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Abstract
Large language models (LLMs) have demonstrated the promise
to revolutionize the field of software engineering. Among other
things, LLM agents are rapidly gaining momentum in software de-
velopment, with practitioners reporting a multifold increase in pro-
ductivity after adoption. Yet, empirical evidence is lacking around
these claims. In this paper, we estimate the causal effect of adopting
a widely popular LLM agent assistant, namely Cursor, on devel-
opment velocity and software quality. The estimation is enabled
by a state-of-the-art difference-in-differences design comparing
Cursor-adopting GitHub projects with a matched control group
of similar GitHub projects that do not use Cursor. We find that
the adoption of Cursor leads to a statistically significant, large, but
transient increase in project-level development velocity, along with
a substantial and persistent increase in static analysis warnings and
code complexity. Further panel generalized-method-of-moments
estimation reveals that increases in static analysis warnings and
code complexity are major factors driving long-term velocity slow-
down. Our study identifies quality assurance as a major bottleneck
for early Cursor adopters and calls for it to be a first-class citizen
in the design of agentic AI coding tools and AI-driven workflows.

CCS Concepts
• Software and its engineering → Development frameworks and
environments; • Computing methodologies → Intelligent agents.
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1 Introduction
Large language models (LLMs) have demonstrated remarkable ca-
pabilities in code generation, achieving near-human performance
across various software engineering tasks [48, 64]. Among emerg-
ing applications, LLM agent assistants—tools that combine LLMs
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Figure 1: Our theory around howLLMagent assistants impact
software development. Solid lines indicate causal relation-
ships supported by our analysis; dashed lines indicate partial
evidence; and dotted lines indicate inconclusive evidence.

with autonomous capabilities to inspect project files, execute com-
mands, and iteratively develop code—represent a particularly promis-
ing direction for integrating LLMs into software development. For
example, Cursor [8], a popular LLM agent assistant, has generated
considerable enthusiasm among practitioners, with developers self-
reporting multi-fold (as large as 10x) productivity increases and
claiming transformative workflow impacts [10, 15].

However, substantial concerns have been raised about the qual-
ity of LLM-generated code and the long-term consequences of AI-
driven development workflows. Studies documented that AI coding
assistants can produce code with security vulnerabilities [93, 95],
performance issues [75], code smells [101], and increased com-
plexity [78]. Yet, these findings, derived from evaluations of early
Codex models in controlled experiments [95], completion-based
tools like early GitHub Copilot [75, 93, 101], or chat-based inter-
faces like ChatGPT [78], may not generalize to modern LLM agent
assistants, which represent a qualitative shift in architecture and in-
tegration, not simply incremental improvement. Completion tools
suggest individual lines based on immediate context; chat-based
assistants require context-switching to formulate queries and inte-
grate responses. Both operate at the periphery of the development
workflow, with developers remaining the primary agents and main-
taining oversight of AI-generated code at a granular level.

LLM agent assistants like Cursor, by contrast, are tightly inte-
grated into the IDE with persistent codebase awareness, autono-
mously navigating files, proposing multi-file refactorings, and im-
plementing features spanning dozens of files—all within the devel-
opment environment. This architectural difference has profound
implications that cannot be extrapolated from prior studies: Au-
tomation scope shifts from accelerating typing to automating entire
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workflows; seamless integrationmay enable both productivity gains
and over-reliance or reduced code review rigor; quality implications
of reviewing large, AI-generated multi-file changes differ funda-
mentally from reviewing line-by-line completions; and temporal
dynamics may involve longer-term effects as technical debt accumu-
lation. Consequently, prior findings about security vulnerabilities
in Copilot completions or complexity issues in ChatGPT-generated
functions provide limited insight into whether—and how—these
issues manifest in agentic tools that generate code at a substantially
larger scale with different developer oversight patterns.

This gap between generations of AI coding tools also shows up
in recent research. For example, Becker et al. [27] show through
controlled experiments that early-2025 AI tools, including Cursor,
do not help experienced open-source developers solve real day-
to-day tasks faster, pointing to potential slowdown mechanisms
such as developer over-optimism, low AI reliability, and high task
complexity. Their findings contradict substantial prior literature on
earlier-generation AI coding assistants [40, 46, 63, 66, 91, 94, 102,
105, 108, 111, 113], which generally found modest velocity improve-
ments from code completion tools like early GitHub Copilot.

Most recently, Watanabe et al. [110] take an important step to-
ward understanding modern agentic tools by examining 567 pull
requests generated by Claude Code, finding that 83.8% are accepted
and merged. However, their analysis focuses on PR acceptance
rates and task types rather than on longitudinal, project-level ef-
fects of tool adoption on development velocity and code quality.
Whether high acceptance rates of individual agent-generated PRs
translate into sustained productivity gains and maintained quality
at the project level—or whether quality degradation accumulates as
teams integrate these tools into everyday workflows over months—
remains an open empirical question. To address this gap, we ask:

RQ: How does the adoption of LLM agent assistants impact project-
level development velocity and code quality?

We focus on Cursor, one of the earliest and most widely adopted
LLM agent assistants [3], as our empirical case. Our key insight
is that the presence of .cursorrules configuration files in GitHub
repositories signals the adoption of Cursor’s multi-file editing and
agentic capabilities, and thus the date of the first commit touch-
ing these configuration files serves as a proxy for the adoption
date of the modern Cursor client with agentic coding features.1 By
scanning Cursor configuration files across GitHub, we identify 806
repositories that adopted the modern Cursor client, with most of
the adoptions happening between August 2024 and March 2025.

We then use a difference-in-differences (DiD) design with stag-
gered adoption [29, 31], comparing repositories that adopt Cursor
at different times to a matched control group that never adopts
during our observation period. This quasi-experimental approach
uses naturally occurring variation in adoption timing to identify

1Earlier Cursor versions offered code completion and chat-based code generation. Cur-
sor rule files were first released in mid-2024, roughly at the same time as the Composer
feature, which provides a conversational interface for multi-file code generation. The
agentic features of Composer were released in November 2024 and made default in
February 2025 [98]. Thus, precisely speaking, our identification captures the adoption
of modern Cursor with a mix of Composer’s multi-file editing and subsequent tran-
sition to the default agentic mode. We call this modern version simply “Cursor” for
brevity, and we show in the Appendix that limiting our analyses to adoption cohorts
before/after agent release/agent made default does not change our main results.

causal effects while controlling for repository-specific characteris-
tics and common temporal trends. To construct a comparable con-
trol group, we use propensity score matching [26] to select 1,380
similar repositories from those never adopting Cursor during our
observation period. Our matching model incorporates the dynamic
history of repository characteristics—activity levels, contributor
counts, and development patterns over the six months preceding po-
tential adoption—ensuring treated and control repositories exhibit
similar observable trajectories before adoption.

To estimate treatment effects, we use the Borusyak et al. [29] im-
putation estimator, a modern DiD approach designed for staggered
adoption that avoids biases from traditional two-way fixed effects
models. Using this approach, we estimate the impact of Cursor adop-
tion on two velocity outcomes (commits and lines added) and three
code quality outcomes (static analysis warnings, code complexity,
and duplicate line density). Finally, to test temporal interactions
between outcomes, we also estimate the impact of changes in code
quality on future development velocity (and vice versa) using panel
generalized method of moments (GMM) models [22].

Our findings reveal a concerning picture among GitHub open-
source projects adopting Cursor. First, the adoption of Cursor leads
to significant, large, but transient velocity increases: Projects expe-
rience 3-5x increases in lines added in the first adoption month, but
gains dissipate after two months. Concurrently, we observe persis-
tent technical debt accumulation: Static analysis warnings increase
by 30% and code complexity increases by 41% post-adoption accord-
ing to the Borusyak et al. [29] DiD estimator. Panel GMM models
reveal that accumulated technical debt subsequently reduces future
velocity, creating a self-reinforcing cycle. Notably, Cursor adoption
still leads to significant increases in code complexity, even when
models control for project velocity dynamics.

These findings carry important implications for research and
practice. Our longitudinal evidence of howCursor affects real-world
software projects reveals complex temporal dynamics between AI-
augmented velocity gains and quality outcomes (Figure 1), warrant-
ing further investigation. For practitioners, our results suggest that
deliberate process adaptations—those that scale quality assurance
with AI-era velocity—are necessary to realize sustained benefits
from the use of LLM agent assistants. Our findings also highlight
the need for quality assurance as a first-class design citizen in AI-
driven development tools and workflows, suggesting directions for
improvement in tool design and model training.

2 Related Work
The human-level performance of recent LLMs enables their practi-
cal applications to various software engineering tasks, such as code
completion [65], code review [79], and testing [99] (see also the
two surveys by Fan et al. [48] and Hou et al. [64]). The 2024 Stack
Overflow Developer Survey shows that 76% of all respondents are
using or planning to use LLM tools in their development process [2].
This wide adoption raises two main questions for researchers: (1) To
what extent do LLMs improve developer productivity? (2) To what
extent should we trust the code generated by LLMs?

A large body of prior research on the productivity impact of LLMs
focuses on code completion tools—mostly the pre-agentic GitHub
Copilot [40, 46, 63, 66, 91, 94, 102, 105, 108, 111, 113], with only a
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few execeptions [73, 92]. Evidence from small-scale, constrained
randomized controlled experiments demonstrates a productivity
increase ranging from 21% [102] to 56% [94], as measured by task
completion time. Field experiments conducted at Microsoft, Accen-
ture, and Cisco report similar numbers (from 22% [40] to 36% [91]).
The productivity increase estimated from open-source projects on
observational data is similar and sometimes lower: a DiD design
comparing Python and R packages estimates a 17.82% increase
in new releases among Python packages after Copilot availabil-
ity [111]—without clear knowledge of which packages used Copi-
lot. Another study of proprietary Copilot backend data estimates
only a 6.5% increase in project-level productivity, as measured by
the number of accepted pull requests [102]. A more general study
using a neural classifier to identify AI-generated code on GitHub
shows moving to 30% AI use raises quarterly commits by 2.4% [43].
Studies point to various mechanisms causing the productivity in-
crease, such as how LLM adoption increases work autonomy [63]
and helps iterative development tasks (e.g., bug fixing) [111].

Although the productivity gains are promising, there are also
increasing concerns around the trustworthiness of LLM-generated
code. For example, it is well-known that LLMs may generate code
with security vulnerabilities [21, 53, 70, 78, 93], performance regres-
sions [75], code smells [101], and outdated APIs [69, 109]. On the
other hand, evidence regarding the complexity of LLM-generated
code compared to humans is inconclusive [39, 81, 87]. The LLM
trustworthiness problem becomes more complicated with humans
in the loop. For example, prior controlled experiments report mixed
results on whether developers write more or less secure code with
the help of LLMs [88, 95, 97], and studies often suggest heteroge-
neous treatment effects of LLMs on developers of different skill
levels [40, 42, 94, 102]. While prior work points to many mecha-
nisms by which adopting LLMs may affect software quality, their
findings are typically derived from benchmark analyses [e.g., 93]
or developer opinions [e.g., 81]. We are unaware of any prior stud-
ies that systematically investigated project-level quality outcomes
in the wild after LLM adoption, let alone those that used rigor-
ous causal inference techniques (the closest being the study by
Yeverechyahu et al. [111] discussed above).

