2601.13597v2 [cs.SE] 27 Jan 2026

arXiv

Al IDEs or Autonomous Agents? Measuring the Impact of Coding
Agents on Software Development

Shyam Agarwal
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Abstract

Large language model (LLM) based coding agents increasingly act as
autonomous contributors that generate and merge pull requests, yet
their real-world effects on software projects are unclear—especially
compared with widely adopted IDE-based Al assistants. We present
a longitudinal causal study of agent adoption in open-source repos-
itories using staggered difference-in-differences with matched con-
trols. Using the AlDev dataset, we define adoption as the first agent-
generated pull request and analyze monthly repository-level out-
comes spanning development velocity (commits, lines added) and
software quality (static-analysis warnings, cognitive complexity,
duplication, and comment density). Results show large, front-loaded
velocity gains only when agents are the first observable Al tool in a
project; repositories with prior AIIDE usage experience minimal or
short-lived throughput increases. In contrast, quality risks are per-
sistent across settings, with static-analysis warnings and cognitive
complexity rising by roughly 18% and 39%, indicating sustained
agent-induced technical debt even when velocity advantages fade.
These heterogeneous effects suggest diminishing returns to Al as-
sistance and highlight the need for quality safeguards, provenance
tracking, and selective deployment of autonomous agents. Our find-
ings establish an empirical basis for understanding how agentic and
IDE-based tools interact, and motivate research on balancing accel-
eration with maintainability in Al-integrated development work-
flows. The replication package for this study is publicly available
at https://github.com/shyamagarwal13/agentic-coding-impact.

CCS Concepts

« Software and its engineering — Development frameworks and
environments; « Computing methodologies — Intelligent agents.

Keywords

Autonomous coding agents, Agentic Al, Al-assisted programming,
Software quality, Longitudinal study, Causal inference

ACM Reference Format:

Shyam Agarwal, Hao He, and Bogdan Vasilescu. 2026. Al IDEs or Au-
tonomous Agents? Measuring the Impact of Coding Agents on Software
Development. In 23rd International Conference on Mining Software Reposito-
ries (MSR °26), April 13—14, 2026, Rio de Janeiro, Brazil. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3793302.3793589

This work is licensed under a Creative Commons Attribution 4.0 International License.
MSR 26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2474-9/2026/04

https://doi.org/10.1145/3793302.3793589

Hao He

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Bogdan Vasilescu
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

1 Introduction

The landscape of software development is rapidly changing with the
growing use of Al-powered coding tools. Importantly, Al-assisted
development is not uniform: two distinct paradigms have emerged.
The first consists of pre-agentic IDE-based coding assistants
such as early GitHub Copilot and Cursor, which integrate directly
into developers’ environments to provide real-time code sugges-
tions and inline assistance [21, 23, 33]. These tools operate syn-
chronously within the editing workflow, offering suggestions that
developers can accept, modify, or reject as they type [24, 30].

The second, more recent paradigm involves IDE and web-based
coding agents—autonomous Al systems that operate at the repos-
itory level to generate entire pull requests, implement features,
and make substantial code contributions with minimal human in-
tervention. Tools such as OpenAl Codex [4], Anthropic’s Claude
Code Agent [2], Devin [6], and the Cursor Agent [5] exemplify this
emerging category, where Al systems act more like autonomous
contributors. Unlike pre-agentic assistants that augment individual
coding sessions, coding agents can work asynchronously, poten-
tially completing full features or bug fixes independently [37]. They
differ from traditional assistants in at least four key dimensions:
(1) Autonomy—ability to complete tasks without continuous hu-
man guidance; (2) Scope—operation across multiple files and entire
codebases; (3) Planning—breaking down requirements into subtasks
and executing multi-step solutions; and (4) Interaction—primarily
contributing through pull requests rather than inline suggestions.

Despite the growing use of agentic coding tools in open-source
development, empirical research has largely focused on pre-agentic
assistants, in part due to the recency of agentic tools as a tech-
nology category. Existing evaluations of coding agents primarily
rely on benchmarks without humans-in-the-loop [16], limiting in-
sight into impacts on user experience and productivity [20]. In
contrast, pre-agentic coding assistants like GitHub Copilot have
been extensively studied, with work documenting positive effects
on perceived productivity [20, 41, 47]. Research on Copilot spans
productivity [22, 39, 48], code quality [32, 36, 46], and developer
experience [29, 43], yet the impacts of autonomous, repository-level
agents remain largely unexplored. This gap is concerning given
that agentic tools operate with greater autonomy, make larger-scale
contributions, and introduce distinct challenges [38].

