contribute to the source code in these projects). At this time,
these findings are specific to the teams investigated in this study
and may not capture patterns of RSE contributions in other teams
and contexts.

Our initial set of interviews (N=5) with organizers and man-
agers of these RSE teams has also surfaced dynamics relevant to
our larger questions of collaboration and impact. Firstly, our inter-
locutors described the demand on RSEs to perform multiple roles
(to wear “different hats”) as an important competency for making
RSE projects go well. In particular, RSEs must manage frequent
and ongoing user engagement and requirements development in
addition to software-development work. Secondly, different RSEs
had different levels of experience with both research processes
and industry development processes, having differently understood
benefits for enabling collaborations with researchers.

5 Expected Contributions and Outlook
With our research, we aim to make several important contributions
to understanding the RSE role in scientific software development.
Our work provides insights into the development processes, col-
laboration dynamics, and technical and scientific impacts of RSEs.
Leveraging a mixed-methods approach, we triangulate findings
from qualitative interviews and quantitative repository analysis
to build a comprehensive picture of RSE influence. This will en-
able us to develop heuristics for identifying RSEs in open-source
repositories, facilitating future large-scale studies. Our findings will
inform researchers and funding agencies on the benefits and chal-
lenges of research software engineering in scientific ecosystems,
targeting an improvement in the interaction between scientists and
RSEs, fostering knowledge transfer, and promoting the adoption of
software-engineering best practices in scientific research.

Acknowledgments
This work is supported by the Alfred P. Sloan Foundation and
Schmidt Sciences (https://sloan.org/grant-detail/g-2025-25171).

https://de-rse.org/
https://sloan.org/grant-detail/g-2025-25171


Understanding the Impact of Research Software Engineers on Scientific Software Development: A Mixed-Methods Study SERS ’26, April 12–18, 2026, Rio de Janeiro, Brazil

References
[1] Rob Baxter, Neil Chue Hong, Dirk Gorissen, James Hetherington, and Ilian

Todorov. 2012. The Research Software Engineer. In Digital Research.
[2] Alys Brett,Michael Croucher, Robert Haines, SimonHettrick, JamesHetherington,

Mark Stillwell, and Claire Wyatt. 2017. Research Software Engineers: State of the
Nation Report 2017. Engineering & Physical Sciences Research Council (EPSRC)
(2017).

[3] Jeffrey C. Carver, Ian A. Cosden, Chris Hill, Sandra Gesing, and Daniel S. Katz.
2021. Sustaining Research Software via Research Software Engineers and Profes-
sional Associations. In Int. Workshop on Body of Knowledge for Software Sustain-
ability (BoKSS). IEEE, 23–24.

[4] Jeffrey C. Carver, Nic Weber, Karthik Ram, Sandra Gesing, and Daniel S. Katz.
2022. A Survey of the State of the Practice for Research Software in the United
States. PeerJ Computer Science 8 (2022), e963.

[5] Ian A. Cosden, Kenton McHenry, and Daniel S. Katz. 2022. Research Software
Engineers: Career Entry Points and Training Gaps. Computing in Science &
Engineering 24, 6 (2022), 14–21.

[6] James H. Davenport, John Grant, and Catherine M. Jones. 2020. Data Without
Software Are Just Numbers. Data Science Journal 19 (2020), 3.

[7] Michael Felderer, Michael Goedicke, Lars Grunske, Wilhelm Hasselbring, Anna-
Lena Lamprecht, and Bernhard Rumpe. 2025. Investigating Research Software
Engineering: Toward RSE Research. Communications of the ACM 68, 2 (2025),
20–23.

[8] Florian Goth, Renato Alves, Matthias Braun, Leyla Jael Castro, Gerasimos Chour-
dakis, Simon Christ, Jeremy Cohen, Stephan Druskat, Fredo Erxleben, Jean-
Noël Grad, Magnus Hagdorn, Toby Hodges, Guido Juckeland, Dominic Kempf,

Anna-Lena Lamprecht, Jan Linxweiler, Frank Löffler, Michele Martone, Moritz
Schwarzmeier, Heidi Seibold, Jan Philipp Thiele, Harald von Waldow, and Saman-
tha Wittke. 2025. Foundational Competencies and Responsibilities of a Research
Software Engineer: Current State and Suggestions for Future Directions. F1000Re-
search 13 (2025), 1429.

[9] James Howison and James D. Herbsleb. 2013. Incentives and Integration in
Scientific Software Production. In Proc. Int. Conf. Computer Supported Cooperative
Work (CSCW). ACM, 459–470.

[10] Xing Huang, Xianghua Ding, Charlotte P. Lee, Tun Lu, and Ning Gu. 2013. Mean-
ings and Boundaries of Scientific Software Sharing. In Proc. Int. Conf. Computer
Supported Cooperative Work (CSCW). ACM, 423–434.

[11] Andrew B. Neang, Will Sutherland, David Ribes, and Charlotte P. Lee. 2023. Or-
ganizing Oceanographic Infrastructure: The Work of Making a Software Pipeline
Repurposable. Proceedings of the ACM on Human-Computer Interaction (HCI) 7,
CSCW1 (2023), 79.

[12] Judith Segal. 2005. When Software Engineers Met Research Scientists: A Case
Study. Empirical Software Engineering (EMSE) 10, 4 (2005), 517–536.

[13] Judith Segal. 2009. Software Development Cultures and Cooperation Problems:
A Field Study of the Early Stages of Development of Software for a Scientific
Community. CSCW 18, 5 (2009), 581.

[14] William Sutherland-Keller. 2025. Research Software Systems: Exploration and
Infrastructure in Observational Cosmology. Ph. D. Dissertation. University of
Washington.

[15] Erik H. Trainer, Chalalai Chaihirunkarn, Arun Kalyanasundaram, and James D.
Herbsleb. 2015. From Personal Tool to Community Resource: What’s the Extra
Work and Who Will Do It?. In Proc. Int. Conf. Computer Supported Cooperative
Work (CSCW). ACM, 417–430.


	Abstract
	1 Introduction
	2 Background
	3 Methodology
	4 Preliminary Results
	5 Expected Contributions and Outlook
	Acknowledgments
	References

