
Learning to Mine Aligned Code and
Natural Language Pairs from Stack Overflow

Pengcheng Yin,∗ Bowen Deng,∗ Edgar Chen, Bogdan Vasilescu, Graham Neubig
Carnegie Mellon University, USA

{pcyin, bdeng1, edgarc, bogdanv, gneubig}@cs.cmu.edu

ABSTRACT

For tasks like code synthesis from natural language, code retrieval,
and code summarization, data-driven models have shown great
promise. However, creating these models requires parallel data be-
tween natural language (NL) and code with fine-grained alignments.
Stack Overflow (SO) is a promising source to create such a data
set: the questions are diverse and most of them have correspond-
ing answers with high quality code snippets. However, existing
heuristic methods (e.g., pairing the title of a post with the code in
the accepted answer) are limited both in their coverage and the
correctness of the NL-code pairs obtained. In this paper, we pro-
pose a novel method to mine high-quality aligned data from SO
using two sets of features: hand-crafted features considering the
structure of the extracted snippets, and correspondence features
obtained by training a probabilistic model to capture the correlation
between NL and code using neural networks. These features are
fed into a classifier that determines the quality of mined NL-code
pairs. Experiments using Python and Java as test beds show that
the proposed method greatly expands coverage and accuracy over
existing mining methods, even when using only a small number
of labeled examples. Further, we find that reasonable results are
achieved even when training the classifier on one language and
testing on another, showing promise for scaling NL-code mining to
a wide variety of programming languages beyond those for which
we are able to annotate data.

1 INTRODUCTION

Recent years have witnessed the burgeoning of a new suite of de-
veloper assistance tools based on natural language processing (NLP)
techniques, for code completion [9], source code summarization [2],
automatic documentation of source code [44], deobfuscation [16,
34, 40], cross-language porting [27, 28], code retrieval [3, 42] and
even code synthesis from natural language [7, 21, 32, 47].

Besides the creativity and diligence of the researchers involved,
these recent success stories can be attributed to two properties of
software source code. First, it is highly repetitive [8, 10], therefore

∗ PY and BD contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196408

Intent

Context 1

Snippet 1

Q
ue

sti o
n

A
n

sw
e

rs

Context 2
Snippet 2

Figure 1: Excerpt from a SO post showing two answers, and

the corresponding NL intent and code pairs.

predictable in a statistical sense. This statistical predictability en-
abled researchers to expand frommodels of source code and natural
language (NL) created using hand-crafted rules, which have a long
history [23], to data-driven models that have proven flexible, rela-
tively easy-to-create, and often more effective than corresponding
hand-crafted precursors [13, 27]. Second, source code is available in
large amounts, thanks to the proliferation of open source software
in general, and the popularity of open access, “Big Code” repos-
itories like GitHub and Stack Overflow (SO); these platforms
host tens of millions of code repositories and programming-related
questions and answers, respectively, and are ripe with data that
can, and is, being used to train such models [34].

However, the statistical models that power many such applica-
tions are only as useful as the data they are trained on, i.e., garbage
in, garbage out [35]. For a particular class of applications, such as
source code retrieval given a NL query [42], source code summa-
rization in NL [15], and source code synthesis from NL [33, 47], all
of which involve correspondence between NL utterances and code,
it is essential to have access to high volume, high quality, parallel
data, in which NL and source code align closely to each other.

While one can hope to mine such data from Big Code reposito-
ries like SO, straightforward mining approaches may also extract
quite a bit of noise. We illustrate the challenges associated with

https://doi.org/10.1145/3196398.3196408

MSR ’18, May 28–29, 2018, Gothenburg, Sweden P. Yin, B. Deng, E. Chen, B. Vasilescu, G. Neubig

mining aligned (parallel) pairs of NL and code from SO with the
example of a Python question in Figure 1. Given a NL query (or
intent), e.g., “removing duplicates in lists”, and the goal of finding
its matching source code snippets among the different answers,
prior work used either a straightforward mining approach that
simply picks all code blocks that appear in the answers [3], or one
that picks all code blocks from answers that are highly ranked
or accepted [15, 44].1 However, it is not necessarily the case that
every code block accurately reflects the intent. Nor is it that the
entire code block is answering the question; some parts may simply
describe the context, such as variable definitions (Context 1) or
import statements (Context 2), while other parts might be entirely
irrelevant (e.g., the latter part of the first code block).

There is an inherent trade-off here between scale and data quality.
On the one hand, when mining pairs of NL and code from SO, one
could devise filters using features of the SO questions, answers, and
the specific programming language (e.g., only consider accepted
answers with a single code block or with high vote counts, or
filtering out print statements in Python, much like one thrust
of prior work [15, 44]); fine-tuning heuristics may achieve high
pair quality, but this inherently reduces the size of the mined data
set and it may also be very language-specific. On the other hand,
extracting all available code blocks, much like the other thrust of
prior work [3], scales better but adds noise (and still cannot handle
cases where the “best” code snippets are smaller than a full code
block). Ideally, a mining approach to extract parallel pairs would
handle these tricky cases and would operate at scale, extracting
many high-quality pairs. To date, none of the prior work approaches
satisfies both requirements of high quality and large quantity.

In this paper, we propose a novel technique that fills this gap
(see Figure 2 for an overview). Our key idea is to treat the problem
as a classification problem: given an NL intent (e.g., the SO question
title) and all contiguous code fragments extracted from all answers
of that question as candidate matches (for each answer code block,
we consider all line-contiguous fragments as candidates, e.g., for a
3-line code block 1-2-3, we consider fragments consisting of lines
1, 2, 3, 1-2, 2-3, and 1-2-3), we use a data-driven classifier to decide
if a candidate aligns well with the NL intent. Our model uses two
kinds of information to evaluate candidates: (1) structural features,
which are hand-crafted but largely language-independent, and try
to estimate whether a candidate code fragment is valid syntactically,
and (2) correspondence features, automatically learned, which try to
estimate whether the NL and code correspond to each other seman-
tically. Specifically, for the latter we use a model inspired by recent
developments in neural network models for machine translation [4],
which can calculate bidirectional conditional probabilities of the
code given the NL and vice-versa. We evaluate our method on two
small labeled data sets of Python and Java code that we created
from SO. We show that our approach can extract significantly more,
and significantly more accurate code snippets in both languages
than previous baseline approaches. We also demonstrate that the
classifier is still effective even when trained on Python then used to
extract snippets for Java, and vice-versa, which demonstrates poten-
tial for generalizability to other programming languages without
laborious annotation of correct NL-code pairs.

1 There is at most one accepted answer per question; see green check symbol in Fig 1.

Our approach strikes a good balance between training effort,
scale, and accuracy: the correspondence features can be trained
without human intervention on readily available data from SO;
the structural features are simple and easy to apply to new pro-
gramming languages; and the classifier requires minimal amounts
of manually labeled data (we only used 152 Python and 102 Java
manually-annotated SO question threads in total). Even so, com-
pared to the heuristic techniques from prior work [3, 15, 44], our
approach is able to extract up to an order of magnitude more aligned
pairs with no loss in accuracy, or reduce errors by more than half
while holding the number of extracted pairs constant.

