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ABSTRACT
Architecture views have long been used in software industry
to systematically model complex systems by representing
them from the perspective of related stakeholder concerns.
However, consensus has not been reached for the architec-
ture views between automotive architecture description lan-
guages and automotive architecture frameworks. Therefore,
this paper presents the automotive architecture views based
on an elaborate study of existing automotive architecture de-
scription techniques. Furthermore, we propose a method to
formalize correspondence rules between architecture views
to enforce consistency between architecture views. The ap-
proach was implemented in a Java plugin for IBM Rational
Rhapsody and evaluated in a case study based on the Adap-
tive Cruise Control system. The outcome of the evaluation
is considered to be a useful approach for formalizing cor-
respondences between different views and a useful tool for
automotive architects.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software architectures

Keywords
automotive architecture; architecture framework; architec-
ture view; correspondence rule

1. INTRODUCTION
An architecture framework provides conventions, princi-

ples and practices for the description of architectures within
a specific domain and/or community of stakeholders [23].
The benefits of existing architecture frameworks such as
Kruchten’s 4+1 View Model [27], MODAF [32], TOGAF
[1], and RM-ODP [22] drive the creation of an architec-
ture framework for the automotive industry, which faces the
challenge of tackling increasing complexity and cost of au-
tomotive electronic and software components. Currently, an
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automotive architecture framework [5] and an architecture
design framework [19] are being defined with the goal of
establishing a standard architecture framework for the au-
tomotive industry. However, in these frameworks, the defi-
nition of architectural elements including architecture view-
points, views, and correspondences have not been tackled
consistently with automotive Architecture Description Lan-
guages (ADLs). Furthermore, the architecture frameworks
remain still closed, i.e. difficult to extend with new stake-
holder concerns, viewpoints, and views.

1.1 Automotive Architectural Challenges
There are a number of issues which make the development

of automotive architecture framework challenging:

• Automotive embedded systems are categorized into
vehicle-centric functional domains (including power-
train control, chassis control, and active/passive safety
systems) and passenger-centric functional domains (cov-
ering multimedia/telematics, body/comfort, and hu-
man machine interface (HMI)) [30]. Although each
functional domains need to tackle different system con-
cerns (e.g. the power train control enables the vehicle
longitudinal propulsion of the vehicle, body domain
supports airbag, wiper, lighting etc. for the vehicle
users), all the integrated functionalities must not jeop-
ardize the key vehicle requirements, e.g. a safe and
efficient way of transporting.

• ADLs like EAST-ADL [7], AADL [18], and AML [3]
have been defined for the automotive industry. Ac-
cording to the ISO/IEC/IEEE-42010 or ISO-42010 [23],
an ADL provides one or more model kinds (data flow
diagrams, class diagrams, state diagrams etc.) as a
means to frame some concerns for its stakeholders.
An ADL can consist of model kinds, which may be
organized into architecture views. Architectural ele-
ments e.g. architecture viewpoints, views, and corre-
spondences of the automotive ADLs are not explic-
itly defined. This results in the loose relation between
automotive ADLs and architecture frameworks (which
can be improved by refining the definition of the archi-
tecture elements of automotive ADLs and architecture
frameworks as defined in ISO-42010 standard [23]).

• The automotive industry is vertically organized [4],
which facilitates independent development of vehicle
parts. An automobile manufacturer (called an “orig-
inal equipment manufacturer”, or OEM) creates the



functional architecture and distributes the development
of the functional components to the suppliers, who im-
plement and deliver the software models and/or hard-
ware [4]. (Software models for each functional compo-
nent or subsystem can be developed in different ADLs
or programming languages, which may make the inte-
gration process at the OEM more cumbersome.) This
process requires common architecture frameworks be-
tween OEMs and suppliers or at least better formal-
ization of architecture views and consistency between
them.

1.2 Motivation
For the software architecture community, the consistency

checking for architecture views and architectural models has
been researched vigorously. Specifically, consistency check-
ing for UML diagram types is a well researched area. How-
ever, for the automotive architecture field, the issues dis-
cussed in the previous section and lack of standard ADL [10]
require the consistent definition of architectural elements
such as viewpoint, view, correspondence, and correspon-
dence rule. Therefore, we define the automotive architec-
tural elements as part of an Architecture Framework for Au-
tomotive Systems (AFAS) and formalize the correspondence
between the views extending the expression language.
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Figure 1: Framework characterizing relations between
viewpoints.