Recently, there has been an increasing interest in the application
of LLM agents—LLMs with the capability to autonomously utilize
external resources and tools—to software engineering [61, 67, 77].
A popular application scenario is an LLM agent assistant within
a code editor, in which LLMs are allowed to inspect/edit project
files, conduct web searches, and execute shell commands to fulfill
prompts provided by developers. At the time of writing, there are
several production-ready code editors with built-in LLM agent assis-
tants, such as Cursor [8], VS Code [19], Windsurf [20], Tabnine [17],
and Cline [5], with the extreme beginning to shift away from IDEs
entirely and switching to command-line or web interfaces, such as
Claude Code [4] and OpenHands [12]. These agentic tools are see-
ing rapid adoption among developers, as evidenced also in our data
for Cursor in Figure 2. From the gray literature, we see extremely
optimistic estimates of the productivity boost from LLM agent as-
sistants: for example, developers self-report multi-fold productivity
increases in a Reddit post [15], orders of magnitude larger than
any empirical estimates for prior LLM tools. However, a recent con-
trolled study with human participants shows that developers may

be overoptimistic and that adopting LLM agent assistants does not
make them faster in real-world open-source development tasks [27].
To the best of our knowledge, empirical evidence regarding the
impact of LLM agent assistants on long-term project-level outcomes,
especially software quality outcomes, is still lacking.

Our contribution is two-fold. First, our DiD design looks at the ad-
ditional project-level productivity gain, if any, from using a modern
agentic coding assistant (Cursor) relative to the state-of-the-practice
(likely a mixture of human-written code and code generated by
earlier-generation AI tools). Second, we provide a comprehensive
analysis of the impact of adopting Cursor on code quality, which
is the first to the best of our knowledge, and highlight potential
velocity-quality trade-offs and their complex interactions.

3 Research Design and Methods
We estimate the causal effects of adopting Cursor on development
velocity and code quality, both of which are considered important
project outcomes, are commonly measured in prior research, and
are closely tied to perceived overall project productivity [38, 52, 89].
We start by building a dataset with: (1) repositories adopting Cur-
sor at different times and (2) comparable repositories that never
adopted Cursor (Section 3.1). Then, we define our specific out-
comes of interest and additional covariates (Section 3.2). The esti-
mation of Cursor’s causal effect on these outcomes is enabled by a
difference-in-differences (DiD) design with staggered adoption [29]
(Section 3.3): Under the assumption that similar repositories would,
on average, evolve similarly in the absence of Cursor adoption (i.e.,
the parallel trend assumption), later-adopters and never-adopters
can effectively serve as a quasi-experimental comparison group for
earlier-adopters while accounting for observable covariates and
macro trends (e.g., open-source repositories overall getting more
or less active over time). Finally, since the results from DiD suggest
interactions between development velocity and software quality,
as also indicated in prior work [28, 38], we fit dynamic panel gen-
eralized method of moments (GMM) models [22] to support our
interpretation of the DiD results (Section 3.4).

3.1 Data Collection
3.1.1 The Cursor IDE. Cursor [8] is an AI-powered IDE built as
a VS Code fork with agentic capabilities integrated into the devel-
opment workflow. Unlike earlier code completion tools, Cursor’s
agentic mode enables an autonomous, goal-directed AI workflow:
The agent can navigate entire codebases, infer project architecture
across multiple files, make multi-file edits, run terminal commands,
execute tests, and iteratively debug code, with humans mainly
serving as supervisors rather than traditional coders. Using this
workflow, developers can rely entirely on AI for feature implemen-
tation, refactoring, test generation, documentation, and bug fixing
within their native development environment. They can choose be-
tween frontier models from OpenAI, Anthropic, and Google, either
via Cursor’s built-in service or their own API keys.

We chose Cursor as our main study case for two reasons. First,
our preliminary exploration found widespread and growing adop-
tion compared to competing tools, providing sufficient statistical
power for causal inference. Second, Cursor is among the earliest
to allow optional configuration files (e.g., .cursorrules) in the git
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Table 1: Descriptive statistics of the 806 repositories using
Cursor, collected at the time of data collection (April 2025).

Mean Min 25% Median 75% Max

Age (days) 1,002.3 283 361.5 521.5 1164.2 6,208
Stars 1,475.3 10 20.0 51.0 242.0 122,280
Forks 215.9 0 3.0 9.0 37.0 51,745
Contributors 19.2 0* 1.0 3.0 10.0 461
Commits 1,816.6 1 49.0 209.0 951.8 86,954
Issues 1,070.3 0 3.0 31.5 232.5 100,614
Pull Requests 719.6 0 1.0 18.0 161.8 72,015
* The GitHub API will return zero contributors for a repository if none
of its commits can be mapped back to a GitHub user.

repository to direct AI behavior [7], leading to an adoption event
proxy timestamp in the version control history and a scalable iden-
tification strategy based on these files. However, this identification
strategy also has important limitations (Section 3.5), which we will
address through robustness checks (Section 4.3).

3.1.2 Identifying GitHub Projects Adopting Cursor. We identify
Cursor-adopting repositories and track adoption dates through con-
figuration files in the git history. In the GitHub code search API [14],
we query for repositories with .cursorrules files or .cursor folders.
Since the API limits results to 1,000 per query, we implement an
adaptive partitioning algorithm based on file sizes: For each query
with size interval [𝑎, 𝑏], we create two queries [𝑎, (𝑎 + 𝑏)/2) and
[(𝑎 + 𝑏)/2, 𝑏] until results fall below 1,000. This discovered 23,308
Cursor files across 3,306 non-fork repositories as of March 2025.

To filter non-software, educational, toy, and spam repositories [60,
68], we follow prior work [59, 62, 103] by requiring at least 10 stars
at collection time—a threshold achieving 97% precision in identi-
fying engineered projects [84]. This yields 806 repositories with
adoption dates between January 2024 and March 2025 that are still
available on GitHub at the time of data analysis (August 2025).

As expected, the dataset is highly skewed acrossmany repository-
level metrics (Table 1), and adoption time is staggered, with adop-
tions growing over time (Figure 2). These dataset characteristics
motivate us to adopt a DiD design with staggered adoption and
a matched control group, as we will discuss in the remainder of
this section. While we did not filter based on activity levels here,
activity-based subsets will be used as part of our robustness checks.
The top five primary programming languages in our dataset are:
TypeScript (366 repositories), Python (118 repositories), JavaScript
(60 repositories), Go (36 repositories), and Rust (24 repositories).

3.1.3 Building a Control Group via Propensity Score Matching. A
staggered DiD design usually requires a “never-treated” group to
serve as comparison units, which, in our case, means repositories
that never adopted Cursor (i.e., never-adopters). This comparison
allows for a causal interpretation under the parallel trend assump-
tion: Repositories that adopted Cursor should, on average, evolve
similarly in the absence of Cursor adoption compared to the control
group. However, this assumption is unlikely to hold if there are sys-
tematic differences between Cursor-adopting repositories and the
control group. Repositories adopting Cursor may be more active,
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Figure 2: The Cursor adoption time of the 806 repositories in
our study, which all have ≥10 stars and Cursor configuration
files at the time of data collection (April 2025).

more rapidly growing, and have larger communities compared to
random never-adopter repositories, leading to biased estimates.

To address these potential confounders and build a comparable
quasi-experimental control group, we use propensity score match-
ing [26, 30]. The high-level idea is to estimate propensity scores (i.e.,
the probability of adoption conditional on pre-adoption covariates)
for each Cursor-adopting repository and a large population of other
GitHub repositories, and retain only never-adopter repositories
with propensity scores similar to those of the control group. Specif-
ically, we define this population as all GitHub repositories with
≥10 stars (matching our inclusion threshold for Cursor adopters).
For each month with major Cursor adoptions (August 2024—March
2025), we collect monthly time series from GHArchive [1] for all
repositories in the population: age, active users, stars, forks, releases,
pull requests, issues, comments, and total events.

Rather than static snapshots, we fit propensity score models to
capture dynamics: repositories experiencing rapid growth or chang-
ing patterns may be more likely to adopt new tools. Let 𝑇𝑖𝑡 denote
repository age and 𝑋𝑖𝑡 denote remaining covariates for repository 𝑖
at month 𝑡 . We estimate propensity scores 𝑃 (treat|𝑡,𝑇𝑖 , 𝑋𝑖 ) (i.e., the
probability of getting treated given 𝑡 and repository-level covarates
𝑇𝑖 , 𝑋𝑖 ) via the following logistic regression:

log
𝑃 (treat|...)

1 − 𝑃 (treat|...) = 𝛼+𝛽𝑇𝑖,𝑡−1+
6∑︁
𝑗=1

Γ𝑗𝑋𝑖,𝑡− 𝑗+Θ
∞∑︁
𝑗=7

𝑋𝑖,𝑡− 𝑗+𝜖𝑖 (1)

where 𝛼 , 𝛽 , Γ𝑗 and Θ are regression parameters. This effectively
captures: (1) repository maturity (𝑇𝑖,𝑡−1), as older repositories may
have different adoption patterns, (2) recent dynamics (

∑6
𝑗=1 Γ𝑗𝑋𝑖,𝑡− 𝑗 ),

i.e., month-by-month evolution over six months captures trends and
growth, and (3) historical baselines (Θ

∑∞
𝑗=7 𝑋𝑖,𝑡− 𝑗 ), i.e., cumulative

history providing context on overall project scale and activity. By
including lags, we ensure that propensity scores reflect both activity
level and trajectory—two repositories with identical July 2024 pull
requests may differ if one is growing while the other declines;
such longitudinal characteristics may correlate with both Cursor
adoption and long-term velocity and quality outcomes.

Since candidate repositories outnumber Cursor adopters by or-
ders of magnitude, we sample at most 10,000 candidates per Cur-
sor adoption month to avoid extreme imbalance and improve fit.
This yields AUC values ranging from 0.83 to 0.91, indicating high
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discriminative power in the fitted logistic regression models. For
each Cursor-adopting repository, we perform 1:3 nearest-neighbor
matching (three controls per treated unit). While 1:1 or 1:2 is most
common [25, 96], many adopters matched the same control during
1:1 matching, so 1:3 provides higher control group diversity. We ad-
ditionally match only repositories with the same primary language
(queried from GitHub API, unavailable in GHArchive), controlling
for language-specific LLM performance differences [35, 107]. This
yields a matched “never-treated” group with similar propensity
score distributions and pre-adoption characteristics (see Appendix).
Following standard quasi-experimental terminology, we refer to
the sample of repositories adopting Cursor as the treatment group
and the matched “never-treated” repositories not using Cursor as
the control group in the remainder of this paper.

3.2 Metrics
For each repository in the treatment and control group, we collect
monthly outcomemetrics and time-varying covariates from January
2024 to August 2025. This ensures that there are at least six months
of observations pre- and post-adoption for the treatment group and
abundant comparison observations from the control group in each
month, providing statistical power for DiD-based causal inference.
Note that the dataset is an unbalanced panel, as not all repositories
have observations over the entire observation period.