Specifically, we make the following contributions:
• We propose a novel technique for extracting aligned NL-code
pairs from SO posts, based on a classifier that combines snippet
structural features, readily extractable, with bidirectional con-
ditional probabilities, estimated using a state-of-the-art neural
network model for machine translation.
• We propose a protocol and tooling infrastructure for generating
labeled training data.
• We evaluate our technique on two data sets for Python and Java
and discuss performance, potential for generalizability to other
languages, and lessons learned.
• All annotated data, the code for the annotation interface and the
mining algorithm are available at http://conala-corpus.github.io.

2 PROBLEM SETTING

Stack Overflow (SO) is the most popular Q&A site for program-
ming related questions, home to millions of users. An example of
the SO interface is shown in Figure 1, with a question (in the upper
half) and a number of answers by different SO users. Questions can
be about anything programming-related, including features of the
programming language or best practices. Notably, many questions
are of the “how to” variety, i.e., questions that ask how to achieve a
particular goal such as “sorting a list”, “merging two dictionaries”, or
“removing duplicates in lists” (as shown in the example); for example,
around 36% of the Python-tagged questions are in this category,
as discussed later in Section 3.2. These how-to questions are the
type that we focus on in this work, since they are likely to have
corresponding snippets and they mimic NL-to-code (or vice versa)
queries that users might naturally make in the applications we seek
to enable, e.g., code retrieval and synthesis.

Specifically, we focus on extracting triples of three specific ele-
ments of the content included in SO posts:
• Intent: A description in English of what the questioner wants
to do; usually corresponds to some portion of the post title.
• Context: A piece of code that does not implement the intent, but
is necessary setup, e.g., import statements, variable definitions.
• Snippet: A piece of code that actually implements the intent.

An example of these three elements is shown in Figure 1. Several
interesting points can be gleamed from this example. First, and most
important, we can see that not all snippets in the post are imple-
menting the original poster’s intent: only two of four highlighted
are actual examples of how to remove duplicates in lists, the other
two highlighted are context, and others still are examples of inter-
preter output. If one is to train, e.g., a data-driven system for code
synthesis from NL, or code retrieval using NL, only the snippets, or

http://conala-corpus.github.io

Mining Aligned NL-Code Pairs from Stack Overflow MSR ’18, May 28–29, 2018, Gothenburg, Sweden

portions of snippets, that actually implement the user intent should
be used. Thus, we need a mining approach that can distinguish
which segments of code are actually legitimate implementations,
and which can be ignored. Second, we can see that there are often
several alternative implementations with different trade-offs (e.g.,
the first example is simpler in that it doesn’t require additional
modules to be imported first). One would like to be able to extract
all of these alternatives, e.g., to present them to users in the case
of code retrieval2 or, in the case of code summarization, see if any
occur in the code one is attempting to summarize.

These aspects are challenging even for human annotators, as we
illustrate next.

3 MANUAL ANNOTATION

To better understand the challenges with automatically mining
aligned NL-code snippet pairs from SO posts, we manually anno-
tated a set of labeled NL-code pairs. These also serve as the gold-
standard data set for training and evaluation. Here we describe our
annotation method and criteria, salient statistics about the data
collected, and challenges faced during annotation.

For each target programming language, we first obtained all
questions from the official SO data dump3 dated March 2017 by
filtering questions taggedwith that language.We then generated the
set of questions to annotate by: (1) including all top-100 questions
ranked by view count; and (2) sampling 1,000 questions from the
probability distribution generated by their view counts on SO; we
choose this method assuming that more highly-viewed questions
are more important to consider as we are more likely to come across
them in actual applications. While each question may have any
number of answers, we choose to only annotate the top-3 highest-
scoring answers to prevent annotators from potentially spending a
long time on a single question.

3.1 Annotation Protocol and Interface

Consistently annotating the in-
tent, context, and snippet for a
variety of posts is not an easy
task, and in order to do so we de-
veloped and iteratively refined
a web annotation interface and
a protocol with detailed annota-
tion criteria and instructions.

The annotation interface al-
lows users to select and label
parts of SO posts as (I)intent,
(C)ontext, and (S)nippet using
shortcut keys, as well as rewrite
the intent to better match the
code (e.g., adding variable names
from the snippet into the origi-
nal intent), in consideration of potential future applications that
may require more precisely aligned NL-code data; in the following
experiments we solely consider the intent and snippet, and reserve

2Ideally one would also like to present a description of the trade-offs, but mining this
information is a challenge beyond the scope of this work.
3Available online at https://archive.org/details/stackexchange

Table 1: Details of the labeled data set.

Lang. #Annot. #Ques. #Answer
Posts

#Code
Blocks

Avg. Code
Length

%Full
Blocks

%Annot.
with Context

Python 527 142 412 736 13.2 30.7% 36.8%
Java 330 100 297 434 30.6 53.6% 42.4%

examination of the context and re-written intent for future work.
Multiple NL-code pairs that are part of the same post can be anno-
tated this way. There is also a “not applicable” button that allows
users to skip posts that are not of the “how to” variety, and a “not
sure” button, which can be used when the annotator is uncertain.

The annotation criteria were developed by having all authors
attempt to perform annotations of sample data, gradually adding
notes of the difficult-to-annotate cases to a shared document. We
completed several pilot annotations for a sample of Python ques-
tions, iteratively discussing among the research team the annotation
criteria and the difficult-to-annotate cases after each, before finaliz-
ing the annotation protocol. We repeated the process for Java posts.
Once we converged on the final annotation standards in both lan-
guages, we discarded all pilot annotations, and one of the authors
(a graduate-level NLP researcher and experienced programmer)
re-annotated the entire data set according to this protocol.

While we cannot reflect all difficult cases here for lack of space,
below is a representative sample from the Python instructions:

• Intents: Annotate the command form when possible (e.g., “how
do I merge dictionaries” will be annotated as “merge dictionar-
ies”). Extraneous words such as “in Python” can be ignored. In-
tents will almost always be in the title of the post, but intents
expressed elsewhere that are different from the title can also be
annotated.
• Context: Contexts are a set of statements that do not directly
reflect the annotated intent, but may be necessary in order to
get the code to run, and include import statements, variable
definitions, and anything else that is necessary to make sure that
the code executes. When no context exists in the post this field
can be left blank.
• Snippet: Try to annotate full lines when possible. Some special
tokens such as “>>>”, “print”, and “In[...]” that appear at the
beginning of lines due to copy-pasting can be included. When
the required code is encapsulated in a function, the function
definition can be skipped.
• Re-written intent: Try to be accurate, but try to make the min-
imal number of changes to the original intent. Try to reflect all
of the free variables in the snippet to be conducive to future
automatic matching of these free variables to the corresponding
position in code. When referencing string literals or numbers, try
to write exactly as written in the code, and surround variables
with a grave accent “‘”.

