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Abstract—The benefits of modeling the design to improve the
quality and maintainability of software systems have long been
advocated and recognized. Yet, the empirical evidence on this
remains scarce. In this paper, we fill this gap by reporting on
an empirical study of the relationship between UML modeling
and software defect proneness in a large sample of open-source
GitHub projects. Using statistical modeling, and controlling for
confounding variables, we show that projects containing traces
of UML models in their repositories experience, on average, a
statistically minorly different number of software defects (as
mined from their issue trackers) than projects without traces
of UML models.

Index Terms—software design, UML, software quality, open-
source-software

I. INTRODUCTION

Software design is widely accepted as a fundamental step
to developing high-quality software [1].

By making designs developers go through a process of
reflection, including discussing trade-offs and alternatives,
which should result in more thoughtful designs and more
maintainable systems [2]. The communication benefits to
explicit software design are also well understood: architectural
decisions that developers make become well-documented, re-
ducing information loss and potential misinterpretation during
system implementation, and facilitating communication among
team members and the onboarding of new developers [2]. Both
commercial [2] and open-source software developers [3] alike
recognize these potential benefits.

Among modeling languages, the Unified Modeling Lan-
guage (UML) is often viewed as de-facto standard for de-
scribing the design of software system using diagrams [3].
In practice, UML is often used in a loose/informal manner
(not adhering stricly to the standard [4]). Also UML is used
selectively, focusing on important, critical or novel parts.

Still, despite many expected benefits of UML modeling on
software development outcomes, the empirical evidence on
the matter is scarce. Notable exceptions include a study by
Arisholm et al. [5], showing through two controlled experi-
ments involving students that, for complex tasks and after a
learning curve, the availability of UML models may increase
the functional correctness and the design quality of subsequent
code changes. There is also work by Fernindez-Saez et al.
[6] that suggests an overall positive outlook of practitioners
towards UML modeling in software maintenance. Finally, we
note an empirical study by Nugroho and Chaudron [2] of an

industrial Java system, showing that classes for which UML-
modeled classes, on average, have a lower defect density that
those that were not modeled.

In this paper we study the intuitive and widely held belief
that the use of UML modeling, on average, should correlate
with higher software quality. To this end, we statistically
analyse empirical data obtained from of 143 open-source
GITHUB projects. Many hypotheses about the benefits of
UML models on specific software maintenance outcomes have
been proposed [7]. However, more generally, one can expect
that the mere practice of UML modeling as part of software
development indicates a high team- and process maturity and
deliberateness that, in turn, should lead to higher-quality code.

In search of evidence [8] to substantiate this belief, we
start from a publicly available data set of open-source soft-
ware projects on GITHUB that use UML models [9], and:
1) assemble a control group of GITHUB projects not known
to use UML models; 2) mine data from the GITHUB issue
trackers of both sets of projects (using and not using UML
models), estimating their defect rates (“bug” issue reports) as
a proxy for software quality; and 3) use multivariate statistical
modeling to estimate the impact of having UML models on
defect proneness, while controling for confounding factors.
Our results reveal a small statistically significant effect of
using UML models on defect proneness, i.e., projects with
UML models tend to have fewer defects.

II. METHODOLOGY

We designed a quasi-experiment to compare the defect
proneness between two groups of open-source GITHUB
projects: a treatment group of projects using UML models,
part of a public data set [9]; and a control group of projects
sampled randomly using GHTORRENT [10]. We describe our
data collection and analysis process next.