3.2.1 Outcomes. For repository 𝑖 at month 𝑡 , we collect two out-
come metrics related to development velocity, a key dimension of
software engineering productivity [38, 85]:
• Commits𝑖𝑡 : Number of commits in repository 𝑖 at month 𝑡 ;
• Lines Added𝑖𝑡 : Total lines added, summed over all commits in
repository 𝑖 at month 𝑡 .

Both have been used as productivity proxies [74, 83, 100] with
moderate-to-strong correlation with perceived productivity [89].

Software quality is multi-faceted and difficult to capture with a
single metric [36, 51, 71, 90]. Quality can be pivoted on defect den-
sity [55], specification rigor [50], user satisfaction [45], or technical
debt [47]. However, many metrics cannot be reliably and scalably
collected from version control data. In this study, we take the techni-
cal debt perspective [80] and test three source code maintainability
metrics that can be reasonably estimated with static analysis: static
analysis warnings, duplicate line density, and code complexity. All
three are arguably positively correlated with project-level technical
debt and negatively correlated with perceived code quality. Specifi-
cally, we use a local SonarQube Community server [16] to compute
these outcome metrics for repository 𝑖 at month 𝑡 :
• Static Analysis Warnings𝑖𝑡 : Total number of reliability, main-
tainability, and security issues for repository 𝑖 at month 𝑡 , as
detected by SonarQube’s static analysis. We refer to them as
warnings, since static analysis can generate false positives [56];
this metric should be viewed as an estimate of the effort re-
quired to review potential issues in a project.

• Duplicate Line Density𝑖𝑡 : Percentage of duplicated lines in code-
base for repository 𝑖 at month 𝑡 . SonarQube’s definition varies
across programming languages, but usually requires at least
10 consecutive duplicate statements or 100 duplicate tokens to
mark a block as duplicate [18].

• Code Complexity𝑖𝑡 : Overall cognitive complexity [32] of code-
base for repository 𝑖 at month 𝑡 . Per SonarQube [32], this metric
quantifies code understandability and aligns better with mod-
ern coding practices than classic cyclomatic complexity [82].

3.2.2 Time-Varying Covariates. We control for the following time-
varying covariates in our models for all treatment and control
repositories over the entire observation period (Jan 2024 to Aug
2025): lines of code, age (days), number of contributors at month 𝑡 ,
number of stars received at month 𝑡 , number of issues opened at
month 𝑡 , and number of issue comments added at month 𝑡 . Lines of
code is collected from SonarQube [16] along with outcome metrics;
number of contributors is estimated from version control history;
remaining covariates are estimated from GHArchive event data [1].
Multi-collinearity analysis reveals that number of issues opened and
number of issue comments added are highly correlated (Pearson’s
𝜌 > 0.7), so we exclude issue comments from subsequent modeling.

3.3 Difference-in-Differences
3.3.1 Background. DiD is an established econometric technique
for causal inference in observational data [33, 41], with growing
adoption in software engineering [34, 49, 86]. The key idea is to
compare outcome changes in a treatment group to those in a control
group (i.e., those not-yet-treated or never-treated) over the same ob-
servation periods. The name “difference-in-differences” originates
from the fact that temporal changes are first differenced before dif-
ferencing the outcome changes between the two groups, effectively
isolating the effect of an intervention from other factors that affect
all repositories similarly over the same period.

A DiD design critically relies on the parallel trends assumption for
a causal interpretation: Absent treatment, the treatment and control
group should, on average, follow similar outcome trajectories over
the same period. While this assumption is generally not directly
testable (would need a time machine), pre-trend tests are often used
for assessing the plausibility of this assumption: If the model pre-
dicts similar outcomes for the treatment and control groups before
the adoption, it is more plausible that the treatment group would
evolve similarly if they were not exposed to the treatment. Apart
from pre-trend tests, a matching process that controls for observ-
able differences pre-adoption (e.g., Section 3.1.3) also strengthens
the plausibility of this assumption in a specific research context.

In a DiD design, a staggered adoption setting comes with both
promises and perils [23, 29]. In this setting, treatments occur at
different times across cohorts rather than simultaneously (as in our
case, Figure 2), and each treatment unit has repeated observations
both before and after treatment. This setting enables repeated, mul-
tiple natural experiments: Later-adopters in the treatment group
can serve as additional controls for those adopting before them,
since they remain untreated during earlier periods. However, a
staggered adoption setting also presents significant mathematical
challenges to achieve consistent, efficient, and unbiased estimation
of the causal effect [23, 44, 54] with ongoing active research [29, 31].

3.3.2 The Estimation Targets. In a DiD design, researchers are often
interested in estimating the following two types of causal effects:
(1) 𝐴𝑇𝑇 , the average treatment effect on treated, and (2) 𝐴𝑇𝑇ℎ , the
“horizon-average” treatment effect in a specific horizon ℎ (i.e., the
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effect inℎ periods since the treatment).We define the two estimation
targets mathematically in this section.

Let Ω = {𝑖𝑡} denote the set of all observations from repository
𝑖 and month 𝑡 , Ω1 denote the set of treated observations, and Ω0
denote the set of untreated (i.e., never-treated and not-yet-treated)
observations. Let𝑌𝑖𝑡 denote the actual outcome of interest for repos-
itory 𝑖 at month 𝑡 , and 𝑌𝑖𝑡 (0) denote the potential outcome for
repository 𝑖 at month 𝑡 if it is never treated. ATT is defined as the
average of this causal treatment effect on all treated observations:

𝐴𝑇𝑇 =
1

|Ω1 |
∑︁
𝑖𝑡 ∈Ω1

E[𝑌𝑖𝑡 − 𝑌𝑖𝑡 (0)] (2)

Let Ω1,ℎ denote the set of all treated observations ℎ time periods
after the treatment; 𝐴𝑇𝑇ℎ is defined as the average of the causal
treatment effect in that specific horizon ℎ:

𝐴𝑇𝑇ℎ =
1

|Ω1,ℎ |
∑︁

𝑖𝑡 ∈Ω1,ℎ

E[𝑌𝑖𝑡 − 𝑌𝑖𝑡 (0)] (3)

3.3.3 The Borusyak et al. [29] Estimator. There are many possi-
ble methods to estimate 𝐴𝑇𝑇 and 𝐴𝑇𝑇ℎ defined in Section 3.3.2,
among which the two-way fixed effects (TWFE) estimator is most
commonly used in early econometric studies. However, recent re-
search shows that TWFE may produce biased estimates in the
staggered adoption setting if treatment effects are heterogeneous
over time [23, 44, 54]. To address this known limitation, we use the
Borusyak et al. [29] imputation estimator, a state-of-the-art estima-
tor designed explicitly for robust and efficient estimation in the
staggered adoption setting, with this two-step process:

Step 1: Impute counterfactual outcomes. The estimator fits a coun-
terfactual outcome regression model, using only untreated obser-
vations Ω0 (i.e., pre-adoption observations for treated repositories
and all observations for never-treated controls):

𝑌𝑖𝑡 (0) = 𝜇𝑖 + 𝜆𝑡 + Γ̂′𝑍𝑖𝑡 + 𝜖𝑖𝑡 (4)

where 𝜇𝑖 , 𝜆𝑡 represent per-repository and per-month fixed effects;
𝑍𝑖𝑡 includes time-varying covariates (Section 3.2.2), and 𝜖𝑖𝑡 = 𝑌𝑖𝑡 −
𝑌𝑖𝑡 , 𝑖𝑡 ∈ Ω0 is the error term when fitting this model on Ω0. The use
of only Ω0 in this step ensures that counterfactual predictions are
not contaminated by treatment effects as in the TWFE estimator. It
is also important to note that all repository-invariant confounders
(e.g., team culture, domain, language) are effectively controlled by
per-repository fixed terms 𝜇𝑖 and all time-invariant confounders
(e.g., industry trends, platform changes, and seasonal patterns) are
effectively controlled by per-month fixed terms 𝜆𝑡 in this step.

Step 2: Compare actual to counterfactual. For each repository-
month post-adoption (𝑖𝑡 ∈ Ω1), the estimator predicts the potential
outcome from the counterfactual outcome model: 𝑌𝑖𝑡 (0) = 𝜇𝑖 +𝜆𝑡 +
Γ̂′𝑋𝑖𝑡 . We replace the𝑌𝑖𝑡 (0) in Equations 2 and 3 with the estimated
𝑌𝑖𝑡 (0), to get the final 𝐴𝑇𝑇 and 𝐴𝑇𝑇ℎ estimations.

Finally, to assess the plausibility of the parallel trend assumption,
Borusyak et al. [29] advises fitting an alternative model of 𝑌𝑖𝑡 for
untreated observations Ω0 with additional observables. In our paper,
we follow the most typical convention and fit the following model
with additional dummies before the onset of treatment:

𝑌𝑖𝑡 = 𝜇𝑖 + 𝜆𝑡 + Γ̂′𝑍𝑖𝑡 +
−2∑︁

ℎ=−𝑘
𝜏ℎ1[𝑡 = 𝐸𝑖 + ℎ] + 𝜖𝑖𝑡 (5)

where 𝐸𝑖 means the time of treatment for repository 𝑖 and 1[𝑡 =
𝐸𝑖 + ℎ] is equal to 1 if and only if the current time 𝑡 is ℎ months
away from treatment (0 otherwise). Then, we use heteroscedasticity-
and cluster-robust Wald tests [29] to test the joint null hypothesis
that 𝜏ℎ = 0 for ℎ = −𝑘, ...,−2. We drop ℎ = −1 due to potential
anticipation concerns (the developer may try use Cursor before
adding Cursor rule files in the immediate month before). One way
of viewing the above pre-trend testing procedure is a placebo test,
in which 𝜏ℎ estimates 𝐴𝑇𝑇ℎ for ℎ < 0, which should be zero if
the treatment has not yet happened. The estimated 𝜏ℎ for ℎ < 0
and 𝐴𝑇𝑇ℎ for ℎ > 0 are often combined into event study plots (e.g.,
Figure 3), in which the dynamic effect of treatment is visualized.

Note that the Borusyak et al. [29] imputation estimator has many
alternative specifications with varying assumptions, and we merely
describe the version we used in our paper. We refer interested read-
ers to the original paper [29] regarding alternative specifications
and the mathematical assumptions behind them. The Borusyak
et al. [29] estimator is also not the only option, and we present
results from alternative DiD estimators (TWFE and Callaway and
Sant’Anna [31]) in the Appendix as additional robustness checks.

3.4 Testing Velocity & Quality Interactions
While DiD estimates treatment effects on individual outcomes, it
does not capture temporal dynamics between outcomes. However,
it is known that velocity and quality outcomes interact in our set-
ting [28, 38]. Plus, our DiD results (Section 4) also suggest interac-
tions, showing that the adoption of Cursor leads to non-sustained
velocity increases and sustained quality declines: Development
velocity increases may cause rapid technical debt accumulation,
which may subsequently decrease velocity.

To test for dynamic relationships and bidirectional causality,
we use the generalized method of moments (GMM) [58] to obtain
consistent estimates when variables are potentially endogenous
(correlated with unobserved errors). The key insight is to use instru-
mental variables—correlated with endogenous regressors but uncor-
related with errors—to identify causal effects. In panel data, lagged
values serve as natural instruments, assuming past values influence
current values but are uncorrelated with current shocks [22].