In Figure 1, we illustrate a framework, which comprises
three dimensions (Usage, Scope, and Mechanism) to charac-
terize relations between views [2]. From four main use cases
i.e. consistency checking, composition, tracing, and model
transformation, the consistency checking is the focus of this
paper. Consistency checking can be used to determine if
the information in several views does not conflict with each
other [2]. From three example uses of consistency check-
ing relations i.e. general-purpose consistency checking ap-
proaches include inconsistency checking of UML diagrams
[31]. The scope criteria in Figure 1 defines the range of view
relations. From four criteria for the scope, we focus on the
horizontal vs. vertical relations. Horizontal relation is used
for relations between views at the same abstraction level and
the vertical relation is used either relations between views at

different abstraction levels or relations between other repre-
sentations as requirements, detailed design, or implementa-
tion [2]. In this paper, our specific scope is in vertical rela-
tions ı.e. consistency checking between different abstraction
levels (e.g. refinement relation). Our approach is based on a
language-neutral approach that checks consistency between
horizontal and vertical view relations [29]. The mechanism,
the third criteria of the framework in Figure 1, categorizes
constructs in the architecture description to represent view
relations. Our approach extends the existing approach on
expression language [25,29].

1.3 Main Contributions and Outline
This research aims to refine existing automotive architec-

ture frameworks and to formalize the correspondence rules
between automotive architecture views. Specifically we fo-
cus on the refinement of the structural views, leaving the
other views and correspondences for future research. The
resulting conformance checking builds upon the hierarchical
reflexion model [25] and employs a notion of abstraction sim-
ilar to that used in the consistency checking approach [29].
As input, the consistency definition requires only a strength
ordering of the connectors offered by the specific ADL used.
In this way the consistency checking approach presented here
is applicable to many automotive ADLs. The second con-
tribution of this research is a prototype consistency check-
ing tool in the form of an IBM Rational Rhapsody plugin.
Specifically the plugin was developed for SysML [33] struc-
tural diagrams.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the architectural elements of the Architec-
tural Framework for Automotive Systems (AFAS) and ar-
chitecture views that we have defined based on existing ar-
chitecture description methods. The scope of the paper is
consistency issues between automotive structural views, in
particular between functional and software views. These
views are presented in the following section. Section 3 de-
scribes the ISO-42010 compliant correspondence rules be-
tween the functional and software views. Sections 4, 5,
and 6 present the consistency semantics, consistency def-
initions, and tool development, respectively. We evaluate
the approach in Section 7 and discuss related work in Sec-
tion 8. Finally, Section 9 summarizes our contributions and
discusses directions for future work.

2. AUTOMOTIVE ARCHITECTURAL
FRAMEWORK AND ITS VIEWS

Although automotive architectural frameworks have not
been standardized in automotive industry, different types of
architecture viewpoints and views as part of automotive ar-
chitectural frameworks have been introduced recently. The
Automotive Architecture Framework (AAF) was defined to
describe the entire vehicle system across all functional and
engineering domains [5]. This is the first architecture frame-
work for the automotive industry to pave the foundation
of a standardized architecture description. The AAF pro-
poses two sets of architectural viewpoints: mandatory or
general viewpoints and optional viewpoints. The mandatory
viewpoints and their respective views include Functional
viewpoint, Technical viewpoint, Technical viewpoint, Infor-
mation viewpoint, Driver/vehicle operations viewpoint, and
value net viewpoint. Optional viewpoints suggested by the



AAF are safety, security, quality and RAS (reliability, avail-
ability, serviceability), energy, cost, NVH (noise, vibration,
harshness), and weight viewpoints. The general viewpoints
are intended to be closer to the already proven frameworks
in other manufacturing industries e.g. RASDS1 and RM-
ODP2. Since the concepts are introduced in the first draft
of the AAF, there needs to be further research to identify
automotive specific architectural elements.