3.2 Annotation Outcome

We annotated a total of 418 Python questions and 200 Java questions.
Of those, 152 in Python and 102 in Java were judged as annotatable
(i.e., the “how-to” style questions described in Section 2), resulting
in 577 Python and 354 Java annotations. We then removed the

https://archive.org/details/stackexchange

MSR ’18, May 28–29, 2018, Gothenburg, Sweden P. Yin, B. Deng, E. Chen, B. Vasilescu, G. Neubig

annotations marked as “not sure” and all unparsable code snippets.4
In the end we generated 527 Python and 330 Java annotations,
respectively. Table 1 lists basic statistics of the annotations. Notably,
compared to Python, Java code snippets are longer (13.2 vs. 30.6
tokens per snippet), and more likely to be full code blocks (30.7% vs.
53.6%). That is, in close to 70% of cases for Python, the code snippet
best-aligned with the NL intent expressed in the question title was
not a full code block (SO uses special HTML tags to highlight code
blocks, recall the example in Figure 1) from one of the answers,
but rather a subset of it; similarly, the best-aligned Java snippets
were not full code blocks in almost half the cases. This confirms
the importance of mining code snippets beyond the level of entire
code blocks, a limitation of prior approaches.

Overall, we found the annotation process to be non-trivial, which
raises several noteworthy threats to validity: (1) it can be difficult for
annotators to distinguish between incorrect solutions and unusual
or bad solutions that are nonetheless correct; (2) in cases where a
single SO question elicits many correct answers with many imple-
mentations and code blocks, annotators may not always label all of
them; (3) long and complex solutions may be mis-annotated; and
(4) inline code blocks are harder to recognize than stand-alone code
blocks, increasing the risk of annotators missing some. We made
a best effort to minimize the impact of these threats by carefully
designing and iteratively refining our annotation protocol.

4 MINING METHOD

In this section, we describe our mining method (see Figure 2 for
an overview). As mentioned in Section 2, we frame the problem
as a classification problem. First, for every “how to” SO question
we consider its title as the intent and extract all contiguous lines
from across all code blocks in the question’s answers (including
those we might manually annotate as context; inline code snippets
are excluded) as candidate implementations of the intent, as long
as we could parse the candidate snippets.4 There are some cases
where the title is not strictly equal to the intent, which go beyond
the scope of this paper; for the purpose of learning the model we
assume the title is representative. This step generates, for every
SO question considered, a set of pairs (intent I , candidate snippet
S). For example, the second answer in Figure 1, containing a three-
line-long code block, would generate six line-contiguous candidate
snippets, corresponding to lines 1, 2, 3, 1-2, 2-3, and 1-2-3. Our
candidate snippet generation approach, though clearly not the only
possible approach (1) is simple and language-independent, (2) is
informed by our manual annotations, and (3) it gives good coverage
of all possible candidate snippets.

Then, our task is, given a candidate pair (I , S), to assign a label y
representing whether or not the snippet S reflects the intent I ; we
definey to equal 1 if the pair matches and -1 otherwise. Our general
approach to making this binary decision is to use machine learning
to train a classifier that predicts, for every pair (I , S), the probability
that S accurately implements I , i.e., P (y = 1|I , S), based on a number
of features (Sections 4.1 and 4.2). As is usual in supervised learning,
our system first requires an offline training phase that learns the
parameters (i.e., feature weights) of the classifier, for which we use
the annotated data described above (Section 3). This way, we can

4We use the built-in ast parser module for Python, and JavaParser for Java.

Filter “How to”
questions

Small sample

Manual labeling
Intent-Snippet pairs

Gold
standard

Training
data

Classifier

Correspondence
features (RNN)

Structural
features

Training

Classification

Question +
Answers

Candidate snippets

p = 0.8

p = 0.2

p = 0.5

Ranked list

Figure 2: Overview of our approach.

apply our system to an SO page of interest, and compute P (y =
1|I , S) for each possible intent/candidate snippet pair mined from
the SO page. We choose logistic regression as our classifier, as
implemented in the scikit-learn Python package.

As human annotation to generate training data is costly, our
goal is to keep the amount of manually labeled training data to a
minimum, such that scaling our approach to other programming
languages in the future can be feasible. Therefore, to ease the burden
on the classifier in the face of limited training data, we combined
two types of features: hand-crafted structural features of the code
snippets (Section 4.1) and machine learned correspondence features
that predict whether intents and code snippets correspond to each-
other semantically (Section 4.2). Our intuition, again informed by
the manual annotation, was that “good” and “bad” pairs can often
be distinguished based on simple hand-crafted features; these fea-
tures could eventually be learned (as opposed to hand-crafted), but
this would require more labeled training data, which is relatively
expensive to create.

4.1 Hand-crafted Code Structure Features

The structural features are intended to distinguish whether we can
reasonably expect that a particular piece of code implements an
intent. We aimed for these features to be both informative and
generally applicable to a wide range of programming languages.
These features include the following:

• FullBlock, StartOfBlock, EndOfBlock: A code block
may represent a single cohesive solution. By taking only a piece
of a code block, we may risk acquiring only a partial solution, and
thus we use a binary feature to inform the classifier of whether
it is looking at a whole code block or not. On the other hand, as
shown in Figure 1, many code blocks contain some amount of
context before the snippet, or other extraneous information, e.g.,
print statements. To consider these, we also add binary features
indicating that a snippet is at the start or end of its code block.
• ContainsImport, StartsWithAssignment, IsValue:Ad-
ditionally, some statements are highly indicative of a statement
being context or extraneous. For example, import statements are
highly indicative of a particular line being context instead of
the snippet itself, and thus we add a binary feature indicating

Mining Aligned NL-Code Pairs from Stack Overflow MSR ’18, May 28–29, 2018, Gothenburg, Sweden

whether an import statement is included. Similarly, variable as-
signments are often context, not the implementation itself, and
thus we add another feature indicating whether the snippet starts
with a variable assignment. Finally, we observed that in SO (par-
ticularly for Python), it was common to have single lines in the
code block that consisted of only a variable or value, often as an
attempt to print these values to the interactive terminal.
• AcceptedAns,PostRank1,PostRank2,PostRank3: The
quality of the post itself is also indicative of whether the answer is
likely to be valid or not. Thus, we add several features indicating
whether the snippet appeared in a post that was the accepted
answer or not, and also the rank of the post within the various
answers for a particular question.
• OnlyBlock: Posts with only a single code block are more likely
to have that snippet be a complete implementation of the in-
tent, so we added another feature indicating when the extracted
snippet is the only one in the post.
• NumLinesX: Snippets implementing the intent also tend to be
concise, so we added features indicating the number of lines in
the snippet, bucketed into X = 1, 2, 3, 4-5, 6-10, 11-15, >15.
• Combination Features: Some features can be logically com-
bined to express more complex concepts. E.g., AcceptedAns +
OnlyBlock +WholeBlock can express the strategy of select-
ing whole blocks from accepted answers with only one block,
as used in previous work [15, 44]. We use this feature and two
other combination features: specifically ¬StartWithAssign +
EndOfBlock and ¬StartWithAssign + NumLines1.