In our study, we use Arellano-Bond dynamic panel GMM [22],
suited for: (1) dynamic dependence (current outcomes depend on
past); (2) potential bidirectional causality; (3) short time series with
many entities. To test a causality direction 𝑋𝑡 → 𝑌𝑡 while account-
ing for Cursor adoption 𝐷 , we estimate the following regression:

𝑌𝑖𝑡 = 𝜇𝑖 + 𝜆𝑡 + 𝜌𝑌𝑖,𝑡−1 + 𝛽𝐷𝑖𝑡 + 𝛾𝑋𝑖𝑡 + Γ̂′𝑍𝑖𝑡 + 𝜖𝑖𝑡 (6)

where 𝑌𝑖,𝑡−1 captures outcome persistence; 𝐷𝑖𝑡 is a dummy repre-
senting Cursor adoption;𝑋𝑖𝑡 represents the potentially endogenous
regressor of interest; the remainig follows Equation 4. During esti-
mation, historical values of 𝑋𝑖𝑡 (e.g., a linear combination of 𝑋𝑖,𝑡−2
and 𝑋𝑖,𝑡−3) are used as instrumental variables.

Specifically, we test the following temporal interactions:

Lines Added𝑖𝑡 → Static Analysis Warnings𝑖𝑡
Lines Added𝑖𝑡 → Code Complexity𝑖𝑡

Static Analysis Warnings𝑖𝑡 → Lines Added𝑖,𝑡+1

Code Complexity𝑖𝑡 → Lines Added𝑖,𝑡+1

(7)
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These models complement DiD by decomposing the mechanisms
throughwhich Cursor affects long-term outcomes, revealingwhether
quality degradation leads to subsequent velocity declines.

3.5 Limitations and Threats to Validity
3.5.1 Internal Validity. We discuss several important limitations
of our identification strategy and advise readers to interpret our
results in the context of this experimental setup and its limitations.

Observable adoption through committed configuration files. Our
treatment group only includes repositories committing Cursor con-
figuration files to their git system, but developers can use Cursor
without committing such files. Thus, our sample represents repos-
itories with observable Cursor adoption rather than all possible
Cursor-adopting repositories. This creates potential selection bias:
Repositories committing configuration files may be more commit-
ted to systematic integration, have more formal processes, or differ
in unobservable ways. To the extent committed adopters use Cursor
more systematically, our estimates may represent an upper bound
on average effects across all users. However, if committed adopters
are more quality-conscious (e.g., more likely to review AI-generated
code carefully), estimates could also be conservative. In general, we
view our sample as capturing repositories where adoption repre-
sents deliberate, visible practice change—precisely the population
where long-term effects are most relevant.

Uncertainty about usage intensity and persistence. Even with ob-
served configuration files, we do not know how intensively or
persistently Cursor was used in each repository. If a repository has
multiple contributors with their own development environment,
the presence of .cursorrules only indicates someone experimented,
not that all contributors used it continuously throughout post-
adoption observations. Contributors may use Cursor heavily for
one feature, then revert to traditional development, without leaving
visible traces. Unless we observe explicit configuration removal
(rare), we assume continued usage, but this approximates actual en-
gagement. Therefore, our main estimates represent intent-to-treat
(ITT) effects: the impact of adopting Cursor as measured by commit-
ting configuration, averaging over heterogeneous usage patterns.

Model and version heterogeneity. Our dataset lacks information
on which Cursor version or LLM backend each repository used; re-
gardless, we still argue that this does not compromise validity. Our
research question focuses on the system-level effects of adopting
an agentic coding assistant as an integrated development practice,
rather than the effects of particular model architectures. Moreover,
to the extent that different repositories use different model backends
or developers switch models for different tasks, this heterogeneity
increases external validity: Our estimates reflect the average treat-
ment effects of adopting Cursor as it is actually used in practice on
adopting repositories, across all model diversity, rather than the
effects of single, fixed LLM configurations.

Imperfect matching. Even if our propensity score matching pro-
cess achieved strong performance (AUC 0.83–0.91), it still remains
subject to untestable unobserved confounders. For example, fac-
tors like developer expertise, team practices, project complexity,
or organizational culture may affect both Cursor adoption and the
post-adoption outcomes. Although we include numerous covari-
ates hoping to control these factors latently, we believe perfect

Table 2: The Borusyak et al. [29] estimated average treatment
effects on treated (𝐴𝑇𝑇 in Equation 2) post Cursor adoption.
We log-transform all outcome variables to address skewness
and facilitate comparison of treatment effects across outcome
variables; after log-transformation, all estimated 𝐴𝑇𝑇 s can
be interpreted as a percentage change of 100(𝑒𝐴𝑇𝑇 − 1)%.

Outcome Estimate (Std. Error) Percentage Change

Commits 0.0260∗∗∗ (0.0429) +2.63% (±4.40%)
Lines Added 0.2514∗∗∗ (0.1063) +28.58% (±13.7%)
Static Analysis Warnings 0.2644∗∗∗ (0.0511) +30.26% (±6.66%)
Duplicated Lines Density 0.0679∗∗∗ (0.0448) +7.03% (±4.79%)
Code Complexity 0.3481∗∗∗ (0.0538) +41.64% (±7.62%)

Note: ∗𝑝 < 0.05; ∗∗𝑝 < 0.01; ∗∗∗𝑝 < 0.001

matching is generally impossible in our setting [26]. The matching
process is intended to strengthen the plausibility of our DiD design,
particularly the parallel trend assumption, rather than creating
two directly comparable groups. The DiD design further addresses
imperfect matching through incorporating per-repository and per-
period fixed effects (Equation 4) and time-varying covariates (Sec-
tion 3.2.2) into the counterfactual outcome model.

Contamination from alternative AI coding tools. Another partic-
ular concern for our study setting is that repositories in both the
treatment and control groups may be using alternative AI tools
before and throughout the observation period, with or without
visible traces. For example, many developers may use early ver-
sions of GitHub Copilot or chat-based interfaces like the ChatGPT
web portal [2] without leaving any visible traces in the git reposi-
tory. Therefore, our estimates should be interpreted as the impact
of systematic Cursor adoption compared to the current state-of-
the-practice, in which code completion tools and chat-based AI
interfaces may be prevalently used, not the impact of using Cursor
with respect to no AI usage at all (the latter is generally not es-
timable in our observational dataset). However, we identify several
observable AI coding tools in our dataset (e.g., Claude Code with
.claude folders) and present robustness checks in Section 4.3.

3.5.2 External Validity. Our results may not generalize to other
LLM agent assistants, proprietary software projects, and program-
ming languages beyond the three dominant ones in our dataset
(JavaScript, TypeScript, Python)—adoption patterns and impacts
may differ substantially in these contexts. Importantly, our study
period coincides with rapid evolution in LLM capabilities, agent
tooling, and developer adoption patterns. Results observed may not
persist as LLM agent assistants mature and developer workflows
adapt. We encourage future replications and additional investiga-
tions of state-of-the-art LLM coding tools as they roll out.

4 Results
4.1 Difference-in-Differences
We summarize the Borusyak et al. [29] estimated average treatment
effects 𝐴𝑇𝑇 and horizon-average treatment effects 𝐴𝑇𝑇ℎ (see defi-
nitions in Section 3.3) in Table 2 and Figure 3 for the five velocity
and quality outcome variables (see definitions in Section 3.2.1). All
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Figure 3: The estimated “horizon-average” treatment effects (𝐴𝑇𝑇ℎ , Equation 3) 0 to +6 months after adoption, plus the “placebo”
pre-adoption treatment effect estimates (𝜏ℎ for testing the parallel trend assumption, Equation 5) -6 to -2 months before
adoption. All outcome variables are log-transformed same as the estimated average treatment effects in Table 2.

outcome variables pass the heteroscedasticity- and cluster-robust
Wald tests [29] at the 0.05 level (i.e., passing pre-trend tests).

4.1.1 Development Velocity. On average, Cursor adoption has a
modestly significant positive impact on development velocity, par-
ticularly in terms of code production volume: Lines added increase
by about 28.6% (Table 2). There is no statistically significant effect
for the volume of commits. The horizon-average treatment effect
estimations (Figure 3) reveal important temporal patterns that ex-
plain these differences: The only significant development velocity
gain is in the first two months post Cursor adoption. The models
estimate a 55.4% increase in commits in the first month, a 14.5%
increase in commits in the second month, a 281.3% increase in lines
added in the first month, and a 48.4% increase in lines added in the
second month, respectively.

4.1.2 Software Quality. In contrast to the transient velocity gains,
Cursor adopters show sustained patterns across static analysis
warnings and code complexity. On average (Table 2), static analysis
warnings increase significantly by 30.3%, and code complexity in-
creases by 41.6%. The effect on duplicate line density is insignificant.
The horizon-average treatment effect estimates (Figure 3) reveal
that the increase in the two outcome metrics persists beyond the
initial adoption period, contrasting the transient velocity gains.

4.2 Velocity & Quality Interactions
To distangle the temporal interactions between velocity and quality,
we summarize dynamic panel GMM models testing causal paths
specified in Equation 7, in Table 3. All models pass the Sargan
test (confirming instrument validity) and AR(2) test (confirming
no serial correlation in the original errors), validating the moment
conditions required for causal interpretation [22].

The first two models show that, on average (across all Cursor-
adopters and non-adopters in our dataset), and holding all other
temporal dynamic factors constant: (1) An increase in development
velocity does not produce a significant effect on static analysis
warnings and code complexity. (2) Cursor adoption does not have a
significant effect on static analysis warnings. Notably, increases in
codebase size are a major determinant of increases in static analysis
warnings and code complexity, and absorb most variance in the two
outcome variables. However, even with strong controls for codebase
size dynamics, the adoption of Cursor still has a significant effect

Table 3: The dynamic panel GMM estimates testing temporal
interactions between velocity and quality attributes. 𝐿,𝑊 ,
and 𝐶 stand for lines added, static analysis warnings, and
code complexity, respectively (see Equation 7). The estimates
for the remaining covariates are omitted here for brevity.