Understanding the impact of agentic coding tools is critical for
several reasons. First, these tools are rapidly gaining traction in
open-source development, with an increasing number of reposi-
tories accepting Al-generated pull requests [44]. Second, the au-
tonomous nature of agentic tools raises unique questions about code
quality, maintainability, and technical debt that may not generalize
from IDE-based tool studies [25]. Third, the scale of contributions,

https://orcid.org/0009-0009-2147-5674
https://orcid.org/0000-0001-8311-6559
https://orcid.org/0000-0003-4418-5783
https://github.com/shyamagarwal13/agentic-coding-impact
https://doi.org/10.1145/3793302.3793589
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3793302.3793589
https://arxiv.org/abs/2601.13597v2

MSR °26, April 13-14, 2026, Rio de Janeiro, Brazil

entire features versus individual code snippets, necessitates differ-
ent evaluation frameworks and metrics [20]. Finally, as organiza-
tions consider adopting these tools, evidence-based understanding
of their impact on development velocity and software quality be-
comes essential for informed decision-making [14, 19].

In this paper, we use the AIDev dataset [28] to examine how agen-
tic coding tools affect software development velocity and quality
at the repository level, reflecting their role as autonomous contrib-
utors rather than inline assistants. Focusing on repository-level
outcomes, rather than individual-level, captures the fundamentally
different operational model of agentic tools. Prior work finds short-
term velocity gains but also increased technical debt for repositories
adopting the Cursor AI IDE [25]. Using similar causal inference
methods [18], we estimate the effects of adopting a wide range of
agentic coding tools, comparing the development trajectories of
repositories that used pre-agentic coding tools to those that directly
adopted coding agents. Our methodology accounts for staggered
adoption, heterogeneous treatment effects, and time-varying con-
founders, enabling a causal assessment of the marginal impact of
autonomous coding agents. Our research addresses:

e RQ1: Development Velocity Impact — How does the adop-
tion of coding agents affect development velocity?

¢ RQ2: Software Quality Impact — How does the adoption
of coding agents affect software quality?

e RQ3: Prior AI Exposure and Transition Effects — How
do the effects of adopting coding agents differ between repos-
itories with and without prior IDE-based Al assistance?

Our contributions are twofold: (1) We replicate and extend prior
results on newer data and a broader ecosystem of autonomous cod-
ing agents, providing the first large-scale longitudinal evidence on
agentic contributions at the repository level, and (2) We provide the
first causal evidence on the differential effects of transitioning from
IDE-based Al assistants to autonomous coding agents, showing
how prior Al tool adoption affects both velocity and code quality.

2 Related Work

Prior work evaluates Al coding tools using development veloc-
ity and software quality metrics. Velocity has been measured via
task completion time [35], code volume and throughput [27], and
cycle-time reductions [22]. Quality outcomes span security vul-
nerabilities [36], code churn and revision requirements [44], static
analysis warnings and code complexity [25], and broader indicators
of technical debt. Methodologically, studies employ randomized
trials [35], observational field studies [22], and quasi-experimental
designs including difference-in-differences [25].

The vast majority of real-world research focuses on IDE-based
Al assistants [15, 17, 22, 31, 32, 34, 36, 39, 40, 44-46], typically
reporting modest velocity improvements [25, 26, 41, 47]. In con-
trast, early studies of agentic tools show mixed results: maintainers
merge the majority of Claude Code pull requests (83.8% of 567) [42],
yet controlled experiments with tools such as Cursor find limited
productivity benefits for experienced open-source developers [16],
potentially due to over-optimism, unreliability, and high task com-
plexity. These inconsistencies underscore the need for longitudinal
evidence on the real-world effects of autonomous coding agents.

Agarwal et al.

Table 1: Descriptive statistics of treated repositories by prior
Al exposure. AF repositories are older but smaller and less
popular, while IF repositories are more starred, forked, and
active; both exhibit substantial agentic contributions.