4.2 Unsupervised Correspondence Features

While all of the features in the previous section help us determine
which code snippets are likely to implement some intent, they say
nothing about whether the code snippet actually implements the
particular intent I that is currently under consideration. Of course
considering this correspondence is crucial to accurately mining
intent-snippet pairs, but how to evaluate this correspondence com-
putationally is non-trivial, as there are very few hard and fast rules
that indicate whether an intent and snippet are expressing similar
meaning. Thus, in an attempt to capture this correspondence, we
take an indirect approach that uses a potentially-noisy (i.e., not
manually validated) but easy-to-construct data set to train a prob-
abilistic model to approximately capture these correspondences,
then incorporate the predictions of this noisily trained model as
features into our classifier.

Training data of correspondence features:Apart from ourmanually-
annotated data set, we collected a relatively large set of intent-
snippet pairs using simple heuristic rules for learning the corre-
spondence features. The data set is created by pairing the question
titles and code blocks from all SO posts, where (1) the code block
comes from an SO answer that was accepted by the original poster,
and (2) there is only one code block in this answer. Of course, many
of these code blocks will be noisy in the sense that they contain
extraneous information (such as extra import statements or variable
definitions, etc.), or not directly implement the intent at all, but they
will still be of use for learning which NL expressions in the intent
tend to occur with which types of source code.

mylist . index (“bar”)

look
up

look
up

look
up

look
up

look
up

look
up

enc enc enc enc enc enc

dec dec dec dec

lookup

find index of “bar” </s>

lookup lookup lookup
find index of “bar”

predict predict predict predict predict

Figure 3: An example of neural MT encoder-decoder frame-

work used in calculating correspondence scores.

Learning amodel of correspondence:Given the training data above,
we need to create a model of the correspondence between the intent
I and snippet S . To this end, we build a statistical model of the bi-
directional probability of the intent given the snippet P (I | S), and
the probability of the snippet given the intent P (S | I).

Specifically, we follow previous work that has noted that mod-
els from machine translation (MT; [19]) are useful for learning the
correspondences between natural language and code for the pur-
poses of code summarization [15, 30], code synthesis from natural
language [21], and code retrieval [3]. In particular, we use a model
based on neural MT [4, 17], a method for MT based on neural net-
works that is well-suited for this task of learning correspondences
for a variety of reasons, which we outline below after covering the
basics. To take the example of using a neural MT model that at-
tempts to generate an intent I given a snippet S , these models work
by incrementally generating each word of the intent i1, i2, . . . , i |I |
one word at a time (the exact same process can be performed in the
reverse direction to generate a snippet S given intent I). For exam-
ple, if our intent is “download and save an http file”, the model would
first predict and generate “download”, then “and”, then “save”, etc.
This is done in a probabilistic way by calculating the probability of
the first word given the snippet P (i1 | S) and outputting the word in
the vocabulary that maximizes this probability, then calculating the
probability of the second word given the first word and the snippet
P (i2 | S, i1) and similarly outputting the word with the highest
probability, etc. Incidentally, if we already know a particular intent
I and want to calculate its probability given a particular snippet
S (for example to use as features in our classifier), we can also do
so by calculating the probability of each word in the intent and
multiplying them together as follows:

P (I | S) = P (i1 | S)P (i2 | S, i1)P (i3 | S, i1, i2) . . . (1)
So how do neural MT models calculate this probability? We will

explain a basic outline of a basic model called the encoder-decoder
model [39], and refer readers to references for details [4, 25, 39].
The encoder-decoder model, as shown in Figure 3, works in two
stages: First, it encodes the input (in this case S) into a hidden vector
of continuous numbers h using an encoding function

h |S | = encode(S). (2)

MSR ’18, May 28–29, 2018, Gothenburg, Sweden P. Yin, B. Deng, E. Chen, B. Vasilescu, G. Neubig

This function generally works in two steps: looking up a vector of
numbers representing each word (often called “word embeddings”
or “word vectors”), then incrementally adding information about
these embeddings one word at a time using a particular variety of
network called a recurrent neural network (RNN). To take the specific
example shown in the figure, at the first time step, we would look up
a word embedding vector for the first word “mylist”, e1 = emylist
and then perform a calculation such as the one below to calculate
the hidden vector for the first time step:

h1 = tanh(Wenc,ee1 + benc), (3)
whereWenc,e and benc are a matrix and vector that are parameters
of the model, and tanh(·) is the hyperbolic tangent function used to
“squish” the values to be between -1 and 1. In the next time step, we
would do the same for the symbol “.”, using its embedding e2 = e.,
and in the calculation from the second step onward we also use the
result of the previous calculation (in this case h2):

h1 = tanh(Wenc,hh1 +Wenc,ee2 + benc). (4)
By using the hidden vector from the previous time step, the RNN
is able to “remember” features of the previously occurring words
within this vector, and by repeating this process until the end of
the input sequence, it (theoretically) has the ability to remember
the entire content of the input within this vector.

Once we have encoded the entire source input, we can use this
encoded vector to predict the first word of the output. This is done
by multiplying the vectorh with another weight matrix to calculate
a score д for each word in the output vocabulary:

д1 =Wpredh |S | + bpred. (5)
We then predict the actual probability of the first word in the output
sentence, for example “find”, by using the softmax function, which
exponentiates all of the scores in the output vocabulary and then
normalizes these scores so that they add up to one:

P (i1 = “find”) =
exp(дfind)∑
д̃ exp(д̃)

. (6)

We use a neural MT model with this basic architecture, with
the addition of a feature called attention, which, put simply, allows
the model to “focus” on particular words in the source snippet S
when generating the intent I . The details of attention are beyond
the scope of this paper, but interested readers can reference [4, 22].

Why attentional neural MT models?: Attention-based neural MT
models are well-suited to the task of learning correspondences be-
tween natural language intents and code snippets for a number
of reasons. First, they are a purely probabilistic model capable of
calculating P (S | I) and P (I | S), which allows them to easily be in-
corporated as features in our classifier, as described in the following
paragraph. Second, they are powerful models that can learn cor-
respondences on a variety of levels; from simple phenomena such
as direct word-by-word matches [12], to soft paraphrases [36], to
weak correspondences between keywords and large documents for
information retrieval [14]. Finally, they have demonstrated success
in a number of NL-code related tasks [2, 3, 21, 47], which indicates
that they could be useful as part of our mining approach as well.