𝐿𝑖𝑡 →𝑊𝑖𝑡 𝐿𝑖𝑡 →𝐶𝑖𝑡 𝐶𝑖𝑡 →𝐿𝑖,𝑡+1 𝑊𝑖𝑡 →𝐿𝑖,𝑡+1

Main Effect −0.000∗∗∗ −0.006∗∗∗ −0.718∗∗∗ −0.588∗∗∗
(0.015)∗∗∗ (0.016)∗∗∗ (0.098)∗∗∗ (0.092)∗∗∗

Cursor −0.011∗∗∗ 0.086∗∗∗ 1.044∗∗∗ 1.048∗∗∗
(0.033)∗∗∗ (0.030)∗∗∗ (0.124)∗∗∗ (0.124)∗∗∗

Lines of Code 0.845∗∗∗ 0.852∗∗∗ 0.869∗∗∗ 0.851∗∗∗
(0.073)∗∗∗ (0.059)∗∗∗ (0.153)∗∗∗ (0.155)∗∗∗

Num. Obs. 14,755∗∗∗ 14,755∗∗∗ 14,755∗∗∗ 14,755∗∗∗
Sargan 𝑝 0.248∗∗∗ 0.141∗∗∗ 0.633∗∗∗ 0.639∗∗∗
AR(1) 𝑝 <0.001∗∗∗ <0.001∗∗∗ <0.001∗∗∗ <0.001∗∗∗
AR(2) 𝑝 0.734∗∗∗ 0.438∗∗∗ 0.393∗∗∗ 0.330∗∗∗

Notes: Two-way fixed effects (repository + month), two-step GMMwith
first-difference transformation. Robust standard errors in parentheses.
***𝑝<0.001, **𝑝<0.01, *𝑝<0.05. The contemporaneous variables 𝐿𝑖𝑡 ,𝐶𝑖𝑡 ,
and𝑊𝑖𝑡 are instrumented with lags 2-3 to address endogeneity. Sargan
𝑝>0.05 indicates valid instruments. AR(1) 𝑝<0.05 is expected with the
first-difference transformation. AR(2) 𝑝>0.05 indicates no serial corre-
lation in the original errors. Sargan 𝑝>0.05 and AR(2) 𝑝>0.05 validate
the moment conditions required for causal interpretation [22].

on code complexity, leading to a 9% baseline increase on average
compared to projects in similar dynamics but not using Cursor.

The last two models show that, on average, and holding all other
temporal dynamic factors constant: (1) A 100% increase in code
complexity and static analysis warnings causes a 64.5% and 50.3%
decrease in development velocity as measured by lines added, re-
spectively. (2) The adoption of Cursor results in a 1.84x baseline
increase in lines added post adoption. Thus, the velocity gain from
Cursor adoption would be fully cancelled out by a ∼5x increase
in static analysis warnings or a ∼3x increase in code complexity,
according to the dynamic panel GMM estimations.

To summarize, the dynamic panel GMM models suggest that:
(1) The adoption of Cursor leads to an inherently more complex code-
base; and (2) The accumulation of static analysis warnings and code
complexity decreases development velocity in the future.
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Figure 4: The estimated “horizon-average” treatment effects in alternative dataset settings as robustness checks. Row 1:
Robustness check on subsets with higher Cursor adoption confidence, showing generally stronger effects in high-confidence
adoption observations. Row 2: Robustness check on subsets of different activity levels, showing the persistence of our findings
even in very active repositories. Row 3: Robustness check between repositories with/without observable use of other AI tools,
showing that the potential use of other AI tools weakens Cursor effect estimations, but only by a small margin.

4.3 Robustness Checks
The above overall findings and the internal validity concerns behind
them (Section 3.5) present significant interpretation challenges. In
this section, we present additional robustness checks to explore
and rule out alternative explanations for our observed results.

Recall that one limitation of our identification strategy is that it
merely displays an “intent-to-treat” (ITT) signal without us know-
ing how Cursor was actually used in each treatment repository
(Section 3.5). To test whether our findings are driven by reposito-
ries with genuine, sustained usage (versus minimal engagement),
we repeat the same DiD modeling process on two subsets of data
based on two alternative measurements of usage intensity:
• High Contributor Adoption: For each repository, we identify con-
tributors modifying Cursor files (indicating experimentation)
and calculate their fraction of total repository commits during
observation. This subset keeps only “high-adoption” reposito-
ries, in which those modifying Cursor files also contributed
≥80% of commits, along with their own matched controls.

• Cursor Configuration Changes: For each repository, we iden-
tify all commits where .cursorrules files were modified post-
adoption. This subset keeps only post-adoption observations
with at least one commit modifying Cursor files during that
period, representing sustained usage and ruling out potential
post-adoption abandonments.

Results from the two subsets (Figure 4, Row 1) show that our
quality-related findings are robust and amplified in subsamples
with higher sustained usage: The accumulation of static analysis

warnings and code complexity is stronger—not weaker—among
repositories with continued configuration refinement and where
Cursor users dominated activity. This strengthens causal interpreta-
tion: Effects are attributable to Cursor adoption rather than spurious
correlation with other changes, and our main ITT estimates likely
understate effects among repositories with intensive, sustained
usage. Interestingly, while the velocity gain remains transient on
average across repositories with high contributor adoption, we still
observe a velocity increase in observations where developers are
actively modifying Cursor files. This indicates that abandonments
of Cursor post-adoption likely nullify at least part of the velocity
gains (more discussions in Section 5).

Another alternative explanation for the transient velocity gain
is that our DiD setting still does not sufficiently control for the
macro-trend that many open-source repositories become inactive
very fast (e.g., within two months). To test against this alternative
explanation, we build two subsets of observations: The first keeps
only repository-months with at least one commit, and the second
keeps only repository-months with at least 10 commits. The results
(Figure 4, Row 2) show that our main findings persist even in very
active repositories, albeit weaker than our main ITT estimates,
which is expected because it would be more difficult to achieve the
same percentage change in the measured outcomes in repositories
with higher baseline sizes and activity levels.

Finally, we assess the impact of dataset contamination from
alternative AI coding tools in our study setting (Section 3.5). For this
purpose, we take an overly conservative approach and identify all
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repositories where alternative AI coding tools may have been used
based on repository files (e.g., those with .vscode folder may have
used GitHub Copilot). We find 382 repositories from the treatment
group that may use other AI tools during our observation period:
345 with GitHub Copilot, 63 with Claude Code, 37 with Windsurf,
13 with Cline (13), and 2 with OpenHands (note that they overlap
heavily). We build a Cursor and Other subset for these repositories
and an Only Cursor subset for the remaining repositories, along
with their ownmatched controls. The results (Figure 4, Row 3) show
that while contamination weakens our main ITT estimates (e.g.,
some repositories may be using GitHub Copilot before Cursor), all
of our main findings are persistent through all three settings and
amplified in settings where prior AI tool usage is less likely.

To summarize, the above robustness checks reassure our main
causal findings against concerns from potential non-compliance
(i.e., treatment repositories not actually using Cursor), selection
bias (i.e., treatment repositories generally becoming inactive fast),
and confounding from other AI tools (i.e., the presence of other AI
tools nullifying estimates on the adoption of Cursor).

5 Discussion
5.1 Theoretical Implications
Our study contributes to the rapidly growing literature regarding
the impact of AI assistance on developer productivity [27, 40, 46,
63, 66, 73, 91, 94, 102, 105, 108, 111, 113]. More importantly, our
study provides a novel longitudinal lens into project-level macro-
outcomes, effectively connecting our findings to the existing soft-
ware engineering literature around development velocity and soft-
ware quality [28, 38, 72, 85, 104]. In this section, we connect our
findings with prior research and discuss our theory around how
LLM agent assistants may impact software development (Figure 1).

5.1.1 The Transient Velocity Gains and Possible Causes Behind It.
Our first longitudinal finding—that the project-level velocity gains
from adopting Cursor are concentrated in the initial one or two
months before returning to a baseline level—contrasts task-level
productivity improvements reported in controlled experiments [e.g.,
92, 94]. One reason for such contrast likely stems from the tempo-
ral dynamics between development velocity and software quality
(which is only observable in a longitudinal study setting): While
LLM agent assistants increase development velocity, the increase in
development velocity itself may increase codebase size and cause
accumulation of technical debt; the latter would consequently de-
crease development velocity in the future. This negative effect of
technical debt is supported by both the prior literature [28, 38] and
our panel GMM models (Table 3). However, this mechanism alone
likely does not fully explain why the development velocity gain
vanishes after two months: A ∼3x increase in code complexity or a
∼5x increase in static analysis warnings would be necessary to fully
cancel out the effect of Cursor adoption according to our models
(Table 3), which is unlikely.

Another highly plausible explanation, as indicated in Section 4.3,
is that open-source developers experience an excitement-frustration-
abandonment cycle while they adopt Cursor. For example, during
the initial adoption phase, developers may experience novelty ef-
fects and actively experiment on tasks where AI excels (e.g., rapid

prototyping), contributing to the immediate velocity spike post-
adoption. However, as developers encounter scenarios where AI
is still limited (e.g., debugging intricate logic, understanding exist-
ing codebases, handling edge cases), frustration may accumulate.
This frustration, combined with the cognitive overhead of verifying
and debugging AI-generated suggestions, could lead to reduced us-
age or complete abandonment. This interpretation aligns with the
emerging qualitative research documenting developer challenges
with AI-assisted coding [27, 37, 76] and anecdotal evidence from
Cursor users [e.g., 9, 11].

5.1.2 The Accumulation of Technical Debt and Code Complexity.
Our findings reveal a nuanced relationship between velocity and
quality that challenges simplistic narratives about AI coding de-
grading code quality [6]. While the absolute levels of static analysis
warnings increase post adoption (Finding 2), a large part of this
observed effect can be attributed to the causal path of increased
velocity → increased code base size → increased technical debt
(Table 3). In other words, LLM agent assistants amplify existing
velocity-quality dynamics by enabling faster code production, but
may not necessarily introduce more code quality issues than non-
adopting projects moving with the same velocity. This proportional
relationship has an important practical implication that quality as-
surance needs to scale with AI-era velocity (see Section 5.2). After
all, the use of AI does not change the fact that all code is a liability
and the asset lies only in the code’s capabilities [13].

The substantial average increase in code complexity (25.1%, Ta-
ble 2) warrants particular attention, as code complexity represents
a distinct quality dimension from code quality issues. That code
complexity increases even after accounting for velocity dynamics
(Table 3) gives strong evidence that code generated with Cursor in
our study sample is inherently more complex than human-written
code. This effectively creates a “complexity debt” in projects that
use AI heavily, which may amplify frustration and maintenance
costs when the AI fails on more complex codebases later, possibly
providing another mechanism explaining the transient velocity
gain we observe after Cursor adoption in our dataset.

While the adoption of Cursor leads to no significant changes in
duplicate line density in the entire study sample (Table 2, Figure 3),
heavy Cursor adopters may exhibit modest increases (Figure 4).
Future research is needed to gather evidence on code duplication
concerns in high AI usage scenarios.

5.1.3 Contextual Factors in Open-Source Settings. Our findings
should be interpreted within the specific context of open-source
software development, which differs from enterprise settings in
ways that likely influence the patterns we observe. Open-source
projects typically feature: (1) voluntary participation with low
switching costs, enabling easy abandonment when tools prove
frustrating, (2) distributed collaboration with varying levels of co-
ordination, potentially reducing systematic code review that might
catch AI-introduced defects; (3) intrinsic motivation and learning
goals, where experimenting with AI tools provides value beyond
pure productivity; and (4) resource constraints that may limit com-
prehensive testing and quality assurance regardless of development
velocity. These contextual factors likely amplify the excitement-
frustration-abandonment cycle while potentially dampening the
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quality feedback loop. In enterprise settings, organizational man-
dates, sunk training costs, and managerial oversight might sustain
AI tool use despite user frustration, potentially leading to distinct
temporal patterns (as indicated in a recent study [73]). Similarly,
enterprise quality assurance processes—mandatory code review,
automated testing requirements, dedicated QA teams, and even ded-
icated agents to do maintenance work—might prevent proportional
technical debt accumulation by catching issues before they esca-
late. Future research should examine whether the transient gains
and proportional debt patterns we observe generalize to enterprise
contexts or represent open-source-specific phenomena.