Outcome Mean (AF/IF) Min (AF/IF) Median (AF/IF) Max (AF/IF)
Age (days) T 1537.8/1215.2 131/199 1069/926 6141/5570
Stars T 1460.9/8123.4 10/10 68/423 48110/177379
Forks T1 236.8/1340.2 0/0 12/120 8940/45908
Pull Requests t 696.7/2146.0 10/21 122/740 31836/35389
Agentic Pull Requests t 121.5/101.5 10/10 28/37 13462/912

Note: T as of November end; {7 as in original dataset.

]

= 250

2

8 200

@ 150

[id

3 100

o

-g 50

5 o 0 10 11 9 6 Al o 8 10 5

4
Q O N Q@ 3 2 O >
o 9 9 ¢ & P F
o > ® 5 ® o > ®

Year-Month

. Repositories without prior Al traces (AF) Repositories with prior Al traces (IF)

Figure 1: Monthly distribution of agent adoption dates, sepa-
rated by prior Al exposure. Most adoptions occur between
May-July 2025.

3 Methods

We estimate the causal effects of adopting LLM-based coding agents
on project-level development velocity and software quality using
a quasi-experimental difference-in-differences (DiD) design with
staggered adoption. Our empirical strategy, outcome definitions,
matching procedure, and estimation methods follow similar work
on Cursor adoption [25], unless otherwise specified, enabling di-
rect comparability. We summarize the methodology and highlight
deviations specific to coding agents.

3.1 Data Collection and Treatment Definition

We build on the AIDev dataset (v3) [28], which links GitHub repos-
itories to Al-generated pull requests and provides explicit evidence
of agentic contributions (e.g., multi-file edits, autonomous refactor-
ings, test and documentation generation). For each repository, we
define the agent adoption date as the earliest month containing an
agent-attributed PR. Because AlDev coverage begins in December
2024 while most agentic tools were released earlier that year, we mit-
igate left-censoring by retrospectively parsing all PRs from January
2024 through November 2025, ensuring that the earliest observed
agentic PR closely approximates true adoption timing—crucial for
valid temporal ordering in our staggered DiD design.

We extend the original agent taxonomy (Claude [2], Copilot [7],
Cursor [5], Devin [6], Codex [4]) to mutually exclusive labels: hu-
man, bot, codex [4], devin [6], jules [8], cursor [5], claude [2], copilot
[7], openhands [9], codegen [3], cosine [10], and tembo [12]. Attribu-
tion follows a cascading strategy prioritizing agent-specific signals
before generic labels: (1) branch prefixes (e.g., cursor/, claude/);

Al IDEs or Autonomous Agents? Measuring the Impact of Coding Agents on Software Development

(2) PR author logins (e.g., codegen-sh, tembo-io); (3) first-commit
author names (e.g., google-labs-jules[bot], claude[bot]); (4) GitHub
actor type bot; and (5) default classification as human. For Claude-
specific attribution, we additionally search PR descriptions, com-
ments, and reviews for distinctive co-authorship patterns (“Gen-
erated with Claude Code”, optionally including “Co-Authored-By:
Claude <no-reply@anthropic.com>"). This multi-signal approach
improves recall for agentic PRs lacking explicit bot authorship or
branch naming.

By following this convention, we identified several misclassifica-
tions and missing PRs in the original dataset (replication package).
Correctly recovering the earliest agentic PR is essential because
adoption timing determines treatment assignment in our causal
design; any remaining attribution errors primarily introduce noise
in treatment timing rather than systematic bias, likely attenuating
effects toward zero.

We restrict analysis to repositories with >10 stars to exclude toy
and spam projects and require >10 agentic PRs per treated repos-
itory to ensure non-trivial exposure. Repositories are observed
monthly before and after adoption, forming an unbalanced panel
with staggered timing. To examine moderation by prior Al usage,
we partition treated repositories into agent-first (AF), which show
no traces of Al IDEs throughout the collection time period, and
IDE-first (IF), which exhibit IDE activity prior to agent adoption.
Prior IDE usage is detected monthly by scanning the most recent
commit for configuration artifacts associated with agent-enabled
IDEs (GitHub Copilot [7], Cursor [5], WindSurf [13]). A repository
is IF if such artifacts appear before its first agentic PR and AF if
they don’t exist at all. Analyses are conducted separately for AF
and IF using control repositories that mirror the same IDE expo-
sure pattern. Figure 1 shows both groups adopt primarily between
April-June 2025, with AF more numerous. Table 1 shows AF repos
are older but smaller and less popular, whereas IF repos are more
starred, forked, and PR-active; both groups nonetheless exhibit
substantial agentic PR volume, motivating separate analyses.

