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ABSTRACT

Developers from open-source communities have reported high
stress levels from frequent demands for features and bug fixes
and from the sometimes aggressive tone of these demands. Toxic
conversations may demotivate and burn out developers, creating
challenges for sustaining open source. We outline a path toward
finding, understanding, and possibly mitigating such unhealthy
interactions. We take a first step toward finding them, by developing
and demonstrating a measurement instrument (an SVM classifier
tailored for software engineering) to detect toxic discussions in
GrTHUB issues. We used our classifier to analyze trends over time
and in different GITHUB communities, finding that toxicity varies
by community and that toxicity decreased between 2012 and 2018.

1 INTRODUCTION

Sustaining open-source software is an important and difficult chal-
lenge. On the one hand, open source has a critical role in our soft-
ware infrastructure, affecting directly or indirectly almost every
software product and facet of modern life. Some argue that open
source provides just as important infrastructure as roads and bridges
do for the economy, yet its importance, and our dependence on
it, are often not recognized [9]. On the other hand, open-source
software, as all software, needs to be maintained. Continuous effort
is needed to fix bugs and vulnerabilities and to evolve the software
to accommodate new requirements to stay relevant. How to sustain
such effort, be it from volunteers or through explicit support from
corporations, is an open, controversially discussed problem.
Open-source practitioners have been raising awareness of stress
and burnout. Community members are openly worried about men-
tal and physical well-being of contributors and about exploitation
of volunteers, including self-exploitation with the vague promise
of building a profile that could help them find a better job, as evi-
denced by many recent blog posts, talks, podcasts, even entire con-
ferences [e.g., 5, 17, 25, 27, 37]. A common theme is that open-source
maintainers feel overwhelmed by the number of requests they re-
ceive (e.g., bug reports, support requests). In addition, the trans-
parency on social coding websites like GITHUB raises stakes [6] in
that mistakes are visible and can affect a contributor’s reputation.
Even more important, more than just volume of requests and
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Contributor

- commented on Apr 14, 2016

| have been waiting 2 years for Angular to track the "progress" event and it still cant get it
right?!?!

What kind of attitude is that? See it like this, you had 2 years to provide a PR.

Figure 1: Excerpt from an issue discussion on GitHub.

high stakes, many maintainers complain about the tone of these in-
teractions, sometimes formulated aggressively or from a position of
entitlement, as in Figure 1. For developers, this can be draining, e.g.,
“GitHub notifications are a constant stream of negativity [...] Reading
through these [...] can be mentally and emotionally exhausting” [25].
Heightened levels of stress brought on by unhealthy interactions
may make it harder for projects to attract, include, and retain a
diverse talent pool. We argue that studying, understanding, and
mitigating stress and burnout among open-source developers is an
important and understudied research field. There are many impor-
tant research questions, including: How prevalent is self-reported
stress and burnout among open-source contributors? What are the
causes of stress in open-source? How do they compare to other work
environments? When is stress most damaging to open-source con-
tributors and who is most at risk? What interventions are effective?

Our vision is to answer such questions empirically using mixed
methods, relying heavily on public trace data. The advantages of
such a computational approach are manifold. First, analyzing trace
data avoids the recall errors and response biases typical of surveys
and interviews. Second, it makes the ethical choice of avoiding to
burden already potentially stressed individuals by asking them to
recall or envision stressful interactions. Third, analyzing large, mul-
tidimensional samples offers statistical opportunities for modeling
and hypothesis testing that are typically not present in smaller and
simpler data sets from experiments, surveys, or interviews. Last but
not least, operationalizing open-source stress factors using trace
data paves the way to develop automated, non-invasive measures
and models to help identify contributors that show signs of stress
and projects at risk, as well as to design automated interventions.

In this paper, we take a first step towards realizing this vision,
by developing and demonstrating a critical research instrument (a
classifier) to detect toxic language in open-source issue discussions.
Toxic language in open source can manifest in multiple ways, includ-
ing hate speech and microaggressions found also elsewhere online
(e.g., Youtube), but also through open-source-specific displays of en-
titlement and urgency related to timing expectations as in Figure 1.