An Architectural Design Framework (ADF) is defined to
support the construction of an architecture framework for
the automotive industry [19]. The ADF supports only the
system design process (”Technical processes”) of the ISO/IEC
15288 standard3 and derived from the SAGACE method [19].
The ADF includes operational, functional, constructional,
and requirements viewpoints. Although the AAF and ADF
are defined to provide the basis for the architecture frame-
work for the automotive industry, architectural viewpoints
and views are extracted from architecture frameworks from
other industries. Therefore, we defined an Architectural
Framework for Automotive Systems (AFAS) as illustrated
in Figure 2 based on the study of proprietary automotive
architectural models and practices, draft automotive archi-
tecture frameworks as AAF and ADF, and automotive ADLs
like EAST-ADL [7], AADL [18], AML [3], and TADL [38].
The AFAS framework thus contains architectural viewpoints
and views complementary to automotive ADLs.

Figure 2: AFAS overview.

• Use case view shows the interaction between users and
the system.

• Feature view captures the vehicle product line features,
such as cruise control or bluetooth telephone connec-
tion, which can be configured for a product or a specific
vehicle.

1Reference Architecture for Space Data Systems:
http://public.ccsds.org/publications/
2 Reference Model of Open Distributed Processing:
http://www.rm-odp.net
3ISO/IEC 15288: http://www.15288.com/

• Functional view specifies a structural model that con-
tains a number of functions or subsystems realizing
features.

• Software view represents the software architecture, where
detailed descriptions and implementation of a function
is realized in software components or blocks.

• Hardware view represents the electrical/electronical (E/E)
hardware architecture. The hardware architecture typ-
ically consists of electronic control units (ECUs), sen-
sors, actuators and Controller Area Network (CAN)
busses.

• Topology view specifies the connections (buses e.g. CAN,
Local Interconnect Network (LIN) and wires etc.,) be-
tween ECUs, sensors, and actuators.

• Allocation view describes the mapping between soft-
ware components to ECUs.

• Timing view specifies timing analysis such as bus schedu-
lability analysis and CPU response time analysis views
of the system.

In Figure 2, the architectural elements of the AFAS are
similar to other architectural framework elements. Only
E/E architect, Driveability, Topology and Timing views are
specific for automotive domain. Although Functional and
Software views exist in other frameworks, the correspon-
dences between these views are specific to the automotive
domain. As mentioned in the Introduction, functional de-
composition is carried out by the OEMs and the functional
models are delivered to the supplier, who elaborates the
model in the software view and delivers back the functional-
ity in the ECU. The elaboration of the functionality in soft-
ware view may take several iterations e.g. the feedback to the
functional model of the OEM or changes in the functional
model need to be propagated into the supplier’s software
models. This process is currently rather document-centric
and error-prone [19]. Therefore, improving consistency be-
tween these views is a step towards a semantic consistency
of architectural modeling between OEMs and suppliers.

3. ARCHITECTURE CORRESPONDENCE
Consistency between views is one of the key problems in

functional and software architectures [17]. Although soft-
ware consistency has been a focus of the research community
for many years, it has not been fully addressed in the auto-
motive architecture views. Since more than a decade auto-
motive ADLs have been developed and automotive architec-
ture frameworks have been created recently. However, there
is no standard ADL and architecture framework for the auto-
motive industry yet. The architecture views and correspon-
dences between them are not explicitly defined, which hin-
ders semantic consistency of architectural modeling between
OEMs and suppliers. Therefore, in this section we define the
notion of correspondence and correspondence rules between
functional and software views with the purpose of express-
ing and enforcing consistency among these views. Although
OEMs and suppliers may use different ADLs, for illustrat-
ing the correspondences, functional and software models are
represented in SysML structural diagrams.