Our control set consists of all GitHub repositories with >10
stars at collection time. For each month with agent adoption, we
extract monthly activity series from GHArchive [1] for repositories
with at least one event (age, active users, stars, forks, releases, pull
requests, issues, comments, total events). Because inferring prior
IDE exposure at this scale is initially infeasible, we first perform
propensity-score matching over the full control population without
conditioning on prior exposure. We then infer prior exposure only
for matched candidates and retain matched control sets that mirror
treated repositories’ AF/IF status. After filtering, our heterogeneous
samples contain 401 AF repositories matched to 606 controls and
117 IF repositories matched to 73 controls.

3.2 Outcomes and Covariates

We measure development velocity via monthly commit counts and
lines added; software quality via static-analysis warnings, duplicated-
line density, and cognitive complexity using SonarQube[11]. All
outcomes are aggregated at the repository—month level. We control
for time-varying covariates: lines of code, repository age (days),
contributors, stars received, issues opened, and issue comments
added in the observation month. Lines of code nd outcome metrics

MSR °26, April 13-14, 2026, Rio de Janeiro, Brazil

Table 2: The Borusyak et al. [18] estimated average post-
adoption treatment effects of agentic coding tools separated
by prior Al exposure. The estimate and standard error are
log-transformed to facilitate easy comparison.

Outcome B (AF / IF) Std. Err. (AF/IF) % Change (AF / IF)
Commits 0.309™**/0.030 (0.051)/(0.092) 36.25/ 3.06
Lines Added 0.569™**/-0.066 (0.103)/(0.189) 76.59 / —6.34
Duplicate Line Density 0.076/-0.009 (0.044)/(0.056) 7.92/-0.94
Comment Line Density 0.042/0.201™** (0.028)/(0.055) 434 /2230
Static Analysis Warnings 0.163**/0.174 (0.048)/(0.114) 17.73 / 19.00
Code Complexity 0.299™**/0.357** (0.059)/(0.114) 34.85/42.87

Note: *p < 0.05; ™*p < 0.01; **p < 0.001.

come from SonarQube [11], contributor counts from version his-
tory, and activity covariates from GHArchive [1]. These covariates
are collected consistently for both treated and control repositories
across the full observation window, ensuring comparable temporal
coverage and supporting adjustment for confounding dynamics
unrelated to agent adoption.

3.3 Causal Inference Strategy

We estimate effects using DiD with staggered adoption: later adopters
serve as controls for earlier adopters prior to adoption; never-
adopters provide additional counterfactuals. To address selection
bias of control repositories and satisfy the conditional indepen-
dence assumption to establish the quasi-experimental settings, we
perform propensity score matching prior to estimation. Propensity
scores use logistic regression over dynamic pre-treatment char-
acteristics, incorporating both activity levels (recent covariates)
and trajectories (lagged covariates) to capture whether repositories
are growing, declining, or stable. Specifically, we model adoption
likelihood using repository age at the month prior to observation,
six monthly covariate lags, and cumulative historical covariates,
enabling discrimination between repositories with similar recent ac-
tivity but different long-term trends. Because candidates outnumber
adopters, we subsample at most 10,000 candidates/month, yield-
ing propensity models with AUC 0.92-0.99. Treated repositories
are matched to maximum three controls with similar propensity
scores and the same primary language, ensuring comparable pre-
adoption activity, exposure histories, and language-specific perfor-
mance characteristics. We estimate average and dynamic treatment
effects using the imputation-based DiD estimator of Borusyak et
al. [18], which avoids biases from traditional two-way fixed effects
models under staggered adoption and heterogeneous effects. Event-
study specifications are used to assess pre-treatment trends and
to characterize how effects evolve over time. Standard errors are
clustered at the repository level. As in prior work, our estimates
should be interpreted as intent-to-treat effects of observable agent
adoption. While we cannot directly measure usage intensity or
developer-level interactions, staggered adoption and matching on
pre-treatment dynamics strengthen the causal interpretation of our

findings.

4 Results and Discussion

Table 2 summarizes average post-adoption effects, while Figure 2
shows six-month dynamic estimates.