5.2 Practical Implications
To overcome the technical debt accumulation ratchet, software projects
using LLM agent assistants should focus on process adaptation that
scales quality assurance with AI-era velocity. The proportional tech-
nical debt accumulation we observe (Section 4.1.2), combined with
its velocity-dampening effects (Section 4.2), creates a self-reinforcing
cycle that needs to be addressed at the project level. To overcome
this, AI-adopting teams may consider refactoring sprints triggered
by code quality metrics, mandating test coverage requirements that
scale with lines of code added, or prompt engineering (e.g., engi-
neered Cursor rules) to enforce rigid quality standards for LLM
agents. Without such adaptations, the initial productivity surge
may accelerate the project toward an unmaintainable end state.

To support the above process adaptation, AI coding tools need ex-
plicit design to support quality assurance alongside code generation.
The LLM agents (at the time of study) are generation-first, leaving
quality maintenance as an afterthought. Future assistants should
suggest tests alongside code, flag unnecessary complexity in real
time, and proactively recommend refactoring when code quality
degrades—essentially becoming “pair programmers” for quality,
not just velocity. More provocatively, tools might implement self-
throttling: automatically reducing suggestion volume or aggres-
siveness when project-level complexity or debt exceeds healthy
thresholds, forcing developers to consolidate before generating
more code. Such features would align tools with long-term project
health rather than short-term code production.

The potential overcomplication in AI-generated code warrants fur-
ther research and improvement. The 25% increase in code complexity
we observe (Table 3) represents a distinct quality dimension beyond
code quality issues—a “comprehension tax” that persists regardless
of functional correctness. This suggests LLMs may be generating
structurally valid but semantically opaque code, perhaps because
training objectives prioritize passing tests over non-functional re-
quirements such as human readability [57, 112]. Unless future devel-
opment workflows allow fully automated AI development without
any human code reviews, code readability will remain an important
dimension to pursue in AI-generated code. Addressing this requires
both technical innovation (e.g., readability-aware fine-tuning, post-
hoc simplification passes) and empirical investigation into what
specifically makes LLMs generate overly complicated implemen-
tations. Until these complexities are addressed, software project
teams should treat AI-generated code as requiring extra scrutiny
during review, with particular attention to whether simpler imple-
mentations exist that achieve the same functionality.

6 Conclusion
This study presents the first large-scale empirical investigation of
how LLM agent assistants impact real-world software development
projects. Through a rigorous difference-in-differences design com-
paring Cursor-adopting repositories with matched control group
repositories, complemented by dynamic panel GMM analysis, we
provide evidence that challenges both unbridled optimism and cate-
gorical pessimism surrounding AI-assisted coding: Cursor adoption
produces substantial but transient velocity gains alongside persis-
tent increases in technical debt; such technical debt accumulation
subsequently dampens future development velocity. Ultimately, our
results suggest a self-reinforcing cycle where initial productivity
surges give way to maintenance burdens.

However, several considerations suggest this picture may not
be as bleak as it initially appears. First, our study captures a snap-
shot of rapidly evolving technology from mid-2024 to mid-2025,
when LLM capabilities, agent designs, and developer practices are
improving at unprecedented rates—future tools might be able to
address the quality concerns we observed. Second, our quality met-
rics, while well-established in software engineering research, may
not fully capture the multi-dimensional nature of code quality in
AI-driven development. For example, complexity metrics were de-
signed for human-written code; whether they appropriately pe-
nalize AI-generated patterns that are mechanically verifiable yet
syntactically complex remains an open question. Third, the open-
source context of our study may amplify both abandonment dy-
namics and quality concerns relative to enterprise settings with
mandatory, dedicated quality assurance processes.

Looking forward, our findings point to clear research and prac-
tice directions (Section 5). Ultimately, this study demonstrates that
realizing the promise of AI-assisted software development requires
a holistic understanding of how AI assistance reshapes the funda-
mental trade-offs between development velocity, code quality, and
long-term project sustainability. The age of AI coding has arrived—
our challenge now is to harness it wisely.

Data Availability
We provide a replication package for this paper at:
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at: https://arxiv.org/abs/2511.04427.
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Table 4: Model fitting summary of the logistic regression
models used for matching in each Cursor adoption cohort.

Cohort Candid. Repos AUC McFadden’s Pseudo R2

202408 807,608 0.8506 0.1412
202409 804,740 0.9137 0.2336
202410 818,160 0.8969 0.2204
202411 796,312 0.9144 0.2722
202412 794,186 0.8907 0.2101
202501 776,547 0.8702 0.2123
202502 762,968 0.8716 0.2271
202503 792,382 0.8281 0.1939

A Matching Results
In this section, we present additional details about the propensity
score matching process described in Section 3.1.3.

Table 4 presents the total number of candidate repositories in
each major Cursor adoption cohort and the AUCs and McFadden’s
Pseudo R2s from fitting each logistic regression model in that cohort
with 10,000 sampled candidates. In general, the logistic regression
models achieve very high goodness-of-fit (0.8281 to 0.9144 AUC),
but only explain a relatively limited amount of variance in the out-
come (14.12% to 27.22%). This indicates that while the models can
distinguish Cursor adoptions relatively well, the measured covari-
ates alone do not fully explain the variations behind each adoption
case. We view this as an expected result, as the Cursor adoption
decisions are probably not driven by any observable information
in GitHub; the latter may only latently and partially capture it to
help us create a reasonably comparable control group.

To assess whether the treatment and control group repositories
are reasonably comparable, we plot the distribution of propensity
scores (Figure 5) and conduct balance checks on observable covari-
ates before each adoption (Table 5). While the propensity score plot
(Figure 5) shows that the treatment and control group repositories
have highly similar conditional treatment probabilities, the matched
control group is slightly skewed toward lower propensity scores.
Furthermore, the balance checks (Figure 5) indicate acceptable but
imperfect matching: While all metrics show acceptable balance
between the treatment and control group in terms of normalized
differences (|Norm. Diff| < 0.25), there are still observable mean
differences between the two groups. In other words, it indicates
that our matching is imperfect and our study setting deviates from
perfect randomized controlled experiments. This motivates us to
adopt a difference-in-difference design for causal inference instead
of simply comparing outcomes between the two groups—a DiD
design with two-way fixed effects and time-varying covariates is
more suited for a quasi-experimental setting like ours.

B Alternative DiD Estimators
Recall from Section 3.3 that several alternative DiD estimators are
available for estimating the average treatment effect on treated𝐴𝑇𝑇
and the “horizon-average” treatment effect 𝐴𝑇𝑇ℎ . In this section,
we provide a brief introduction to the two other widely popular
alternative estimators, namely the two-way fixed effects (TWFE)
estimator and the Callaway and Sant’Anna [31] estimator. Then,
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Figure 5: The distribution of propensity scores between all
candidate repositories, matched control group repositories,
and the 806 Cursor-adopting repositories, showing that the
matched control group has highly similar conditional treat-
ment probabilities compared to the treatment group.

Table 5: Balance statistics: treatment versus matched con-
trol pre-adoption. Normalized difference is defined as (𝑋𝑡 −
𝑋𝑐 )/

√︁
(𝑆𝑡 + 𝑆𝑐 )/2, where 𝑋𝑡 /𝑋𝑐 and 𝑆𝑡 /𝑆𝑐 stands for the mean

and variance in the treatment/control group, respectively.
Follwing balance check conventions [24, 106], we consider
|Norm. Diff| < 0.25 as acceptable balance and < 0.1 as good
balance. Note that the treatment means here are different
from the treatment means in Table 1 because the latter re-
flect the metrics at the time of data analysis while the Table
here reflects the same metrics at the time of Cursor adoption.

Metrics Treatment Mean Control Mean Norm. Diff

Age (in days) 496.07 681.38 −0.207
Comments 2870.82 564.84 0.147
Forks 196.07 64.27 0.079
Issues 524.07 103.95 0.154
Pull Requests 1075.58 266.03 0.158
Releases 27.51 25.44 0.006
Stars 1056.65 334.62 0.130
Total Events 10103.25 2443.39 0.171
Users Involved 1247.79 414.90 0.137

we compare their estimation results with results from the Borusyak
et al. [29] estimator presented in the main paper.

B.1 The Two-Way Fixed Effects Estimator
The TWFE estimator estimates𝐴𝑇𝑇 from the 𝛽 parameter in the fol-
lowing ordinary least squares regression (OLS) with per-repository
(𝜇𝑖 ) and per-period (𝜆𝑡 ) fixed effects (thus “two-way”), on all avail-
able observations with 𝐷𝑖𝑡 = 1 for treated and 𝐷𝑖𝑡 = 0 otherwise:

𝑌𝑖𝑡 = 𝜇𝑖 + 𝜆𝑡 + 𝛽𝐷𝑖𝑡 + Γ̂′𝑍𝑖𝑡 + 𝜖𝑖𝑡 (8)
For 𝐴𝑇𝑇ℎ and pre-trend test parameters (Equation 5), the TWFE

estimator typically estimates one single OLS regression in the fol-
lowing form, on all available observations:

𝑌𝑖𝑡 = 𝜇𝑖 + 𝜆𝑡 + Γ̂′𝑍𝑖𝑡 +
𝑗∑︁

ℎ=−𝑘,ℎ≠−1
𝜏ℎ1[𝑡 = 𝐸𝑖 + ℎ] + 𝜖𝑖𝑡 (9)
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Here, 𝜏ℎ for ℎ < 0 represents “placebo” pre-treatment effect esti-
mates as in Equation 5 and 𝜏ℎ for ℎ ≥ 0 represents the intended
post-treatment 𝐴𝑇𝑇ℎ estimates. ℎ = −1 is intentionally omitted
from the regression to serve as the counterfactual baseline.

While the early econometric literature extensively uses the two-
way fixed effect (TWFE) estimator for DiD studies, it is important
to note that the OLS-estimated 𝛽s (Equation 8) and 𝜏ℎs (Equation 9)
do not really estimate the 𝐴𝑇𝑇 and 𝐴𝑇𝑇ℎ defined in Section 3.1.3.
Instead, under both the parallel trend assumption and the treatment
effect homogeneity assumption (i.e., the treatment effect does not
vary over time and adoption cohorts), a TWFE estimator equals a
variance weighted average of all possible two-group/two-period
DiD estimators in the data [54]. However, the treatment effect ho-
mogeneity assumption is a strong assumption that is likely violated
in the staggered adoption setting: For example, it is reasonable to
anticipate that later Cursor adoption cohorts may have stronger
adoption effects as the tooling and model capabilities are rapidly
advancing. If this assumption is violated, it may lead to “forbid-
den comparisons” and negative weighting in the TWFE estimator,
biasing the estimated parameters and jeopardizing the validity of
causal claims based on TWFE estimators [23, 44].