In the ISO-42010 standard [23], a correspondence defines
a relation between architecture description (AD) elements,

http://public.ccsds.org/publications/
http://www.rm-odp.net
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Figure 3: AD elements and correspondences [23].

which in the context of this paper is called the architec-
ture view. Architecture relations can be, e.g. refinement,
composition, consistency, and traceability [23]. Correspon-
dences can be governed by correspondence rules as depicted
in Figure 3. We specify below the correspondences, which
define a refinement relation between functional and software
views. Although the ISO-42010 standard does not specify a
format for correspondences, they can be defined as relations
and tables [16]. The following correspondence and corre-
spondence rule are defined based on the refinement relation
between architecture views (functional and software view)
as illustrated in Figure 4.

Figure 4: Example of functional and software views.

Consider functional and software views of a system S as a
functional view, FN(S), and a software view, SW(S). Given
that FN(S) includes functional components, fn1, . . . , fnn

and SW(S) has software components, sw1, . . . , swr, a corre-
spondence expressing which functional components are re-
fined by which software components is specified in Table 1.

The correspondence rule for the refinement correspon-
dence between functional and software views is:

R1: Every functional component, fn, defined by the
functional view FN(S), needs to be refined by one or more

Table 1 Refinement correspondence.

SW(S) refines FN(S)
See rule: R1

sw3 fn3

sw5 fn5

software components, sw, as defined by the software view
SW(S) of a system S.

In Figure 4 and Table 1, we have for example sw3 refines
fn3 , and sw5 refines fn5.

4. CONSISTENCY SEMANTICS
Checking the consistency between the functional view and

the software view involves checking the refinement corre-
spondence between a high-level model and a low-level model.
To perform this check, it suffices to perform a model trans-
formation of the refined model into a model with the same
level of abstraction as the high-level model. In the hierar-
chical reflexion model [25], this transformation is referred
to as a lifting operation. Lifting abstracts from the details
inserted into the refinement, leaving only information rele-
vant for comparison with the high-level model. In terms of
static models, this requires that for every entity present in
the high-level model, the relationship present in the low-level
model must be derived. The high-level model can then be
directly compared with the lifted model. Possible inconsis-
tencies are relations which exist in the high-level model but
not in the lifted model, or relations which exist in the lifted
model but not in the high-level model. These inconsistencies
are referred to as absences and divergences, respectively, as
depicted in Figure 5.

(a) Absence (b) Divergence

Figure 5: Absence and divergence inconsistencies

To perform the lifting operation, we first generalize the
hierarchical reflexion model. This generalization is neces-
sary because the ADLs used in the automotive industry are
more expressive than what can be accommodated by the
reflexion model itself, where only partof (e.g. composition)
and reference (e.g. dependency) relation types are consid-
ered. Specifically, rather than distinguishing relations, we
impose a strength ordering on ADL connectors. This not
only generalizes the vocabulary of the model, but also allows
an extended role of transitivity in the model to more con-
nector types than that used in the reflexion model, therefore



substantially increasing the expressiveness of the consistency
definition.

To illustrate the role of connector strength, Figure 6 de-
picts two similar functional models in SysML, each with two
possible software refinements. Figure 6a shows a functional
model with a dependency relation. In the left-hand refine-
ment of Figure 6a, a wrapper entity was inserted. Seman-
tically this still indicates that Driveline makes an (indi-
rect) call to BrakeLights. Therefore the derived relation-
ship between Driveline and BrakeLights is a dependency
relationship, and should be considered consistent with the
functional model. In the right-hand refinement, the entity
DriveLine was refined to specify that in fact a child en-
tity LightingSystem makes a call to BrakeLights. In this
case clearly the derived relationship is again dependency.
Therefore, regardless of whether the dependency relation-
ship preceded, the derived relationship when combined with
composition was still semantically a dependency. This sug-
gests that connectors can in fact be arranged in an order-
ing according to their relative strengths. The lifting opera-
tion then involves transitively applying the ordering to allow
stronger connectors to override weaker ones.