MSR °26, April 13-14, 2026, Rio de Janeiro, Brazil

Commits Lines Added % Comment Lines

o
o

Treatment Effect
o ° <

L <@
H
v
&

e
a9
od
H

P P eyt vy s

H
'
'
¢
H
h
v
\
v
'

6543210123456 -6-5-4-3-2-10123456

-6-5-4-3-2-10123456

Agarwal et al.

Duplicated Lines Density Static Analysis Warnings Cognitive/Code Complexity

At

i 0.6
'
'
'
'
'
i
'
'
'

02+ ?
‘4&5&

0.0 == <=2 =m2n e

[
< P02
>

]

-0.2

.......,............
—.—
g Oy
Qe
. - !
Oy
I

R e —"

04 H 05

6-5-4-3-2-10123456 -6-5-4-3-2-10123456 6-5-4-32-10123456

Months Relative to Agent Adoption
Setting -e- Repositories without prior Al traces (AF) (n=401+606, obs=15664) -e- Repositories with prior Al traces (IF) (n=117+73, obs=3572)
Filled dots: p < 0.05 (significant), Hollow dots: p > 0.05 (non-significant)

Figure 2: Estimated post-adoption effects of agentic coding tools by prior AI exposure. AF repositories gain velocity and
accumulate maintainability risks; IF repositories show minimal velocity gains but comparable maintainability increases.

Development Velocity. Agentic tools substantially accelerate de-
velopment only when introduced as a repository’s first observable
Al tool. AF repos see large average gains (+36.3% commits; +76.6%
lines added), whereas IF repos show minimal changes (+3.1%; —6.3%).
Dynamics reveal a sharper contrast: AF repositories experience
a spike at t=0 (about +111% commits; +216% lines added) and
persistently elevated activity, with lines added remaining roughly
+49-+109% through t=6. IF repositories show only a short-lived
bump around adoption (commits +16-28% at t=0-2) before esti-
mates return near zero and eventually turn negative (lines ~ — 61%,
commits ~ — 35% by t=6).

These patterns indicate that agentic tools act as high-throughput
contributors primarily in new-to-Al workflows, but yield dimin-
ishing returns in Al-saturated ones. AF repositories appear able to
harvest “first AI” acceleration, while IF repositories, having already
absorbed productivity gains from AI IDEs, likely face higher coor-
dination and integration costs that limit throughput. The greater
maturity of IF repos (higher stars, forks, PR volume; from Table 1)
likely constrains how aggressively agentic changes can be merged,
so that localized speedups are offset by triage and review overhead.
Overall, agent adoption yields sustained velocity gains only when
not preceded by IDE-based Al tooling.

Software Quality. Regardless of prior Al exposure, adoption is
associated with increased maintainability risks. Across both AF
and IF repositories, static-analysis warnings rise by about 18% and
cognitive complexity by roughly 39% (Table 2). Dynamics show
persistent complexity accumulation: AF repos increase +20.7% at
t=0 and reach ~ + 49% by t=5, while IF repositories become signifi-
cantly elevated as early as t=—2 and remain ~ + 15-+62% through
t=6. Warning growth is somewhat noisier but similarly persistent
(~ +22-+31% in AF by t=4-5; IF values consistently positive around
+25% at t=4-6).

These simultaneous increases in complexity and warnings, even
when net velocity gains are weak or negative (IF), indicate agent-
induced complexity debt: agents accelerate the introduction of code
that raises long-term cognitive and maintenance load. Duplication
effects are small and inconsistent, suggesting quality risks stem
from structural complexity rather than copy—paste proliferation.
Comment density diverges across groups: IF repositories show
substantial and sustained increases (about +22% on average and
>+ 30% by t=6), whereas AF effects are muted, hinting that teams
already using AI IDEs rely on agents for documentation as well as

code. While additional comments can aid comprehension, they do
not counterbalance persistent complexity growth. Relative to prior
work on AI IDEs [25], which finds modest productivity gains and
mixed quality effects, these findings suggest autonomous agents
amplify the speed—-maintainability trade-off, and in Al-rich envi-
ronments may magnify complexity without delivering sustained
velocity benefits. We also observe isolated significant pre-treatment
coeflicients in static-analysis warnings and code complexity, sug-
gesting that untreated potential outcomes are not fully captured
by additive fixed effects, reflecting systematic mean differences
between treated and matched controls. These are not pervasive
enough to indicate a sustained pre-trend or clear violation of paral-
lel trends, but they are concerning and highlight a limitation of our
quasi-experimental design and the underlying data.