Incorporating correspondence probabilities as features: For each
intent I and candidate snippet S , we calculate the probabilities

P (S | I) and P (I | S), and add them as features to our classifier, as
we did with the hand-crafted structural features in Section 4.1.
• SGivenI, IGivenS: Our first set of features are the logarithm of
the probabilities mentioned above: log P (S | I) and log P (I | S).5
Intuitively, these probabilities will be indicative of S and I being a
goodmatch because if they are not, the probabilities will be low. If
the snippet and the intent are not a match at all, both features will
have a low value. If the snippet and intent are partial matches, but
either the snippet S or intent I contain extraneous information
that cannot be predicted from the counterpart, then SGivenI and
IGivenS will have low values respectively.
• ProbMax, ProbMin: We also represent the max and min of
log P (S | I) and log P (I | S). In particular, the ProbMin feature is
intuitively helpful because pairs where the probability in either
direction is low are likely not good pairs, and this feature will be
low in the case where either probability is low.
• NormalizedSGivenI,NormalizedIGivenS: In addition, in-
tuitively we might want the best matching NL-code pairs within
a particular SO page. In order to capture this intuition, we also
normalize the scores over all posts within a particular page so
that their mean is zero and standard deviation is one (often called
the z-score). In this way, the pairs with the best scores within a
page will get a score that is significantly higher than zero, while
the less good scores will get a score close to or below zero.

5 EVALUATION

In this section we evaluate our proposed mining approach. We first
describe the experimental setting in Section 5.1 before addressing
the following research questions:

(1) How does our mining method compare with existing approaches
across different programming languages? (Section 5.2)

(2) How do the structural and correspondence features impact the
system’s performance? (Section 5.2)

(3) Given that annotation of data for each language is laborious, is it
possible to use a classifier learned on one programming language
to perform mining on other languages? (Section 5.3)

(4) What are the qualitative features of the NL-code pairs that our
method succeeds or fails at extracting? (Section 5.4)
We show that ourmethod clearly outperforms existing approaches

and shows potential for reuse without retraining, we uncover trade-
offs between performance and training complexity, and we discuss
limitations, which can inform future work.

5.1 Experimental Settings

We conduct experimental evaluation on two programming lan-
guages: Python and Java. These languages were chosen due to their
large differences in syntax and verbosity, which have been shown
to effect characteristics of code snippets on SO [45].

Learning unsupervised features: We start by filtering the SO ques-
tions in the Stack Exchange data dump3 by tag (Python and Java),
and we use an existing classifier [15] to identify the how-to style
questions. The classifier is a support vector machine trained by

5We take the logarithm of the probabilities because the actual probability values tend to
become very small for very long sequences (e.g., 10−50 to 10−100), while the logarithm
is in a more manageable range (e.g., −50 to −100).

Mining Aligned NL-Code Pairs from Stack Overflow MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Table 2: Details of the NL-code data used for learning unsu-

pervised correspondence features.

Lang.
Training Data
(NL/Code Pairs)

Validation
Data

Intents Code

Avg.
Length

Vocabulary
Size

Avg.
Length

Vocabulary
Size

Python 33,946 3,773 11.9 12,746 65.4 30,286
Java 37,882 4,208 11.6 13,775 65.7 29,526

bootstrapping from 100 labeled questions, and achieves over 75%
accuracy as reported in [15]. We then extract intent/snippet pairs
from all these questions as described in Section 4.2, collecting 33,946
pairs for Python and 37,882 for Java. Next we split the data set into
training and validation sets with a ratio of 9:1, keeping the 90% for
training. Statistics of the data set are listed in Table 2.6

We implement our neural correspondencemodel using theDyNet
neural network toolkit [26]. The dimensionality of word embed-
ding and RNN hidden states is 256 and 512. We use dropout [38], a
standard method to prevent overfitting, on the input of the last soft-
max layer over target words (p = 0.5), and recurrent dropout [11]
on RNNs (p = 0.2). We train the network using the widely used
optimization method Adam [18]. To evaluate the neural network,
we use the remaining 10% of pairs left aside for testing, retaining
the model with the highest likelihood on the validation set.

Evaluating the mining model: For the logistic regression classifier,
which uses the structural and correspondence features described
above, the latter computed by the previous neural network, we
use our annotated intent/snippet data (Section 3.2)7 during 5-fold
cross validation. Recall, our code mining model takes as input
a SO question (i.e., intent reflected by the question title) with its
answers, and outputs a ranked list of candidate intent/snippet pairs
(with probability scores). For evaluation, we first rank all candi-
date intent/snippet pairs for all questions, and then compare the
ranked list with gold-standard annotations. We present the results
using standard precision-recall (PR) and Receiver Operating Char-
acteristic (ROC) curves. In short, a PR curve shows the precision
w.r.t. recall for the top-k predictions in the ranked list, with k from
1 to the number of candidates. A ROC curve plots the true positive
rates w.r.t. false positive rates in similar fashion. We also compute
the Area Under the Curve (AUC) scores for all ROC curves.

Baselines: As baselines for our model (denoted as Full), we imple-
ment three approaches reflecting prior work and sensible heuristics:

AcceptOnly is the state-of-the art from prior work [15, 44]; it
selects the whole code snippet in the accepted answers containing
exactly one code snippet.

All denotes the baseline method that exhaustively selects all full
code blocks in the top-3 answers in a post.

Random is the baseline that randomly selects from all consecutive
code segment candidates.

6Note that this data may contain some of the posts included in the cross-validation
test set with which we evaluate our model later. However, even if it does, we are not
using the annotations themselves in the training of the correspondence features, so
this does not pose a problem with our experimental setting.
7Recall that our annotated data contains only how-to style questions, and therefore
question filtering is not required. When applying our mining method to the full SO
data, we could use the how-to question classifier in [15].

Similarly to our model, we enforce the constraint that all mined
code snippets given by the baseline approaches should be parseable.

Additionally, to study the impact of hand-crafted Structural

versus learned Correspondence features, we also trained ver-
sions of our model with either of the two types of features only.

5.2 Results and Discussion

Our main results are depicted in Figure 4. First, we can see that
the precision of the random baseline is only 0.10 for Python and
0.06 for Java. This indicates that only one in 10-17 candidate code
snippets is judged to validly correspond to the intent, reflecting the
difficulty of the task. The AcceptOnly and All baselines perform
significantly better, with precision of 0.5 or 0.6 at recall 0.05-0.1
and 0.3-0.4 respectively, indicating that previous heuristic methods
using full code blocks are significantly better than random, but
still have a long way to go to extract broad-coverage and accurate
NL-code pairs (particularly in the case of Python).8

Next, turning to the full system, we can see that the method
with the full feature set significantly outperforms all baselines
(Figures 4b and 4d): much better recall (precision) at the same level
of precision (recall) as the heuristic approaches. The increase in
precision suggests the importance of intelligently selecting NL-code
pairs using informative features, and the increase in recall suggests
the importance of considering segments of code within code blocks,
instead of simply selecting the full code block as in prior work.

Comparing different types of features (Structural v.s. Corre-
spondence), we find that with structural features alone our model
already significantly outperforms baseline approaches; and these
features are particularly effective for Java. On the other hand, inter-
estingly the correspondence features alone provide less competitive
results. Still, the structural and correspondence features seem to be
complementary, with the combination of the two feature sets fur-
ther significantly improving performance, particularly on Python.
A closer examination of the results generated the following insights.