(a) Consistent dependency refinements

(b) Inconsistent composition refinements

Figure 6: Semantic differences between dependency and
composition refinements

In Figure 6b, the same refinements are now refining a
composition relation in the functional model. However, an
automotive architect would not consider either proposed re-
finement to be consistent, since splitting up a composite en-
tity into two entities which communicate via function calls
was not intended by the architect. Therefore, applying the

connector ordering (which again derives only implicit depen-
dencies in the refinements), again correctly yields an incon-
sistency. It is essential however to note that the high-level
model must be taken into account when performing the lift-
ing operation on the low level model. The original hierar-
chical reflexion model, due to its use of the full transitive
closure in composition, simply extracts all implicit relation-
ships between all elements in the low-level model, and then
performs a comparison with the high-level model. However,
this approach would yield many false positives due to the
loss of information incurred during the transformation. This
problem is illustrated in Figure 7. There, if a full transitive
closure is taken to extract all implicit (lifted) dependencies,
the two low-level models cannot be distinguished. However,
it is clear that the left-hand refinement should be consistent
with the functional model, while the right-hand refinement
should not, in that case because the refinement is violating
the layering specified by the high-level model. Therefore,
it is essential that the lifting operation does not use a full
transitive closure to derive the lifted relationships from the
refinement. Instead, the strength ordering should only be
applied transitively until an entity also present in the high-
level model is encountered.

5. CONSISTENCY DEFINITION
In this section, we formalize the inconsistency checking

approach explained in the previous section.
Let REL = {rel1, . . . , relk} be an ordered set of relations

available in the automotive ADL, where rel1 is the weakest
relation and relk is the strongest one. For the SysML exam-
ples provided in Section 4, REL = {composition, dependency}.

Next we introduce two new operations, which we term the
right-lifting and left-lifting operations on the low-level model

(i.e. software model), denoted as
−→
Ri and

←−
Ri in Equations

1 and 2, respectively. These relations are defined for each
connector reli ∈ REL. Below, FN represents the functional
model, SW is the software model, reli(A,B) is a direct re-
lation of type reli between entities A and B in FN, and

r̃eli(A,B) is a direct relation of type reli in SW. The lifting
operation is carried out on the software model.

−→
Ri(X,Y ) ⇔

∨
j≤i

r̃elj(X,Y ) ∧ Y 6∈ FN (1)

←−
Ri(X,Y ) ⇔

∨
j≤i

r̃elj(X,Y ) ∧X 6∈ FN (2)

Note that
−→
Ri

+(X,Y ) and
←−
Ri

+(X,Y ) are the irreflexive tran-

sitive closures of
−→
Ri(X,Y ) and

←−
Ri(X,Y ), respectively. The

right-lifting operation represents a series of elements in the
software model connected by relations, where (at least) the
target entities of each relation exist only in the software
model, and connectors are equal or weaker in strength to
reli. The same intuition holds for the left-lifting opera-
tion, except the restriction there is that at least all rela-
tion sources only exist in SW. As illustrated in examples
from Figure 6 and 7, incorporating the entities present in
the high-level model while performing the lifting operation
clearly distinguishes our method from previous research uti-
lizing hierarchical reflexion.

In the Equation 3, we redefine the lifted relation between

two model entities, denoted r̃eli
↑
, incorporating the left-

and right-lifting operations. This new definition takes into



Figure 7: Inadequacy of using full transitive closure to extract relations in refinements

account the cases where either two entities are directly con-
nected by relation reli, or there exist one or more interme-
diary entities in between which appear only in SW and are
connected by relations which are equal or weaker than reli.
A and B are functional and software model entities.

r̃eli
↑
(A,B)⇔ r̃eli(A,B) ∨ ∃C,D ∈ SW\FN :(−→
Ri

+(A,C) ∧ r̃eli
∗
(C,D) ∧

←−
Ri

+(D,B)
)

(3)

where r̃eli
∗

is the reflexive transitive closure of r̃eli.
The lifting operation should then be performed on SW

using all entity pairs A,B that appear in FN, resulting in a
lifted low-level model. The lifted model can then be straight-
forwardly compared to the high-level model to check for ab-
sent and divergent relations for each relation type, presented
in Equations 4 and 5.

absencereli(A,B)⇔ rel+i (A,B) ∧ ¬r̃eli
↑
(A,B) (4)

divergencereli(A,B)⇔ ¬rel+i (A,B) ∧ r̃eli
↑
(A,B) (5)

6. TOOL DEVELOPMENT
In the following sub-sections, the algorithm for checking

inconsistencies based on the definitions in the previous sec-
tion, the details for the tool implementation, and a descrip-
tion of using the tool are presented.