A. Data

As part of a previous study [11], Robles er al. [9] released
a data set of 4,650 non-trivial GITHUB projects,1 defined
as having at least six months of activity between their first
and most recent commits and at least two contributors, that
use UML models, as identified by a manually-augmented
automated repository mining technique. As our operational-
ization of defect proneness involves mining the projects’
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TABLE I
GITHUB SLUGS FOR THE 50 UML PROJECTS IN OUR DATA SET

abb-iss/SrcML.NET kite-sdk/kite
aegif/NemakiWare LibrePCB/LibrePCB
asciidocfx/AsciidocFX longkerdandy/mithqtt
boost-experimental/di Iviggiano/owner
christophd/citrus lycis/QtDropbox
claeis/ili2db mbeddr/mbeddr.core
cligz-oss/keyvi MvvmFx/MvvmFx
collate/collate MyRobotLab/myrobotlab
Comcast/cats Particular/docs.particular.net
cpvrlab/ImagePlay pipelka/roboTV
crowdcode-de/KissMDA plt-tud/r43ples
dandelion/dandelion-datatables Protocoder/Protocoder

rbei-etas/busmaster
robotology/codyco-modules

djeedjay/DebugViewPP
droidstealth/droid-stealth
eProsima/Fast-RTPS SINTEF-9012/ThingML
Freeyourgadget/Gadgetbridge smartdevicelink/sdl_core
GeertBellekens/Enterprise-Architect-Toolpack SpineEventEngine/core-java
GluuFederation/oxAuth SpoonLabs/astor

gocd/gocd telefonicaid/fiware-cygnus
HPI-Information-Systems/Metanome timolson/cointrader
imixs/imixs-workflow UESTC-ACM/CDOJ

infinidb/infinidb uwescience/myria
1QSS/dataverse vicrucann/dura-europos-insitu
kamilfb/mqtt-spy xamarin/monodroid-samples
kermitt2/grobid xen2/SharpLang

GITHUB issue trackers (details below), we only include in
our treatment (UML) group those projects that had at least
30 issues on GITHUB as of March 2018; we determined the
threshold empirically after manual exploration of the data, to
filter out largely inactive projects. In addition, we identified
using Google’s langdetect library? those projects not using
English as their natural language, as our operationalization of
defect proneness makes expects issue discussions in English.
We further filtered out projects that are not primarily written
in either C++, C#, or Java (as labeled by GITHUB), the
languages traditionally associated with UML. Next, we filtered
our projects with fewer than 10 stars on GITHUB and projects
in which the gap between the first commit and the first
GITHUB issue is more than a year, in an effort to further
exclude student homework assignments and largely trivial or
inactive projects [12]. Finally, we excluded projects started
before 2009 — shortly after GITHUB itself started — such that
all remaining projects could have plausibly used the GITHUB
issue tracker from the beginning. After all these filters, the
treatment group (Table I) consists of 50 UML projects.

Note the relatively small size of the treatment group after
applying the different activity-based filters when compared to
the size of the original data set by Robles et al. [9], and
especially when compared to the size of GITHUB. Still, to our
knowledge, this is the largest data set on which our research
question has ever been studied empirically.

To assemble a control group of projects not known to use
UML models, we randomly sampled, using the March 2018
version of GHTORRENT [10], projects that satisfied the same
criteria (see above), for a total of 93 non-UML projects after
filtering; the version we queried is newer than the one used by

Zhttps://pypi.org/project/langdetect/

TABLE II
BREAKDOWN OF OUR DATA SET BY LANGUAGE

Java C#

UML projects 31 6 13
Control group projects 63 10 20

C++

Robles et al. [9], hence we did not consider projects that did
not already exist in the older version. Moreover, we further
ensured that the randomly selected control projects were not
already present in the treatment group.

Table II presents a breakdown of our two groups of projects
by programming language.

B. Operationalization

Dependent variable. As a measure of a project’s defect-
proneness and a proxy for its software quality, we estimate
the number of bug-related issues reported in its GITHUB issue
tracker. To identify bug-related issues, as opposed to feature
requests, tasks, or other types of issues commonly found in
open-source issue trackers [13], we developed a Naive Bayes
classifier [14]; a similar approach was considered by Zhou et
al. [15]. Our classifier takes as input the title and the body of
an issue, and produces one of two labels, bug or not bug. 3

To this end, we started with one author coding randomly
sampled issues as bug or not bug, until labelling 100 of
each; unclear cases were discussed between two authors, and
subsequently resolved. After manual data labelling, we created
20 random splits of our labelled data containing two equally
sized train and test sets, trained the classifier on the train set,
and computed the accuracy on the test set; each split preserved
the balanced nature of the data, i.e., the train and test sets
contained 50 bug and 50 not bug issues each. The average
accuracy of our classifier over the 20 random splits is 89%.