Why do correspondence features underperform? While these fea-
tures effectively filter totally unrelated snippets, they still have a
difficult time excluding related contextual statements, e.g., imports,
assignments. This is because (1) the snippets used for training corre-
spondence features are full code blocks (as in §4.2), usually starting
with import statements; and (2) the library names in import state-
ments often have strong correspondence with the intents (e.g., “How
to get current time in Python?” and import datetime), yielding high
correspondence probabilities.

What are the trends and error cases for structural features? Like the
baseline methods, Structural tends to give priority to full code
blocks; out of the top-100 ranked candidates for Structural, all
were full code blocks (in contrast to only 21 for Correspondence).
Because selecting code blocks is a reasonably strong baseline, and
because the model has access to other strongly-indicative binary
features that can be used to further prioritize its choices, it is able
to achieve reasonable precision-recall scores only utilizing these
features. However, unsurprisingly, it lacks fine granularity in terms

8Interestingly, AcceptOnly and All have similar precision, which might be due to
two facts. First, we enforce all candidate snippets to be syntactically correct, which
rules out erroneous candidates like input/output examples. Second, we use the top 3
answers for each question, which usually have relatively high quality.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden P. Yin, B. Deng, E. Chen, B. Vasilescu, G. Neubig

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T

ru
e

P
os

it
iv

e
R

at
e

Full(0.9399)

Correspondence(0.8633)

Structural(0.9046)

Random(0.4877)

AcceptOnly(undef.)

All(undef.)

(a) ROC Curve with AUC Scores on Python

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Full

Correspondence

Structural

Random

AcceptOnly

All

(b) Precision-Recall Curve on Python

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Full(0.8682)

Correspondence(0.7692)

Structural(0.8235)

Random(0.5093)

AcceptOnly(undef.)

All(undef.)

(c) ROC Curve with AUC Scores on Java

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Full

Correspondence

Structural

Random

AcceptOnly

All

(d) Precision-Recall Curve on Java

Figure 4: Evaluation Results on Mining Python (a)(b) and Java (c)(d)

of pinpointing exact code segments that correspond to the intents;
when it tries to select partial code segments, the results are likely to
be irrelevant to the intent. As an example, we find that Structural
tends to select the last line of code at each code block, since the
learned weights for LineNum=1 and EndsCodeBlock features are
high, even though these often consist of auxiliary print statement
or even simply pass (for Python).

What is the effect of the combination? When combining Struc-
tural and Correspondence features together, the full model has
the ability to use the knowledge of the Structural model extract
full code blocks or ignore imports, leading to high performance in
the beginning stages. Then, in the latter and more difficult cases, it
is able to more effectively cherry-pick smaller snippets based on
their correspondence properties, which is reflected in the increased
accuracy on the right side of the ROC and precision-recall curves.

How do the trends differ between programming languages? Com-
pared with the baseline approaches AcceptOnly and All, our full
model performs significantly better on Python.We hypothesize that
this is because learning correspondences between intent/snippet
pairs for Java ismore challenging. Empirically, Python code snippets
are much shorter, and the average number of tokens for predicted
code snippets on Python and Java is 11.6 and 42.4, respectively.
Meanwhile, since Java code snippets are more verbose and contain
significantly more boilerplate (e.g., class/function definitions, type
declaration, exception handling, etc.), estimating correspondence
scores using neural networks is more challenging.

Also note that the Structural model performs much better on
Java than on Python. This is due to the fact that Java annotations are

more likely to be full code blocks (see Table 1), which can be easily
captured by our designed features like FullBlock. Nevertheless,
adding correspondence features is clearly helpful for the harder
cases for both programming languages. For instance, from the ROC
curve in Figure 4c, our full model achieves higher true positive
rates compared with Structural, registering higher AUC scores.

5.3 Must We Annotate Each Language?

As discussed in §3, collecting high-quality intent/snippet annota-
tions to train the code mining model for a programming language
can be costly and time-consuming. An intriguing research question
is how we could transfer the learned code mining model from one
programming language and use it for mining intent/snippet data
for another language. To test this, we train a code mining model
using the annotated intent/snippet data on language A, and evalu-
ate using the annotated data on language B.9 This is feasible since
almost all of the features used in our system is language-agnostic.10
Also note values of a specific feature might have different ranges for
different languages. As an example, the average value of SGivenI
feature for Python and Java is -23.43 and -47.64, respectively. To
mitigate this issue, we normalize all feature values to zero mean
and unit variance before training the logistic regression classifier.

Figures 5a and 5b show the precision-recall curves for apply-
ing Java (Python) mining model on Python (Java) data. We report

9We still train the correspondence model using the target language unlabeled data.
10The only one that was not applicable to both languages was the SingleValue feature
for Python, which helps rule out code that contains only a single value. We omit this
feature in the cross-lingual experiments.

Mining Aligned NL-Code Pairs from Stack Overflow MSR ’18, May 28–29, 2018, Gothenburg, Sweden

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
P

re
ci

si
on

Full

Structural

Full-Java

Structural-Java

(a) Java 7→ Python

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Full

Structural

Full-Python

Structural-Python

(b) Python 7→ Java

Figure 5: Precision-Recall Curves for Transfer Learning on Java 7→ Python (a) and Python 7→ Java (b)

results for both the Structural model and our full model, and
compare with the original models trained on the target program-
ming language. Unsurprisingly, the original full model tuned on
the target language still performs the best. Nevertheless, we ob-
serve that the performance gap between the original full model
and the transferred one is surprisingly small. Notably, we find that
overall the transferred full model (Full-Java) performs second best
on Python, even outperforming the original Structural model.
These results are encouraging, in that they suggest that it is likely
feasible to train a single code mining classifier and then apply it to
different programming languages, even those for which we do not
have any annotated intent/snippet data.

5.4 Successful and Failed Examples

As illustration, we showcase successful and failed examples of our
proposed approach, for Python in Table 3 and for Java in Table 4.
Given a SO question (intent), we show the top-3 most probable
code snippets. First, we find our model can correctly identify code
snippets for various types of intents, even when the target snippets
are not full code blocks. I1 and I6 demonstrate that our model can
leave contextual information like variable definitions in the original
SO posts and only retain the actual implementation of the intent.11
I2, I3 and I7 are more interesting: in the original SO post, there could
be multiple possible solutions in the same code block (I2 and I7), or
the gold-standard snippets are located inside larger code structures
like a for loop (S2 for I3). Our model learns to “break down” the
solutions in single code block into multiple snippets, and extract
the actual implementation from large code chunks.

We also identify four sources of errors:
• Incomplete code: Some code snippets are incomplete, and the
model fails to include intermediate statements (e.g., definitions of
custom variables or functions) that are part of the implementation.
For instance, S3 for I3 misses the definition of the keys_to_keep,
which is the set of keys excluding the key to remove.
• Including auxiliary info: Sometimes the model fails to exclude
auxiliary code segments like the extra context definition (e.g., S1
for I8) and print function. This is especially true for Java, where
full code blocks are likely to be correct snippets, and the model
tends to bias towards larger code chunks.

11We refer readers to the original SO page for reference.