Implications and Ethical Considerations Autonomous coding
agents function as powerful but risky accelerators whose value de-
pends on prior Al exposure: in our sample substantial front-loaded
velocity gains materialize only when agents are a project’s first
Al tool; more broadly, velocity increases likely won’t suffice, and
AT adoption will need to be paired with strong quality safeguards
(e.g., complexity-aware review of agent pull requests, routine refac-
toring, comprehensive automated tests) to prevent accumulating
complexity debt. Teams using Al IDEs should not assume addi-
tive productivity and may instead deploy agents selectively or for
tightly scoped tasks. Persistent complexity growth underscores
the need to surface maintainability metrics directly in agent plan-
ning and prompting, while modulating behavior according to exist-
ing Al usage. Ethically, increased automation shifts accountability
and maintainability burdens; provenance tracking, transparency
of agent-generated changes, and review practices that emphasize
human oversight are still essential to avoid debt.

5 Conclusion

Autonomous agents offer meaningful velocity gains only in new-to-
Al settings while consistently raising complexity and warning levels
across contexts, reinforcing a speed—-maintainability trade-off. Prior
exposure to AI IDEs moderates benefits but not risks, underscoring
the need for selective deployment and active oversight. Future
work should follow post-adoption trajectories over longer horizons
and examine collaborative patterns that balance acceleration with
sustained code quality.

Al IDEs or Autonomous Agents? Measuring the Impact of Coding Agents on Software Development

References

[13]

[14]

[15]

[16

[17

(18

[19]

[22]

[23

[24

[25]

[26]

[27]

[28]

2011. GHArchive. Retrieved Nov 30, 2024 from https://www.gharchive.org/
2025. Claude Code | Claude. Retrieved Nov 30, 2025 from https://claude.com/
product/claude-code

2025. Codegen | The OS for Code Agents. Retrieved Nov 30, 2025 from https:
//codegen.com/

2025. Codex | OpenAl Retrieved Nov 30, 2025 from https://openai.com/codex/
2025. Cursor - The Al Code Editor. Retrieved Nov 30, 2025 from https://www.
cursor.com/

2025. Devin | The Al Software Engineer.
//devin.ai/

2025. GitHub Copilot - Your Al pair programmer. Retrieved Nov 30, 2025 from
https://github.com/features/copilot

2025. Jules - An Autonomous Coding Agent.
https://jules.google/

2025. OpenHands. Retrieved Nov 30, 2025 from https://app.all-hands.dev/
2025. Self sufficient agentic Al software engineer | Cosine AL Retrieved Nov 30,
2025 from https://cosine.sh/

2025. SonarQube Community Build Documentation. Retrieved Nov 30, 2025 from
https://docs.sonarsource.com/sonarqube-community-build/

2025. Tembo — Delegate work to any coding agent. Retrieved Nov 30, 2025 from
https://www.tembo.io/

2025. Windsurf - The best Al for Coding. Retrieved Nov 30, 2025 from https:
//windsurf.com

Magnus Chukwuebuka Ahuchogu, Pravin Ganpatrao Gawande, Dr Charu Mohla,
Dr. Deepak A. Vidhate, and Nidal Al Said. 2025. Evaluating the Impact of Gener-
ative Al on Intelligent Programming Assistance and Code Quality. Power System
Technology (2025).

Owura Asare, Meiyappan Nagappan, and Nirmal Asokan. 2022. Is GitHub’s
Copilot as bad as humans at introducing vulnerabilities in code? Empirical
Software Engineering 28 (2022), 1-24.

Joel Becker, Nate Rush, Elizabeth Barnes, and David Rein. 2025. Measuring the
Impact of Early-2025 Al on Experienced Open-Source Developer Productivity.
ArXiv abs/2507.09089 (2025).

Marta Borek and Robert Nowak. 2025. Quality evaluation of Tabby coding
assistant using real source code snippets. ArXiv abs/2504.08650 (2025).

Kirill Borusyak, Xavier Jaravel, and Jann Spiess. 2021. Revisiting event study
designs: robust and efficient estimation.

Eric W. Bridgeford, Tain Campbell, Zijao Chen, Zhicheng Lin, Harrison Ritz,
Joachim Vandekerckhove, and R.A. Poldrack. 2025. Ten Simple Rules for AI-
Assisted Coding in Science. ArXiv abs/2510.22254 (2025).