6.1 Checking Algorithm
The lifted model that is calculated by applying the Equa-

tions 4 and 5 results in a low-level model, e.g. software
model, that has been abstracted from all details not already
present in the high-level model, e.g. functional model. Com-
paring this lifted model to the high-level model then fulfills
the intuition of consistency described initially by Dijkman et
al [12]. Furthermore, calculating a lifted model and then ap-
plying consistency checks for absence and divergence, rather
than working directly on the low-level model, has been seen
to significantly improve the scalability and maintainability
of consistency checking algorithms in practice [14].

The implementation of the consistency checking algorithm
is described below. Note that in addition to the absence and
divergence checks, an additional check is run to make sure

that all blocks from the high-level model exist in the low-
level model; if not, an absentBlock error is reported.

Algorithm CheckConsistency(FN,SW)
Input: FN is the high-level functional model, and SW is

the low-level software model
Output: A(possibly empty) set of consistency errors
1. Encode FN and SW as directed graphs, where edges

are annotated with the relation type (dependency or
composition)

2. Let ˜SW be a new, empty graph to contain the lifted
model of SW

3.
(∗ Populate the lifted model of SW ∗)
4. for all elements A,B ∈ FN
5. do

6. if r̃eldep
↑
(A,B) is true

7. then Add an edge from A to B to ˜SW anno-
tated with dependency

8. if ˜relcomp

↑
(A,B) is true

9. then Add an edge from A to B to ˜SW anno-
tated with composition

10.
(∗ Check for absence ∗)
11. for each edge e = (A,B) ∈ FN
12. do
13. if A 6∈ ˜SW (or B 6∈ ˜SW)
14. then Report error absentBlock(A) (or
15. absentBlock(B), respectively)
16. if e is annotated with dependency ∧
17. absencedep(A,B) is true
18. then Report error absentDependency(A,B)
19. if e is annotated with composition ∧
20. absencecomp(A,B) is true
21. then Report error absentComposition(A,B)
22.
(∗ Check for divergence ∗)
23. for each edge e = (A,B) ∈ ˜SW
24. do
25. if e is annotated with dependency ∧
26. divergencedep(A,B) is true
27. then Report error
28. divergentDependency(A,B)
29. if e is annotated with composition ∧



30. divergencecomp(A,B) is true
31. then Report error
32. divergentComposition(A,B)

While there are many parts of the algorithm which could
be optimized for a faster running time, they are left out here
to improve readability. Furthermore, although the algorithm
accepts only two models as input, it can be used to check
deeper models (i.e. where a high-level model is refined by
another model, which in turn refined by yet another model),
simply by running the CheckConsistency algorithm for each
pair of parent-child models.

6.2 Tool Implementation
A prototype tool was implemented as a Java plugin inte-

grated into the IBM Rational Rhapsody for SysML struc-
tural diagrams, i.e., Block Definition Diagram (BDD) and
Internal Block Diagram (IBD). The reason for this choice is
three-fold: First, IBM Rational Rhapsody is a well-estab-
lished, enterprise modeling tool for designing complex soft-
ware products including automotive software systems [21].
In addition to support for SysML, Rational Rhapsody also
supports UML and some domain-specific languages (DSLs).
So, a plugin developed for use with SysML is easily con-
vertible to a tool for other supported languages. Second, it
is important for the tool to be integrated directly into the
development environment. This not only increases usability
by allowing architects to work with a tool they already un-
derstand, but also increases the likelihood that consistency
checks are run often. This integration is possible in Ratio-
nal Rhapsody because it offers a comprehensive Java API
for plugin development. Finally, IBM Rational Rhapsody
is well-documented and has an active developer community,
making it a low-risk choice for development.

In addition to the Rational Rhapsody API functions, the
Java Universal Network/Graph (JUNG) library was used
for encoding the graphs required to represent the high-level,
low-level, and lifted low-level models. Using a third-party,
comprehensive graph library greatly reduced the complexity
required to implement the checking algorithm. As output,
the tool notifies the user of all absences and divergences
encountered inside the error pane.