Our work builds on prior research on detecting toxic language—
from hate speech to microaggressions—in the Natural Language
Processing (NLP) community [3, 12, 32], making two main con-
tributions. First, we show that toxic GITHUB issue discussions (in
English) can be identified using a combination of pre-trained detec-
tors of negative sentiment, anger, impoliteness, and toxicity. Second,
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we show that classification accuracy can be further improved by
domain adaptation, tailoring our detector to the context of software-
engineering discussions. We demonstrate the potential of our clas-
sifier with three preliminary empirical studies. Our replication
package is at https://github.com/CMUSTRUDEL/toxicity-detector.

2 RELATED WORK

We build on prior work that (a) has studied motivations of develop-
ers and users to see why conflict might arise and (b) has developed
NLP tools to detect different forms of toxicity in different contexts.

Volunteering, motivations, and conflicts in open source. Re-
searchers have extensively studied motivations of developers con-
tributing to open source [e.g., 18, 24], revealing a multitude of
intrinsic and extrinsic reasons, such as working on projects they
enjoy or find useful. Despite increasing commercialization and pro-
fessionalization, many contributors are volunteers [19, 38]. Yet,
among the many reasons to contribute to open source, building
one’s professional reputation and signaling one’s skills to potential
employers are common ones [28].

At the same time, open source is broadly used in commercial
projects, even for mission-critical components. Only a small num-
ber of users of an open-source project contribute to that project [19].
Given this asymmetry, high stakes, and the lack of a contractual
relationship, users that demand changes from the project, be it addi-
tional features, specific changes (e.g., perceived bugs or limitations),
or better documentation, may be perceived as entitled [25, 26].
Within developer communities, there have been reports of insults
and attacks [1, 21]. Beyond concerns for the maintainer’s well being,
toxic interactions are concerning for recuiting contributors [34].

Detecting Toxicity. The NLP community has achieved significant
advances at detecting different forms of negativity and toxicity in
text, e.g., in movie reviews or social-media interactions, on which
we build for our own toxicity detection instrument.

In the software-engineering community, sentiment analysis [30]
is a popular such technique, used to analyze, among others, issue
discussions, pull requests, email messages, and forum posts [e.g.,
4, 16]. Similar approaches have been used to detect anger in issue
reports [13]. Software engineering research has shown though that
a sentiment-analysis classifier for software engineering tasks needs
to be trained specifically on software engineering content [22],
because traditional classifiers assign negative weights to many
technical phrases such as “kill a process”

There is also related work on detecting toxicity in language, in-
cluding hate speech, abuse, microagressions, and harassment [11,
36]. For example, hate-speech detection specifically looks for strong,
toxic interactions [15], trained on comments in online forums [8, 31].
As for sentiment analysis, we expect that we will have to adjust exist-
ing classifiers for the software engineering context, where toxic in-
teractions may be less direct, related to technical issues, or to timing.

3 DATA AND METHODS

At a high level, we manually labeled a sample of GITHUB issue
comments and trained a classifier to identify toxic comments, using
features inspired by prior research on detecting toxic language in
online communities. This section details the individual steps.
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Table 1: Features used by our classifier.

Feature Description

Length Comment length, in characters

Frequency TF-IDF weighted word frequencies

Politeness As per Stanford’s politeness detector [7]

Toxicity As per Google’s Perspective API (perspectiveapi.com)

Subjectivity, Polarity ~ As per the lexicon-based sentiment analysis Python library
TextBlob (textblob.readthedocs.io)

Sentiment As per the lexicon and rule-based sentiment analysis NLTK
library [20] (VADER algorithm)
Anger Number of anger words from the LIWC lexicon [35]

Data. With a few exceptions from blog posts, online discussions,
and interviews [e.g., 5], no labeled data for toxic language in open
source exists. We curated a dataset manually and incrementally.
Toxic interactions seem to be rare but very stressful; given the low
rate, random sampling seemed ineffective, so we identified two
different strategies. First, we queried the GiTHUB API to identify
issue threads that had been locked as “too heated”. Among the
118,629 GITHUB projects with any issues (according to our copy
of GHToRRENT [14]), we found 294 805 locked issues of which
654 where explicitly locked as “too heated” (providing a reason
for locking is a very recent GITHUB feature). Issue discussions
locked as too heated often contain toxic behavior that was called
out, e.g., “I'm locking the conversation. Inappropriate/unprofessional
conduct will not be tolerated.” We manually reviewed all the ones
written in English, labeling their comments as either toxic or not
(by extrapolating, we also labeled the issue as a whole as toxic,
if at least one comment was toxic). Second, inspired by patterns
found earlier, we searched through GHTORRENT issue comments
for reactions, by maintainers, containing the word ‘attitude’ (e.g.,
Figure 1) and manually labeled them. In the end, using the two
strategies we compiled a data set of 386 issue threads, 167 of which
contain at least one toxic comment each, manually labelled.