B.2 The Callaway and Sant’Anna [31] Estimator
The Callaway and Sant’Anna [31] estimator takes a fundamentally
different approach from both TWFE and the Borusyak et al. [29]
imputation estimator. Rather than estimating regression models on
all adoption cohorts, it first estimates group-time average treatment
effects 𝐴𝑇𝑇 (𝑔, 𝑡)—the average treatment effect for cohort 𝑔 (reposi-
tories adopting in the same period) at time 𝑡—before aggregating
𝐴𝑇𝑇 (𝑔, 𝑡) into summary 𝐴𝑇𝑇 and 𝐴𝑇𝑇ℎ measures.

For a group of repositories 𝑔 that adopt Cursor at time period 𝑔,
the average treatment effect at calendar time 𝑡 is identified as:

𝐴𝑇𝑇 (𝑔, 𝑡) = E[𝑌𝑡 − 𝑌𝑔−1 | 𝐺𝑔 = 1] − E[𝑌𝑡 − 𝑌𝑔−1 | 𝐶] (10)

where𝑌𝑡 −𝑌𝑔−1 represents the evolution of the outcome from the pe-
riod prior to treatment (𝑔−1) to the current period 𝑡 . The researcher
may choose “never-treated” repositories or “not-yet-treated” ob-
servations as the control group 𝐶; we choose the latter to align
with the other two estimators. This formulation explicitly avoids
using already-treated units as controls, eliminating the “forbidden
comparisons” that can bias TWFE estimates [54].

With 𝐴𝑇𝑇 (𝑔, 𝑡) estimations,

𝐴𝑇𝑇 =
∑︁
𝑔

∑︁
𝑡≥𝑔

𝑤𝑔,𝑡 · 𝐴𝑇𝑇 (𝑔, 𝑡) (11)

where𝑤𝑔,𝑡 are weights proportional to the size of each group for
all post-treatment observations (i.e., 𝑡 ≥ 𝑔). 𝐴𝑇𝑇ℎ is given by:

𝐴𝑇𝑇ℎ =
∑︁
𝑔

∑︁
𝑡

𝑤ℎ
𝑔,𝑡 · 𝐴𝑇𝑇 (𝑔, 𝑡) (12)

where𝑤ℎ
𝑔,𝑡 are weights proportional to the size of each group satis-

fying 𝑡 − 𝑔 = ℎ. As with the other two estimators, this aggregation
allows us to test the parallel trends assumption (where ℎ < 0) and
estimate “horizon-average” treatment effects (where ℎ ≥ 0).

The Callaway and Sant’Anna [31] framework provides multiple
approaches to estimate 𝐴𝑇𝑇 (𝑔, 𝑡). In our study, we use the outcome
regression estimator with covariate adjustment. Specifically, for

each group-time pair (𝑔, 𝑡), we first estimate an outcome regression
model on the comparison group 𝐶:

𝑌𝑖𝑡 − 𝑌𝑖,𝑔−1 = 𝛼𝑔,𝑡 + Γ′𝑔,𝑡𝑍𝑖,𝑔−1 + 𝜖𝑖𝑡 , for 𝑖 ∈ 𝐶 (13)

where 𝑍𝑖,𝑔−1 represents pre-treatment covariates (defined in Sec-
tion 3.2.2). This model estimates the expected evolution of outcomes
for untreated repositories with similar pre-treatment characteristics.
The estimated 𝐴𝑇𝑇 (𝑔, 𝑡) is then computed as:

𝐴𝑇𝑇 (𝑔, 𝑡) = 1
|𝐺𝑔 |

∑︁
𝑖∈𝐺𝑔

[
(𝑌𝑖𝑡 − 𝑌𝑖,𝑔−1) − (𝛼𝑔,𝑡 + Γ̂′𝑔,𝑡𝑍𝑖,𝑔−1)

]
(14)

where 𝐺𝑔 denotes the set of repositories in cohort 𝑔, and (𝛼𝑔,𝑡 +
Γ̂′𝑔,𝑡𝑍𝑖,𝑔−1) represents the predicted counterfactual outcome change
for treated repository 𝑖 based on its pre-treatment characteristics.
We also allow for one period of anticipation in the estimation,
consistent with our treatment of the Borusyak et al. [29] estimator,
where we exclude ℎ = −1 from pre-trend tests.

A key distinction of the Callaway and Sant’Anna [31] estimator
is that it estimates treatment effects separately within each cohort be-
fore aggregating. While this approach ensures clean identification
by avoiding cross-cohort contamination, it can reduce statistical
power when individual cohorts are small. In our setting, where
many adoption cohorts contain fewer than 100 repositories (Fig-
ure 2), this cohort-specific estimation may yield noisier estimates
compared to Borusyak et al. [29], which leverages all untreated
observations to fit a single counterfactual outcome model.

B.3 Comparing Estimation Results
We summarize the 𝐴𝑇𝑇 and 𝐴𝑇𝑇ℎ estimations from all three esti-
mators in Table 6 and Figure 6. For pre-trend tests, we use the same
heteroskedasticity- and cluster-robust Wald tests [29] to test the
joint null hypothesis that all “placebo” pre-treatment effect esti-
mates are equal to zero. Most models pass the pre-trend test at the
0.05 significance level. The one exception is code complexity esti-
mated with TWFE, which shows marginally significant pre-trends
visible in Figure 6. This violation likely stems from the “forbidden
comparisons” inherent to the TWFE estimator [44], as both the
Borusyak et al. [29] and Callaway and Sant’Anna [31] estimators
show no significant pre-trends for this outcome.

For development velocity outcomes, the three estimators show
qualitatively consistent results on the 𝐴𝑇𝑇ℎ estimates (Figure 6).
The differences in 𝐴𝑇𝑇 estimates stem from the fact that they are
averaged differently in the three estimators. All estimators find pos-
itive effects on lines added, with estimates ranging from +28.58%
(Borusyak et al. [29]) to +82.74% (TWFE) to +53.60% (Callaway
and Sant’Anna [31]). The differences in manitudes stem from the
fact that they use different weighted averages for the 𝐴𝑇𝑇 esti-
mates. While the magnitudes differ, the direction and statistical
significance align, providing robust evidence that Cursor adoption
increases code output. For commits, Borusyak et al. [29] and Call-
away and Sant’Anna [31] find small, statistically insignificant effects
(+2.63% and −0.73%, respectively), while TWFE estimates a larger,
significant effect (+17.83%). This TWFE inflation likely reflects the
bias from “forbidden comparisons” discussed in Section B.1.

For code quality outcomes, the estimators diverge more substan-
tially. The Borusyak et al. [29] and TWFE estimators consistently
find significant increases in static analysis warnings (+30.26% and
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Table 6: The estimated average treatment effects on treated (i.e., 𝐴𝑇𝑇 ) post Cursor adoption from different DiD estimators.
Similar to Table 2, all outcome variables are log-transformed, and percentage changes are provided for reference.

Borusyak et al. [29] Two-Way Fixed Effects Callaway and Sant’Anna [31]

Outcome Estimate (Std. Err.) % Change Estimate (Std. Err.) % Change Estimate (Std. Err.) % Change

Commits 0.0260∗∗∗ (0.0429) +2.63% (±4.40%) 0.1641∗∗∗ (0.0386) +17.83% (±4.55%) −0.0073∗∗ (0.0695) −0.73% (±6.90%)
Lines Added 0.2514∗∗∗ (0.1063) +28.58% (±13.7%) 0.6029∗∗∗ (0.0876) +82.74% (±16.0%) 0.4292∗∗ (0.1536) +53.60% (±23.6%)
Static Analysis Warnings 0.2644∗∗∗ (0.0511) +30.26% (±6.66%) 0.1696∗∗∗ (0.0415) +18.48% (±4.92%) −0.1108∗∗ (0.1254) −10.49% (±11.2%)
Duplicated Lines Density 0.0679∗∗∗ (0.0448) +7.03% (±4.79%) 0.0160∗∗∗ (0.0390) +1.61% (±3.96%) −0.0034∗∗ (0.0785) −0.34% (±7.82%)
Code Complexity 0.3481∗∗∗ (0.0538) +41.64% (±7.62%) 0.2314∗∗∗ (0.0446) +26.04% (±5.62%) −0.0387∗∗ (0.1136) −3.80% (±10.9%)

Note: ∗𝑝 < 0.05; ∗∗𝑝 < 0.01; ∗∗∗𝑝 < 0.001
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Figure 6: The estimated horizon-average treatment effects (𝐴𝑇𝑇ℎ) from three DiD estimators: Borusyak et al. [29], Callaway and
Sant’Anna [31], and two-way fixed effects. The estimates on development velocity outcome are highly consistent and robust
across all three estimators, but the estimates on software quality outcomes vary significantly.

+18.48%) and code complexity (+41.64% and +26.04%), while the
Callaway and Sant’Anna [31] estimator yields negative but statis-
tically insignificant estimates for these same outcomes (−10.49%
and −3.80%). All three estimators find no significant effects on
duplicated lines density after Cursor adoption.

The divergence between Callaway and Sant’Anna [31] and the
other estimators warrants careful interpretation, which may be
attributed to several methodological differences. First, as discussed
in Section B.2, the Callaway and Sant’Anna [31] estimator estimates
treatment effects separately within each cohort before aggregat-
ing. In our setting, many adoption cohorts contain fewer than 100
repositories (Figure 2), meaning cohort-specific estimates rely on
limited sample sizes. Combined with the inherent noisiness of code
quality metrics (e.g., measurement errors in static analysis tools and
high variation in code characteristics), this small-cohort structure
likely reduces statistical power to detect genuine effects. Second,
the Callaway and Sant’Anna [31] estimator conditions only on pre-
treatment covariates 𝑍𝑖,𝑔−1 (Equation 13), whereas both TWFE and
Borusyak et al. [29] adjust for time-varying covariates 𝑍𝑖𝑡 . If time-
varying confounders influence code quality outcomes beyond what
pre-treatment characteristics capture, this difference in covariate
adjustment could contribute to the divergent estimates. Still, there
is no clear consensus on when time-varying covariates help or hurt
causal inference in staggered DiD settings.

We report the Borusyak et al. [29] estimator in the main paper
for three reasons: (1) It avoids the biases of TWFE while main-
taining statistical power by pooling untreated observations; (2) it
passes pre-trend tests across all outcomes; and (3) the sustained
temporal patterns in Figure 6 support the causal interpretation. We
acknowledge that the lack of large cohorts and clear theoretical
guidance on the incorporation of time-varying covariates in DiD

limits our ability to definitively resolve estimator disagreements for
code quality outcomes; the findings around code quality outcomes
should be interpreted with appropriate caution.

C Full Robustness Check Results
Following discussions in Section 4.3, we present summary statistics
in all alternative dataset settings in Table 7 and additional robust-
ness check results in Figure 7. Apart from the settings already dis-
cussed in Section 4.3, we also conduct experiments across different
programming language groups to determine whether our findings
are driven by repositories in particular programming languages
or are consistent across programming languages. The results in
Figure 7, Row 1 show that our main causal findings are qualita-
tively consistent across all the major programming languages in
our dataset (JavaScript/TypeScript, Python, Go). Comparing the
differences, we observe that the velocity gain is most transient in
JavaScript/TypeScript repositories but less so in Python and Go
repositories, while the effect on code quality in Go repositories is
strongest. However, it is essential to note that this heterogeneity
should not be attributed to the programming languages themselves
in our setting. Our intuition is that some form of selection bias (e.g.,
Go repositories may be larger andmore sustained) is driving the het-
erogeneity we observe here. Also, our dataset does not sufficiently
cover several major programming languages, such as Java, C/C++,
and Rust, in which the outcomes of AI coding tool adoption might
differ substantially from those in Python and JavaScript projects
(the latter have more training data and better LLM performance
as of now). Therefore, we believe that future research is necessary
to explore the impact of AI coding tools on other programming
languages and the mechanisms underlying these heterogeneities.
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Table 7: Summary statistics for all alternative dataset settings explored in this study. The results from Rust repositories are
dropped in Figure 7 because of insufficient observations, causing insignificant results and extremely large confidence intervals.