6.3 Using the Tool
The consistency checking plugin expects a project to have

at least two SysML Package elements: a high-level package
and a low-level package. A top-level element of Package was
chosen to separate the high-level from the lower-level models
because it was seen that some automotive companies already
organize their models this way.

Each Package should contain exactly one SysML BDD,
which describes the Blocks relevant for that Package to-
gether with their dependency and composition relationships.
Then there should be another diagram, which we term Over-
view, which specifies which Packages refine which other Pack-
ages. A refinement is specified by adding a Dependency re-
lation between the Packages in the Overview diagram with
the «refine» stereotype.

The consistency check tool can run on the Overview di-
agram by selecting the Tools > Check Model command. The
plugin will then find all refinements described in the Overview
diagram. For each refinement relation, it will retrieve the
high-level and low-level models (in this case Block Defini-
tion Diagrams) and run the plugin’s CheckConsistency al-

gorithm. When errors are found, a new bottom frame opens
with a list of all the errors, noting exactly which diagram,
relation, and specific offending elements caused the consis-
tency error, according to the list of failed elements generated
during plugin execution. After performing this check, the ar-
chitect can resolve the errors or alert another architect that
there are errors, and then rerun the check.

7. EVALUATION
In this section we evaluate the tool implemented for the

inconsistency checking as presented in Section 6. We ap-
plied the tool to an Adaptive Cruise Control (ACC) system.
ACC, Figure 8, is a cruise control system with enhanced
functionality assisting the driver to keep a safe distance to
other traffic ahead and alerting her if manual intervention
is required [8]. In our evaluation of the prototype inconsis-

Figure 8: Adaptive cruise control [8].

tency checking tool, two student teams emulated an OEM
and a supplier. The students follow a Master of Science
in Automotive Technology, therefore they have experience
in modeling automotive systems. The “OEM” team cre-
ated a functional architecture for a truck and handed in
a functional model of the ACC (Figure 9a) to the “supplier”
team. The “supplier” team elaborated the ACC software
model (Figure 9b) and created a running ACC prototype.
In the real life automotive modeling case, at this phase the
supplier software would be integrated the ACC by the OEM
and tested thoroughly.

Although ACC subsystem works correctly according to
the OEM specification, the ACC software model created by
the“supplier” team is inconsistent with the functional model
provided by the “OEM” team. Indeed, using the prototype
inconsistency checking tool with Tools > Check Model, the
divergence relations between ACC Controller and ACC UI,
and Driveline and Radar are detected. These relations are
missing in the functional view shown in Figure 9a.

Early inconsistency detection by the prototype tool was
considered useful by both teams. The team members appre-
ciated that the consistency checks are executed only when
specifically invoked by the architect. This is in sharp con-
trast with a recommendation of Rosik, Buckley and Ali
Babar [36] that argue that consistency errors should be re-
ported continuously during development.

8. RELATED WORK
MEGAF (MEGamodeling Architecture Frameworks) in-

frastructure is developed to enable reusable architecture
frameworks [20]. Due to the limitation of the MEGAF tool
support for extracting the architectural elements from the



(a) ACC functional view (b) ACC software view

Figure 9: Consistency checking between functional and software views of the ACC system

automotive ADLs and architecture frameworks, we defined
the AFAS manually by analyzing state-of-the-art architec-
ture description mechanisms. Our approach is based on the
hierarchical reflexion model [25, 29]. Specifying correspon-
dences between viewpoints has been introduced in [35] [34].
OCL is used for implementing the correspondence rules in
this approach. However, in this approach, views are ex-
pressed as UML models which are not widely used in the
automotive architectural modeling. Our approach extends
this approach by enabling a technique to specify intentional
correspondences for automotive architecture modeling.

In their overview of UML consistency management, Elaa-
sar and Briand [15] describe viewpoint unification to trans-
form one UML view to another. Since different UML dia-
gram types contain different sorts of information, this pro-
cess often resulted in lost information and furthermore only
appropriate for certain diagram pairs. Such transformation-
based consistency approaches are employed by many au-
thors [28] [6] [37]. However, the desire of the researchers to
keep the operation generic for many domains and diagram
types results in only basic consistency rules. For example, a
rule may guarantee that classes with a certain name exists.
Since we consider only the refinement correspondence, more
powerful rules can be formulated.