After labelling, we split our data in two, half for training and half
for testing. To increase the representativeness (our previous sam-
pling was non-random) and the realism (toxic issues are relatively
rare) of our training data, we further manually labelled 300 random
issue threads, none of which were toxic, adding 225 of them (written
in English, having at least one comment each) to the training set.

Classifier Features. The domain-specificity of toxicity in open-
source suggests that a custom approach to classification is needed.
Since we are limited by the relatively small amount of labelled data
available for training, based on our review of the NLP literature
we attempt to capture open-source toxicity using a combination
of general pre-trained sentiment analysis, politeness, and abusive
language detectors; for example, we use Google’s pre-trained Per-
spective API for detecting “rude, disrespectful, or unreasonable com-
ments” in non-software-specific online discussions (e.g., Wikipedia).
Our full set of features is described in Table 1.

Training. Our classification task is to assign a toxic or non-toxic
label to a given issue comment (and by extension to the issue).
To this end, we trained an SVM classifier. SVMs are often used to
classify text [23], they tend to perform on par with other statisti-
cal classifiers and they outperform state-of-the-art neural network
classifiers in low-resource training data scenarios like ours.

We used 10-fold nested cross validation to learn hyperparameters
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and evaluate the model [10]. Because of the imbalance in the train-
ing data, for each split, we adjusted the class weights, with a ratio r
between non-toxic and toxic examples, where r is a hyperparame-
ter. We grid searched over SVM hyperparameters y = {1, 2, 2.5, 3},
C ={0.01,0.05,0.1,0.5,1,10}; and r = {1, 1.5, 1.75, 2, 2.25}.

Tuning. A commonly recognized risk with NLP models is poor per-
formance outside of the context where they have been trained [22].
For example, ‘abort’ and ‘kill” have negative connotations in general
English, but are mostly neutral in software engineering, e.g., when
referring to processes, leading to inaccurate predictions.

To alleviate this risk, we identified, using log odds with Dirichlet
prior [29], words that are significantly overrepresented in software
engineering language compared to general English, and replaced
those words with a neutral filler word, so that the sentence struc-
ture would not be modified. Specifically, log odds with Dirichlet
prior assumes words follow a Dirichlet distribution, and uses the
distribution of software-engineering words along with the distri-
bution of regular English words to estimate a confidence level for
whether a word is software-engineering-specific; we use the typical
a < 0.05 cutoff. Our software engineering corpus comes from a
random sample of 10K GrTHUB issues, and our generic English
corpus comes from the Python library wordfreq [33], which uses
seven corpora, including Wikipedia. For computational reasons, we
apply this correction as a post-processing step, both at training and
inference time, and only for comments initially predicted by our
classifier as toxic, after which we re-compute all the features and
re-classify the now-modified comment.

Evaluation. To quantify model accuracy during cross-validation,
we use the fy 5 score, because of the imbalance of our dataset and
to value precision above recall. Of the different feature combina-
tions we experimented with, our model performed best when using
Politeness, Perspective, and after the tuning and post-processing
steps described above. Our best classifier had a precision of 0.91 and
arecall of 0.42. Feature ablation experiments show that removing
features from our model decreases model performance, and adding
features to our model does not improve performance.

On a held-out test set (half the labelled data), our model achieves
75 % precision and 35 % recall. We additionally tested our classifier
on 100,000 randomly sampled GITHUB issues. We manually labeled
100 randomly selected issues that were predicted as toxic to estimate
the precision of the classifier. We found that the classifier achieved
50 % precision on the random issues. This indicates that the classifier
performs reasonably well outside of the training and validation sets.
Some noise is acceptable for studying toxicity trends in the wild,
assuming that wrong classifications are randomly distributed.