Setting # Treatment Repos # Control Repos # Total Observations # Post-Treatment Observations

Main Settings
Original 801 1,172 21,699 4,481
High Contributor Adoption 379 535 8,440 1,919
Cursor Configuration Changes 801 1,127 18,319 1,569
Active Months (>0 commits) 801 1,172 16,075 3,934
Very Active (≥10 commits) 709 814 10,134 2,721
Cursor and Others 382 583 11,322 2,440
Only Cursor 419 602 10,232 2,041

Adoption Cohort Settings
Before Agent Release 166 286 4,793 1,262
After Agent Release 635 769 15,508 3,219
Agent Made Default 461 570 11,748 2,199

Programming Language Settings
JavaScript/TypeScript 411 422 8,870 2,279
Python 121 127 2,461 582
Go 35 57 1,147 191
Rust 21 41 771 132
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Figure 7: The estimated “horizon-average” treatment effects in alternative dataset settings with all five outcome variables.
Row 1: Robustness check across programming language groups with statistically sufficient observations in our dataset
(JavaScript/TypeScript, Python, Go), showing that our findings are qualitatively consistent across programming languages. Row
2: Robustness checks across Cursor adoption cohorts where different Cursor features were available, showing no qualitative
difference across cohorts before/after agent release and agent made default in the Composer feature.

Another limitation of our study is that our identification based on
Cursor rule files cannot clearly distinguish developers who use the
older Cursor Composer feature (with autonomous file editing but
without agentic capabilities) from those who use the later Agentic
features. The reality is probably that most repositories in our dataset
have a mix of developers using different AI autonomy levels, with
most switching to full-fledged agents after it became the default
in February 2025. As another robustness check, we check whether
the availability of the agentic feature impacts our main results
through different adoption cohorts, Before Agent Release, for the
adoption cohorts before November 2024, After Agent Release for the
adoption cohorts after November 2024, and Agent Made Default for

the adoption cohorts after Feburary 2025. Note that clear separation
of feature availability is impossible in our longitudinal study setting,
as it is very likely that early Cursor adopters will also switch to
using agents later during our observation period. The results in
Figure 7, Row 2 show no qualitative difference across the three
adoption cohorts for the main findings, except that the estimated
effects on static analysis warnings and code complexity are slightly
weaker. As with the pprogramminglanguage case, the interpretation
of this difference is challenging. The effect may be because of an
increase in model capabilities, merely selection bias, or because
most repositories eventually switch to agents.
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Table 8: The estimated average number of new static analy-
sis warnings introduced per repository per month in each
SonarQube warning category pre-/post-Cursor adoption. See
Table 9 for the definition of each category.

Category Pre Mean Post Mean Change

Naming Conventions 12.15 33.48 +21.32 ↑
Code Hygiene 6.58 22.72 +16.15 ↑
Code Complexity 7.59 22.92 +15.34 ↑
Code Style 14.51 29.27 +14.76 ↑
Data Science 2.10 13.39 +11.29 ↑
React Patterns 9.24 18.75 +9.52 ↑
Type Safety 7.61 16.04 +8.43 ↑
CSS Issues 3.41 9.09 +5.68 ↑
OOP/Design 4.53 7.90 +3.37 ↑
Regex Issues 2.37 5.08 +2.71 ↑
Infrastructure 2.62 5.10 +2.48 ↑
Logic Error 7.57 9.66 +2.09 ↑
Security 1.78 3.76 +1.98 ↑
Empty/Incomplete Code 5.37 6.98 +1.61 ↑
Error Handling 5.28 6.44 +1.16 ↑
Accessibility 11.99 12.77 +0.78 ↑
HTML Structure 1.89 1.63 −0.26 ↓
Resource Management 3.00 2.60 −0.40 ↓
Concurrency 5.00 3.05 −1.95 ↓
API Usage 17.77 13.42 −4.35 ↓

D Analysis of SonarQube Warnings
To peek into what is actually driving the increase in static analysis
warnings, we collect a sample of SonarQube warnings pre- and
post-Cursor adoption for the treated repositories. It is merely a con-
venience sample, as an architectural limitation in our SonarQube
analysis pipeline prevents us from precisely collecting all warnings
and tracking each warning to the version that introduced it. Thus,
we only use this sample for descriptive explorations rather than for
causal inference (e.g., using a DiD design as in the main paper).

In total, we collected 195,010 warnings generated from 933 Sonar-
Qube analysis rules. The first author of the paper iteratively works
with Claude Opus 4.5 to generate a taxonomy of these rules with 20
categories (Table 9). Using this taxonomy, we estimate the average
number of new static analysis warnings introduced per repository
per month in each SonarQube warning category pre-/post-Cursor
adoption (Table 8) using the available warnings and months. We
only focus on newly introduced warnings in eachmonth where data
is still available as of January 2026, as SonarQube may routinely
clean up resolved warnings in older project versions.

Table 8 reveals that 16 out of the 20 warning categories increased
post-Cursor adoption, while only four decreased. The largest in-
creases occurred in Naming Conventions (+21.32), Code Hygiene
(+16.15), Code Complexity (+15.34), and Code Style (+14.76), all of
which indicates that the adoption of Cursor—and the rapid develop-
ment velocity associated with it—may lead to violation of common
coding conventions, accumulation of artifacts (TODOs, commented
out code, unused variables), and more complex code (e.g., deeply
nested functions). We also observe increases in violation of domain-
specific best practices in Data Science (+11.29), React (+9.52), Type
Safety (+8.43), CSS (+5.68), etc. These violations may come from

current LLMs being trained on low-quality code or developers heav-
ily vibe-coding and not rigorously reviewing AI-generated code,
but future research is necessary to explore the true causes behind
them. Interestingly, Logic Errors and Security problems—actual
bugs that are both obvious enough to be detectable by static analy-
sis and potentially dangerous—also increased modestly (+2.09 and
+1.98). The few categories that decreased include API Usage (−4.35),
Concurrency (−1.95), Resource Management (−0.40), and HTML
Structure (−0.26), potentially indicating that AI models trained on
recent code may suggest more modern API alternatives and handle
certain asynchronous patterns more effectively.

Overall, while themajority of the new static analysis warnings in-
troduced after Cursor adoption are style and maintainability issues,
we also observe non-negligible increases in warning categories
signaling bad coding practices (e.g., type safety) and critical bugs
(e.g., security). These findings strengthen our recommendation in
Section 5.2, that high-velocity AI-powered development generally
introduces, rather than resolves, code quality issues, and quality
assurance needs to scale with this AI-era velocity.
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Table 9: A taxonomy of static analysis warnings generated by SonarQube in our dataset.

Category Description Example Rules

Code Hygiene Leftover artifacts from development, including commented-
out code, TODO/FIXME comments, unused variables, etc.

S125 (commented code), S1135 (TODO comments), S1128 (un-
used imports), S1481 (unused variables)

Logic Error Bugs in code logic, such as incorrect comparisons, unreachable
code, infinite loops, and misuse of return values.

S2871 (sort with ill-defined comparator), S1764 (identical sub-
expressions), S1763 (unreachable code)

Code Complexity Structural issues affecting maintainability, including high cog-
nitive complexity, deep nesting, and excessive parameters.

S3776 (cognitive complexity), S2004 (deep nesting), S3358
(nested ternary), S107 (too many parameters)

Accessibility Web accessibility violations, including missing alt text, key-
board navigation issues, and improper ARIA usage.

S1082 (missing keyboard handler), S5256 (missing table head-
ers), S6848 (non-native interactive elements)

React Patterns React-specific anti-patterns, including incorrect key usage,
hook violations, and state mutation issues.

S6479 (array index as key), S6440 (hook rules violation), S6756
(direct state mutation)

OOP/Design Object-oriented design issues, including encapsulation viola-
tions, improper inheritance, and design pattern misuses.

S1118 (add private constructor), S1104 (public mutable field),
S2160 (override equals)

Type Safety Type system issues primarily in TypeScript, including unnec-
essary assertions, improper generics, and enum problems.

S4325 (unnecessary type assertion), S6759 (props not readonly),
S4621 (duplicate union types)

API Usage Use of deprecated or outdated APIs and methods that have
newer alternatives.

S1874 (deprecated API usage), S6653 (use Object.hasOwn),
S6654 (__proto__ deprecated)

Error Handling Incomplete or improper exception and error handling, includ-
ing empty catch blocks and generic exceptions.

S108 (empty block), S112 (generic exception), S1143 (return in
finally), S2737 (empty catch)

Security Security vulnerabilities, including hardcoded secrets, insecure
configurations, and unsafe operations.

S6437 (secrets in image), S2819 (postMessage origin), S5542
(insecure cipher)

Naming Conventions Violations of language-specific naming conventions for classes,
methods, variables, and constants.

S100 (method naming), S101 (class naming), S117 (variable nam-
ing)

Regex Issues Regular expression problems, including excessive complexity,
empty matches, and inefficient patterns.

S5843 (regex complexity), S5869 (duplicate char class), S6019
(reluctant quantifier)

Empty/Incomplete Missing implementations, including empty methods, empty
classes, and stub code without logic.

S1186 (empty method), S2094 (empty class), S4658 (empty CSS
block)

Concurrency Threading and asynchronous programming issues, including
race conditions and improper synchronization.

S2168 (double-checked locking), S4123 (redundant await),
S2696 (non-static in static)

Code Style Formatting and stylistic preferences, including boolean literals,
loop styles, and modern syntax usage.

S1125 (boolean literal), S1301 (switch vs if), S6582 (optional
chaining)

Data Science Python ML/data science specific issues, including random
seeds, deprecated NumPy patterns, and DataFrame operations.

S6709 (missing random seed), S6734 (inplace=True), S6730
(deprecated numpy type)

Infrastructure Docker, Kubernetes, and infrastructure-as-code issues, includ-
ing image versioning and resource specifications.

S6596 (unversioned image), S6597 (cd vs WORKDIR), S6873 (miss-
ing memory request)

Resource Management Resource lifecycle management issues, including unclosed
streams and improper cleanup.

S2093 (try-with-resources), S2095 (unclosed resource), S4042
(Files.delete)

CSS Issues Stylesheet-specific problems, including invalid properties, un-
known units, and duplicate selectors.

S4654 (unknown property), S4653 (unknown unit), S4666 (du-
plicate selector)

HTML Structure HTML document structure issues, including missing doctype
and improper tag nesting.

DoctypePresenceCheck, MetaRefreshCheck, S4645 (unclosed
script)
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