In the UML Analyzer tool [13], Egyed presents a rule-
based approach to abstract from entities and relations which
exist in a refinement model, resulting in a scalable consis-
tency checking tool [14]. Furthermore it was found to be
beneficial for both performance and usability to separate
the transformation (abstraction) phase from the consistency
checking phase. However, the rules are limited to UML,
making them not directly applicable to automotive ADLs.
Furthermore, the rule format does not lend itself to gener-
alization, in contrast to a generic mathematical definition
for consistency. Some authors choose to translate archi-
tectural diagrams to an intermediate language, for exam-
ple XMI [39] [26], to take advantage of the existing power
for expressing consistency rules available in those languages.
Such representations are however considerably less intuitive,
whereas using a graph representation can already maintain
the structure and information present in most automotive
ADLs while requiring a less radical model transformation.

In the hierarchical reflexion model [25], relations that exist
in a parent model are checked to exist in a lifted model which

has been derived from source code. This approach is useful
since it can equally be applied to checking two hierarchical
models against each other. It is also highly intuitive and re-
sults in few false positives [24]. Previous work in automotive
ADL consistency has adapted the reflexion model to the au-
tomotive domain [10]. There, multiple levels of automotive
models are considered. Furthermore, the research presented
here extends [10] by providing more sound consistency rules
for the functional and software views.

9. CONCLUSION AND FUTURE WORK
In this paper, first we presented architecture description

elements including architecture views of the AFAS frame-
work based on the study of state-of-the-art architecture de-
scription mechanisms for automotive systems. To further
revise the framework, we plan to use the MEGAF approach
[20], since the MEGAF is built upon the ISO/IEC/IEEE-
42010 standard and enables the definition of a reusable and
open architecture framework. Although consistency issues
between architecture viewpoints and views were tackled be-
fore in the software industry, there is still a need to develop
a method to enforce the consistency between different views
of OEMs and suppliers.

Therefore, in this paper we also proposed an inconsistency
detection approach based on correspondence rules between
automotive architecture views. We focus on the refinement
relationship between functional and software views, where
the functional models are refined by adding more details in
the software view. The revised definition for consistency pro-
posed here requires only that an ordering be imposed on the
connector types available in a given ADL, allowing it easily
to be used with many automotive ADLs. Then a prototype
tool was developed for IBM Rational Rhapsody which can
perform this consistency checking between different archi-
tecture views. The inconsistency checking approach and the
prototype tool were evaluated in the scope of an Adaptive
Cruise Control modeling among two separate teams emulat-
ing an OEM and automotive supplier. The early inconsis-
tency detection by the prototype tool was considered useful
by both teams.

The future work will be improving the prototype tool after
carrying out a comprehensive case study in an industrial set-
ting by extending the consistency rules and overall usability
of the tool. The end result is expected to be a powerful con-



sistency checking approach and useful tool for automotive
system and software architectures. The preliminary demon-
stration of the prototype has already attracted the atten-
tion of potential users and received some insightful feedback.
Support for consistency checking between the other auto-
motive views identified in Section 2 is also planned. This
will be integrated into the automotive-specific quality frame-
work that comprises quality specification, measurement, and
evaluation methods targeting both architectural and design
models [11] [9].
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[39] C. Zapata, G. González, and A. Gelbukh. A
rule-based system for assessing consistency between
UML models. MICAI 2007: Advances in Artificial
Intelligence, pages 215–224, 2007.

http://www.modaf.org.uk/
http://www.sysml.org/specs
http://www.timmo-2-use.org/timmo/index.htm

	Introduction
	Automotive Architectural Challenges
	Motivation
	Main Contributions and Outline

	Automotive Architectural  Framework and its Views
	Architecture Correspondence
	Consistency Semantics
	Consistency Definition
	Tool Development
	Checking Algorithm
	Tool Implementation
	Using the Tool

	Evaluation
	Related Work
	Conclusion and Future Work
	Acknowledgement
	References