Valerie Chen, Ameet Talwalkar, Robert Brennan, and Graham Neubig. 2025.
Code with Me or for Me? How Increasing Al Automation Transforms Developer
Workflows. ArXiv abs/2507.08149 (2025).

Ruijia Cheng, Ruotong Wang, Thomas Zimmermann, and Denae Ford. 2022. “Tt
would work for me too”: How Online Communities Shape Software Developers’
Trust in Al-Powered Code Generation Tools. ACM Transactions on Interactive
Intelligent Systems 14 (2022), 1 - 39.

Lena Chretien and Nikolas Albarran. 2024. Impact of Al-tooling on the Engineer-
ing Workspace. ArXiv abs/2406.07683 (2024).

Mariana Coutinho, Lorena Marques, Anderson Santos, Marcio Dahia, César
Franga, and Ronnie de Souza Santos. 2024. The Role of Generative Al in Software
Development Productivity: A Pilot Case Study. Proceedings of the 1st ACM
International Conference on AI-Powered Software (2024).

Emanuela Guglielmi, Venera Arnoudova, Gabriele Bavota, Rocco Oliveto, and
Simone Scalabrino. 2025. How do Copilot Suggestions Impact Developers’ Frus-
tration and Productivity? ArXiv abs/2504.06808 (2025).

Hao He, Courtney Miller, Shyam Agarwal, Christian Kastner, and Bogdan
Vasilescu. 2026. Speed at the Cost of Quality: How Cursor Al Increases Short-Term
Velocity and Long-Term Complexity in Open-Source Projects. In International
Conference on Mining Software Repositories (MSR).

Saki Imai. 2022. Is GitHub Copilot a Substitute for Human Pair-programming?
An Empirical Study. 2022 IEEE/ACM 44th International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion) (2022), 319-321.

Anand Kumar, Vishal Khare, Deepak Sharma, Satyam Kumar, Vijay Saini, Anshul
Yadav, Sachendra Jain, Ankit Rana, Pratham Verma, Vaibhav Meena, and Avinash
Edubilli. 2025. Intuition to Evidence: Measuring AI's True Impact on Developer
Productivity. ArXiv abs/2509.19708 (2025).

Hao Li, Haoxiang Zhang, and Ahmed E. Hassan. 2025. The Rise of AI Team-
mates in Software Engineering (SE) 3.0: How Autonomous Coding Agents Are
Reshaping Software Engineering. arXiv preprint arXiv:2507.15003 (2025).

Retrieved Nov 30, 2025 from https:

Retrieved Nov 30, 2025 from

[29]

[30

(31

[32

&
&

(34

[35

[37

[38

[39

(41

[42

[43

[44

[45

[46]

[47

S
&

MSR °26, April 13-14, 2026, Rio de Janeiro, Brazil

Jenny T Liang, Chenyang Yang, and Brad A. Myers. 2023. A Large-Scale Survey
on the Usability of Al Programming Assistants: Successes and Challenges. 2024
IEEE/ACM 46th International Conference on Software Engineering (ICSE) (2023),
616-628.

Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2022. Reading
Between the Lines: Modeling User Behavior and Costs in Al-Assisted Program-
ming. ArXiv abs/2210.14306 (2022).

Kevin KB Ng, Liyana Fauzi, Leon Leow, and Jaren Ng. 2024. Harnessing the
Potential of Gen-Al Coding Assistants in Public Sector Software Development.
ArXiv abs/2409.17434 (2024).

Nhan Ton Nguyen and Sarah Nadi. 2022. An Empirical Evaluation of GitHub
Copilot’s Code Suggestions. 2022 IEEE/ACM 19th International Conference on
Mining Software Repositories (MSR) (2022), 1-5.

Ruchika Pandey, Prabhat Singh, Raymond Wei, and Shaila Shankar. 2024. Trans-
forming Software Development: Evaluating the Efficiency and Challenges of
GitHub Copilot in Real-World Projects. ArXiv abs/2406.17910 (2024).

Elise Paradis, Kate Grey, Quinn Madison, Daye Nam, Andrew Macvean, Vahid
Meimand, Nan Zhang, Ben Ferrari-Church, and Satish Chandra. 2024. How
Much Does Al Impact Development Speed? an Enterprise-Based Randomized
Controlled Trial. 2025 IEEE/ACM 47th International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP) (2024), 618-629.