• Spurious cases:We identify two “spurious” cases where our corre-
spondence feature often do not suffice. (1) Counter examples: the
S1 for I4 is mentioned in the original post as a counter example,
but the values of correspondence features are still high since
append() is highly related to “append it to another list” in the in-
tent. (2) Related implementation: I5 shows an example where the
model has difficulty distinguishing between the actual snippets
and related implementations.
• Annotation error: We find cases where our annotation is incom-
plete. For instance, S1 for I9 should be correct. As discussed in
Section 3, guaranteeing coverage in the annotation process is
non-trivial, and we leave this as a challenge for future work.

6 RELATEDWORK

A number of previous works have proposed methods for mining
intent-snippet pairs for purposes of code summarization, search, or
synthesis. We can view these methods from several perspectives:

Data Sources: First, what data sources do they use to mine their
data? Our work falls in the line of mining intent-snippet pairs from
SO (e.g., [15, 44, 48]), while there has been research on mining from
other data sources such as API documentation [5, 6, 24], code com-
ments [43], specialized sites [32], parameter/method/class names
[1, 37], and developer mailing lists [31]. It is likely that it could be
adapted to work with other sources, requiring only changes in the
definition of our structural features to incorporate insights into the
data source at hand.

Methodologies: Second, what is the methodology used therein,
and can it scale to our task of gathering large-scale data across a
number of languages and domains? Several prior work approaches
used heuristics to extract aligned intent-snippet pairs [6, 44, 48]).
Our approach also contains an heuristic component. However, as
evidenced by our experiments here, our method is more effective
at extracting accurate intent-snippet pairs.

Some work on code search has been performed by retrieving
candidate code snippets given an intent based on weighted keyword
matches and other features [29, 42]. These methods similarly aim
to learn correspondences between natural language queries and
returned code, but they are tailored specifically for performing
code search, apply a more rudimentary feature set (e.g., they do not
employ neural network-based correspondence features) than we

MSR ’18, May 28–29, 2018, Gothenburg, Sweden P. Yin, B. Deng, E. Chen, B. Vasilescu, G. Neubig

Table 3: Examples of Mined Python Code

I1: Remove specific characters from a string in python
URL: https://stackoverflow.com/questions/3939361/
Top Predictions:

S1 string.replace('1', '') ✓

S2 line = line.translate(None, '!@#$') ✓

S3 line = re.sub('[!@#$]', '', line) ✓

I2: Get Last Day of the Month in Python
URL: https://stackoverflow.com/questions/42950/
Top Predictions:

S1 calendar.monthrange(year, month)[1] ✓

S2 calendar.monthrange(2100, 2) ✓

S3 (datetime.date(2000, 2, 1) − datetime.timedelta(days=1))✓

I3: Delete a dictionary item if the key exists
URL: https://stackoverflow.com/questions/15411107/
Top Predictions:

S1 mydict.pop('key', None) ✓

S2 del mydict[key] ✓

S3 new_dict = {k: mydict[k] for k in keys_to_keep}✗

I4: Python: take the content of a list and append it to another list
URL: https://stackoverflow.com/questions/8177079/
Top Predictions:

S1 list2.append(list1) ✗

S2 list2.extend(list1) ✓

S3 list1.extend(mylog) ✓

I5: Converting integer to string in Python?
URL: https://stackoverflow.com/questions/961632/
Top Predictions:

S1 int('10') ✗

S2 str(10); int('10') ✗

S3 a.__str__() ✓

do, and will generally not handle sub-code-block sized contexts,
which proved important in our work.

We note that concurrent to this work, [46] also explored the
problem of mining intent/code pairs from SO, identifying candidate
code blocks of an intent using information from both the contextual
texts and the code in an SO answer. Our approach, however, con-
siders more fine-grained, sub-code-block sized candidates, aiming
to recover code solutions that exactly answer the intent.

Finally, some work has asked programmers to manually write
NL descriptions for code [20, 30], or vice-versa [41]. This allows
for the generation of high-quality data, but is time consuming and
does not scale beyond limited domains.

7 THREATS TO VALIDITY

Besides threats related to the manual labeling (Section 3.2), we note
the following overall threats to the validity of our approach:

Annotation Error: Our code mining approach is based on learning
from a small amount of annotated data, and errors in annotation
may impact the performance of the system (see Sections 3 and 5.4).

Data Set Volume: Our annotated data set contains mainly high-
ranked SO questions, and is relatively small (with a few hundreds
of examples for each language), which could penitentially hinder
the generalization ability of the system on lower-ranked questions.

Table 4: Examples of Mined Java Code

I6: How to convert List<Integer> to int[] in Java?
URL: https://stackoverflow.com/questions/960431/
Top Predictions:

S1 int[] array = list.stream().mapToInt(i −> i).toArray(); ✓

S2 int[] intArray2 = ArrayUtils.toPrimitive(myList.toArray(
NO_INTS)); ✗

S3 int[] intArray = ArrayUtils.toPrimitive(myList.toArray(new
Integer[myList.size()])); ✓

I7: How do I compare strings in Java?
URL: https://stackoverflow.com/questions/513832/
Top Predictions:

S1 new String("test").equals("test"); ✓

S2 Objects.equals(null, "test"); ✓

S3 nullString1.equals(nullString2); ✓

I8: How do I set the colour of a label (coloured text) in Java?
URL: https://stackoverflow.com/questions/2966334/
Top Predictions:

S1 JLabel title = new JLabel("I love stackoverflow!", JLabel.
CENTER);

title.setForeground(Color.white); ✗

S2 frame.add(new JLabel("<html>Text color:
red</html>")); ✓

S3 label.setForeground(Color.red); ✓

I9: Generating a Random Number between 1 and 10 Java
URL: https://stackoverflow.com/questions/20389890/
Top Prediction: (only show one for space reason)
S1 public static int randInt(int min, int max) {

Random rand = new Random();
int randomNum = rand.nextInt((max − min) + 1) + min;
return randomNum; } ✗ (annotation error)

Meanwhile, we used cross-validation for evaluation, while evalu-
ating our mining method on full-scale SO data would be ideal but
challenging.

8 CONCLUSIONS

In this paper, we described a novel method for extracting aligned
code/natural language pairs from the Q&A website Stack Over-
flow. The method is based on learning from a small number of
annotated examples, using highly informative features that capture
structural aspects of the code snippet and the correspondence be-
tween it and the original natural language query. Experiments on
Python and Java demonstrate that this approach allows for more
accurate and more exhaustive extraction of NL-code pairs than
prior work. We foresee the main impact of this paper lying in the
resources it would provide when applied to the full Stack Over-
flow data: the NL-code pairs extracted would likely be of higher
quality and larger scale. Given that high-quality parallel NL-code
data sets are currently a significant bottleneck in the development
of new data-driven software engineering tools, we hope that such a
resource will move the field forward. In addition, while our method
is relatively effective compared to previous work, there is still sig-
nificant work to be done on improving mining algorithms to deal
with current failure cases, such as those described in Section 5.4.
Our annotated data set and evaluation tools, publicly available, may
provide an impetus towards further research in this area.

https://stackoverflow.com/questions/3939361/
https://stackoverflow.com/questions/42950/
https://stackoverflow.com/questions/15411107/
https://stackoverflow.com/questions/8177079/
https://stackoverflow.com/questions/961632/
https://stackoverflow.com/questions/960431/
https://stackoverflow.com/questions/513832/
https://stackoverflow.com/questions/2966334/
https://stackoverflow.com/questions/20389890/

Mining Aligned NL-Code Pairs from Stack Overflow MSR ’18, May 28–29, 2018, Gothenburg, Sweden

REFERENCES

[1] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2015. Sug-
gesting Accurate Method and Class Names. In Joint Meeting on Foundations of
Software Engineering (ESEC/FSE). ACM, 38–49.