Ultimately, we chose the best performing of the 20 classifier
instances and ran it on the unlabelled data, i.e., all the issue
reports of all the projects in our UML and control groups.
Overall, we labelled 29,983 issues as bug and 48,579 issues
as non bug across the 143 (50 + 93) projects in our data.

Independent variables. Our main predictor variable is a
dummy has UML that distinguishes between the treatment
and control groups. In addition, we cloned all the GITHUB
repositories locally and computed several variables for co-
variates and confounding factors: project age, i.e., the number
of days between the first and the most recent commit; primary
programming language, as reported by GITHUB; number of
contributors, i.e., distinct commit authors in the project’s
history, after resolving aliases using a script published* by
Vasilescu et al. [16]; number of commits, as a proxy for project
complexity; number of stars, as a proxy for popularity and
size of user base; and programming language, coded relative
to Java as baseline. Moreover, we used Munaiah et al.’s [17]

3Classifier code and data analysis script available online at https://github.
com/adi1234567890/UML-defect-proneness
“https://github.com/bvasiles/ght_unmasking_aliases



TABLE III
LINEAR REGRESSION MODEL SUMMARY

Response: log(num_bug_issues)

Coeffs (Errors) Sum. sq.
(Intercept) 0.40 (0.63)
log(age + 1) 0.05 (0.09) 19.11%**
log(num_commits) 0.53 (0.06)*** 58.35%**
log(num_contributors) 0.10 (0.09) 9.03***
log(stars + 1) 0.18 (0.05)*** 6.62%**
test_suite_ratio —0.24 (0.47) 0.02
comment_ratio 0.26 (0.54) 0.01
has_CI —0.17 (0.13) 1.38
has_license —0.61 (0.28)* 2.73*
languageC# —0.19 (0.20) 2.60
languageC++ —0.33 (0.15)*
has_UML —0.30 (0.14)* 2.24*
R? 0.61
Adj. R? 0.58
Num. obs. 143

***p < 0.001, **p < 0.01, *p < 0.05

reaper’ to compute: has CI, a dummy indicating whether or
not the project uses continuous integration; has license, defined
analogously; fest suite ratio, the fraction of test lines of code
to source lines of code; and code comment ratio, the fraction
of comment lines of code to all lines of code. These variables
control for projects’ level of maturity of their practices.

C. Analysis

To test our hypothesis, we build a multiple linear regression
model, a robust technology which enables us to estimate the
effects of having UML models on defect proneness while
holding the other independent variables fixed. We diagnose the
model for multicollinearity, checking that the variance inflation
factor (VIF) remains below 3 [18]; no variables violated the
threshold. We further check if modeling assumptions hold, and
observe no significant deviation from a normal distribution in
QQ-plots and randomly distributed residuals across the range.
The model fits the data well, explaining 58 % of the variance
(Adj. B. In addition to the regression coefficients, we also
report the amount of variance explained by each term (the
Sum. sq. column in Table III), as obtained from an ANOVA
analysis; the relative fraction of the total variance explained
by the model that can be attributed to a particular variable can
be considered as a measure of its effect size.

III. RESULTS AND DISCUSSION

Interpreting the regression summary in Table III, we observe
that among the control variables, only the number of commits,
the number of stars, and the has license dummy have sta-
tistically significant effects at 0.05 level or below. All three
behave as expected: larger projects and projects with larger
communities (of users and, hence, potential issue reporters)
tend to have more bugs reported, other variables held fixed;
projects that declare a license tend to have fewer bugs reported.