Elise Paradis, Ambar Murillo, Maulishree Pandey, Sarah D’Angelo, Andrew
Macvean, Ben Ferrari-Church, and Matthew Hughes. 2025. Creating bench-
markable components to measure the quality of Al-enhanced developer tools.
Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in
Computing Systems (2025).

Hammond A. Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2021. Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions. 2022 IEEE Symposium on Security and Privacy (SP)
(2021), 754-768.

Abhik Roychoudhury. 2025. Agentic Al for Software: thoughts from Software
Engineering community. ArXiv abs/2508.17343 (2025).

Ranjan Sapkota, Konstantinos I. Roumeliotis, and Manoj Karkee. 2025. Vibe
Coding vs. Agentic Coding: Fundamentals and Practical Implications of Agentic
Al ArXiv abs/2505.19443 (2025).

Md. Istiak Hossain Shihab, Christopher Hundhausen, Ahsun Tariq, Summit
Haque, Yunhan Qiao, and Brian Mulanda. 2025. The Effects of GitHub Copilot on
Computing Students’ Programming Effectiveness, Efficiency, and Processes in
Brownfield Coding Tasks. Proceedings of the 2025 ACM Conference on International
Computing Education Research V.1(2025).

Antero Taivalsaari, Tommi Mikkonen, and Cesare Pautasso. 2025. On the Fu-
ture of Software Reuse in the Era of Al Native Software Engineering. ArXiv
abs/2508.19834 (2025).

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. CHI Conference on Human Factors in Computing Systems
Extended Abstracts (2022).

Miku Watanabe, Hao Li, Yutaro Kashiwa, Brittany Reid, Hajimu lida, and Ahmed E
Hassan. 2025. On the use of agentic coding: An empirical study of pull requests
on GitHub. CoRR abs/2509.14745 (2025).

Justin D. Weisz, Shraddha Kumar, Michael J. Muller, Karen-Ellen Browne, Arielle
Goldberg, Katrin Ellice Heintze, and Shagun Bajpai. 2024. Examining the Use
and Impact of an AI Code Assistant on Developer Productivity and Experience
in the Enterprise. Proceedings of the Extended Abstracts of the CHI Conference on
Human Factors in Computing Systems (2024).

Tao Xiao, Youmei Fan, Fabio Calefato, Christoph Treude, Raula Gaikovina Kula,
Hideaki Hata, and Sebastian Baltes. 2025. Self-Admitted GenAlI Usage in Open-
Source Software. ArXiv abs/2507.10422 (2025).

Feiyang Xu, Poonacha K. Medappa, Murat Mustafa Tung, Martijn Vroegindeweij,
and Jan C Fransoo. 2025. Al-assisted Programming May Decrease the Produc-
tivity of Experienced Developers by Increasing Maintenance Burden. ArXiv
abs/2510.10165 (2025).

Burak Yetistiren, Isik Ozsoy, and Eray Tiiziin. 2022. Assessing the quality of
GitHub copilot’s code generation. Proceedings of the 18th International Conference
on Predictive Models and Data Analytics in Software Engineering (2022).

Albert Ziegler, Eirini Kalliamvakou, Shawn Simister, Ganesh Sittampalam, Alice
Li, Andrew Rice, Devon Rifkin, and Edward Aftandilian. 2022. Productivity
assessment of neural code completion. Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming (2022).

Albert Ziegler, Eirini Kalliamvakou, LI X.ALICE, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2024. Measuring
GitHub Copilot’s Impact on Productivity. Commun. ACM 67 (2024), 54 - 63.

https://www.gharchive.org/
https://claude.com/product/claude-code
https://claude.com/product/claude-code
https://codegen.com/
https://codegen.com/
https://openai.com/codex/
https://www.cursor.com/
https://www.cursor.com/
https://devin.ai/
https://devin.ai/
https://github.com/features/copilot
https://jules.google/
https://app.all-hands.dev/
https://cosine.sh/
https://docs.sonarsource.com/sonarqube-community-build/
https://www.tembo.io/
https://windsurf.com
https://windsurf.com

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Data Collection and Treatment Definition
	3.2 Outcomes and Covariates
	3.3 Causal Inference Strategy

	4 Results and Discussion
	5 Conclusion
	References