4 PRELIMINARY EMPIRICAL STUDIES

While our long-term agenda is much broader, we conducted three
preliminary studies of toxicity in open-source projects to demon-
strate possible uses of our measurement instrument. We study
(1) whether toxic interactions in issue discussions have changed
over time, (2) whether corporate and non-corporate projects are
affected differently, and (3) whether communities around different
programming languages are affected differently. We report initial
observations, but leave a deeper exploration of these issues (e.g.,
the influence of a community’s culture) for future work.
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Figure 2: Rate of toxic issues over time decreases gradually
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Figure 3: Corporate projects are less toxic than non-
corporate projects; there are differences between languages.

Toxicity Over Time. We perceive the public conversations about
toxicity, stress, and burnout in open source as a recent phenomena.
We are interested to see whether this public attention corresponds
with a measurable increase in toxic interactions. To that end, we use
our instrument to automatically classify issue discussions in a lon-
gitudinal study. We classify all the 1732 124 issues in GHTORRENT
from the second Monday of each month between 2012-2018 (this
sampling strategy accounts for confounds such as the day of the
week or time of the month). As expected, toxic issues are rare, with
about 6 for every 1000 issues. The rate of toxic issues decreases
over time, as plotted in Figure 2. While we leave a deeper analysis
of reasons for future work, we suspect that increased awareness of
the issue may both cause a lower frequency of toxic interactions
and more public discussions about the remaining cases.

Corporate vs. Non-Corporate. Suspecting that toxicity is tar-
geted more at volunteers, we explore whether corporate-run projects
are less exposed to toxic issue discussions than non-corporate
projects. Specifically, we selected the 50 projects with the largest
number of employees from corporations actively contributing (us-
ing email accounts to detect corporate affiliations) and selected the
top 50 projects by number of stars not associated with a corpora-
tion. We then labeled 949 739 issues from these projects using our
classifier. As shown in Figure 3, our results indicate that the rate of
toxic issue discussions is substantially lower for corporate projects
(statistically significant, Wilcoxon p < .001). We suspect that the
increasing number of less toxic corporate projects on GITHUB may
lead to the overall reduced rate of toxic interactions, but again, we
leave deeper explorations to future work.

Toxicity by Community. Cultural differences between commu-
nities [2] may also affect the degree of toxic interactions. We use
programming languages as a proxy for communities and classi-
fied all 872 565 issues from the 30 most popular projects in each of
7 languages. Our findings (Figure 3) suggest differences in toxicity
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among communities, with R having the lowest rate of toxic discus-
sions, Ruby the highest, and Lua the widest variance. Differences
among communities and projects suggests that future research can
study the role of community values, and the effectiveness of existing
practices and interventions in natural experiments, where possible.

Threats to Validity. Our study is limited to issue discussions on
GrtHus tracked in GHTORRENT. It does not include other forms
of communication, such as forums, mailing lists, or face-to-face
interactions at conferences. While we evaluated our classifier in
Section 3, due to the large number of issues analyzed in our study,
we did not verify all classification results. Although we have little
reason to expect systematic bias, there is a risk that our classifier
may perform differently in different subpopulations.

Additionally, our classifier has relatively low precision on ran-
dom issues, and low recall on the held-out test set. This might be a
result of overfitting to the training set. A larger training and vali-
dation set should be used to reduce these issues. Larger validation
sets allow for more fine tuning of parameters, which could make
the classifier more accurate. Data with more varied sources could
also improve the classifier.

5 CONCLUSION

We argue that developer stress and burnout are important threats to
open-source sustainability, and suggest a larger research program
to find, understand, and mitigate unhealthy interactions. As a key
component of such a research program, we report on initial steps to
detect toxic interactions in GITHUB issue discussions, which seem
particularly stressful to maintainers. We design a classifier and
demonstrate its utility with three preliminary studies. Our results
show promise, and could be used to inform the design of automated,
non-invasive measures and models to both help identify contrib-
utors and projects exposed to higher levels of toxicity (and likely
also stress), as well as to intervene to avoid such toxic comments in
the first place (e.g., by flagging them for moderation before being
posted). We are excited to see such systems developed, evaluated,
and deployed in the near future.
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