Regarding programming languages, we note that C# projects
are statistically indistinguishable from Java projects, while

Shttps://github.com/RepoReapers/reaper

C++ projects tend to have fewer bugs reported than Java
projects, other variables held fixed.

Finally, we note a small (approximately 2 % of the variance
explained by the model) but statistically significant effect of
UML models: other variables held fixed, projects with UML
models are expected to have about 35% (exp(-0.3); note the
log-transformed response) fewer bugs reported than projects
without UML models.

IV. THREATS TO VALIDITY

We note several threats to validity [19].

Construct validity. We measured defect-proneness by com-
puting the number of bug-related issues in the issue tracker.
However, issues and bugs may not map one-one [20], e.g.,
several issues could pertain to the same bug, or one issue may
encompass several bugs. While imperfect, this operationaliza-
tion is common in the literature, e.g., [21]. We also note that
projects may use issue trackers outside of GITHUB, which we
did not track, potentially biasing our defect estimates. We tried
to alleviate this threat by only considering projects which used
the GITHUB issue tracker substantially, thus arguably reducing
the risk that they also use external issue trackers. Another con-
struct validity threat stems from not accounting for different
types of UML modeling, e.g., sequence vs class diagrams,
and lumping the different UML modeling techniques into one
group. We leave analysing this distinction for future work.

Internal validity. Given the multiple linear regression tech-
nology we used, with controls for known confounding factors,
our results should be relatively robust. Still, we note a threat
to internal validity from using a Naive Bayes classifier to label
issues. In particular, the algorithm works on the Naive Bayes
assumption that given the target label, each of the covariates is
independent [22], which may not always hold. Finally we also
note that we did not run the original UML mining technique
on the control group projects to further confirm absence of
UML models in their repositories; since the original UML
data set was created by comprehensively mining every project
from GHTORRENT, we assume that the risk of mislabeling
non-UML control group projects is low. However, it must
also be noted that there is the possibility of projects having
information about design/architecture in .pdf, .ppt and other
such files which therefore could’ve been wrongly classified as
projects not using UML modeling by [9].

External validity. We note, again, the relatively small size
of our data set, which can largely be explained by the small
number of open source projects that meet all selection criteria.
Moreover, our sample is not representative (by construction)
of open-source or GITHUB as a whole. It is unclear without
ample future work and replications, beyond the scope of this
paper, whether our results can generalize. Another threat to the
external validity comes from the dataset used to train the Naive
Bayes classifier. Mature projects are known to write thorough
issue reports while less mature projects tend to completely
ignore or very sparingly make use of the issue tracker [23].
As a result, the classifier is inherently rigged towards learning
features from more mature projects.



V. CONCLUSIONS

Prior work in this area focused on understanding the impact
that UML design had on software projects in a qualitative
manner. Through this paper, we try to provide a quantitative
analysis of the way in which UML modeling of design relates
to the defect proneness of the projects. Our work shows that
after controlling for confounding factors, projects that use
UML experience, on average, a statistically minorly different
number of software defects

Future Work. One of the immediate next steps for this
work, as indicated by the threats to validity section, is to dis-
tinguish between the type of UML modeling in our treatment
group projects. In particular, making the distinction between
sequence and class diagrams and studying their corresponding
correlation with defect proneness, we believe, will further
reduce the dearth of research being done in this area. Another
future work involves making a distinction between forward
designed and reverse engineered projects [24]. Work done
by Ferndndez-Sdez et al. [25] shows a positive outlook of
practitioners towards the use of forward design but empirical
research regarding the correlation between forward/reverse
design and defect proneness, once again, is scarce. A third
future work involves reproducing the investigation in a new
sample of projects but performing a more precise verification
of certain variables. The project members may perhaps be also
inquired to check whether UML models were used or not and
the way in which they were being used. Lastly, we believe
that UML modeling directly influences structural aspect of
the software architecture/design to some extent. For instance,
we would expect the use of UML structure-diagrams to have
an influence on metrics such as cohesion, coupling, etc. of the
software projects. Our current work opens the door to studying
these questions in the near future.
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