[2] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A Convolutional
Attention Network for Extreme Summarization of Source Code. arXiv preprint
arXiv:1602.03001 (2016).

[3] Miltiadis Allamanis, Daniel Tarlow, Andrew D Gordon, and YiWei. 2015. Bimodal
Modelling of Source Code and Natural Language. In International Conference on
Machine Learning (ICML). 2123–2132.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In International Conference
on Learning Representations (ICLR).

[5] Antonio Valerio Miceli Barone and Rico Sennrich. 2017. A Parallel Corpus of
Python Functions and Documentation Strings for Automated Code Documenta-
tion and Code Generation. arXiv preprint arXiv:1707.02275 (2017).

[6] Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen. 2009. Sniff: A Search En-
gine for Java Using Free-formQueries. In International Conference on Fundamental
Approaches to Software Engineering. Springer, 385–400.

[7] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare,
Mark Marron, Subhajit Roy, and others. 2016. Program Synthesis using Natural
Language. In International Conference on Software Engineering (ICSE). ACM, 345–
356.

[8] Premkumar Devanbu. 2015. New Initiative: the Naturalness of Software. In
International Conference on Software Engineering (ICSE), Vol. 2. IEEE, 543–546.

[9] Christine Franks, Zhaopeng Tu, Premkumar Devanbu, and Vincent Hellendoorn.
2015. CACHECA: A Cache Language Model based Code Suggestion Tool. In
International Conference on Software Engineering (ICSE), Vol. 2. IEEE, 705–708.

[10] Mark Gabel and Zhendong Su. 2010. A Study of the Uniqueness of Source Code.
In International Symposium on Foundations of Software Engineering (FSE). ACM,
147–156.

[11] Yarin Gal and Zoubin Ghahramani. 2016. A Theoretically Grounded Applica-
tion of Dropout in Recurrent Neural Networks. In Annual Conference on Neural
Information Processing Systems (NIPS). 1019–1027.

[12] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li. 2016. Incorporating
Copying Mechanism in Sequence-to-Sequence Learning. In Annual Meeting of
the Association for Computational Linguistics (ACL). ACL, 1631–1640.

[13] Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu.
2016. On the naturalness of software. Commun. ACM 59, 5 (2016), 122–131.

[14] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning Deep Structured Semantic Models for Web Search using
Clickthrough Data. In International Conference on Information and Knowledge
Management (CIKM). ACM, 2333–2338.

[15] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing Source Code using a Neural Attention Model. In Annual Meeting of
the Association for Computational Linguistics (ACL). ACL, 2073–2083.

[16] Alan Jaffe, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues, and Bogdan
Vasilescu. 2018. Meaningful Variable Names for Decompiled Code: A Machine
Translation Approach. In International Conference on Program Comprehension
(ICPC). ACM.

[17] Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent Continuous Translation
Models. In Conference on Empirical Methods in Natural Language Processing
(EMNLP). ACL, 1700–1709.

[18] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

[19] Philipp Koehn. 2010. Statistical Machine Translation. Cambridge Press.
[20] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D Ernst. 2018.

NL2Bash: A Corpus and Semantic Parser for Natural Language Interface to the
Linux Operating System. International Conference on Language Resources and
Evaluation (LREC) (2018).

[21] Nicholas Locascio, Karthik Narasimhan, Eduardo De Leon, Nate Kushman, and
Regina Barzilay. 2016. Neural Generation of Regular Expressions from Natural
Language with Minimal Domain Knowledge. In Conference on Empirical Methods
in Natural Language Processing (EMNLP). ACL, 1918–1923.

[22] Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. In Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). ACL, 1412–1421.

[23] Lance A Miller. 1981. Natural Language Programming: Styles, Strategies, and
Contrasts. IBM Systems Journal 20, 2 (1981), 184–215.

[24] Dana Movshovitz-Attias and William W Cohen. 2013. Natural Language Models
for Predicting Programming Comments. In Annual Meeting of the Association for
Computational Linguistics (ACL). ACL, 35–40.

[25] Graham Neubig. 2017. Neural Machine Translation and Sequence-to-Sequence
Models: A Tutorial. arXiv preprint arXiv:1703.01619 (2017).

[26] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar,
Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux,

Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng
Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul
Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta,
and Pengcheng Yin. 2017. DyNet: The Dynamic Neural Network Toolkit. arXiv
preprint arXiv:1701.03980 (2017).

[27] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N Nguyen.
2014. Statistical Learning Approach for Mining API Usage Mappings for Code
Migration. In International Conference on Automated Software Engineering (ASE).
ACM, 457–468.

[28] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2013. Lexical
Statistical Machine Translation for Language Migration. In Joint Meeting on
Foundations of Software Engineering (ESEC/FSE). ACM, 651–654.

[29] Haoran Niu, Iman Keivanloo, and Ying Zou. 2016. Learning to Rank Code
Examples for Code Search Engines. Empirical Software Engineering (2016), 1–33.

[30] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to Generate Pseudo-Code
from Source Code Using Statistical Machine Translation. In International Confer-
ence on Automated Software Engineering (ASE). IEEE, 574–584.

[31] Sebastiano Panichella, Jairo Aponte, Massimiliano Di Penta, Andrian Marcus,
and Gerardo Canfora. 2012. Mining Source Code Descriptions from Developer
Communications. In International Conference on Program Comprehension (ICPC).
IEEE, 63–72.

[32] Chris Quirk, Raymond Mooney, and Michel Galley. 2015. Language to Code:
Learning Semantic Parsers for If-This-Then-That Recipes. In Annual Meeting of
the Association for Computational Linguistics (ACL). 878–888.

[33] Maxim Rabinovich, Mitchell Stern, and Dan Klein. 2017. Abstract Syntax Net-
works for Code Generation and Semantic Parsing. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, Vancouver, Canada, 1139–
1149. http://aclweb.org/anthology/P17-1105

[34] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program
Properties from “Big Code”. In ACM Symposium on Principles of Programming
Languages (POPL). ACM, 111–124.

[35] Victor S Sheng, Foster Provost, and Panagiotis G Ipeirotis. 2008. Get Another
Label? Improving Data Quality and Data Mining using Multiple, Noisy Labelers.
In ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 614–622.

[36] Richard Socher, Eric H Huang, Jeffrey Pennin, Christopher D Manning, and
Andrew Y Ng. 2011. Dynamic Pooling and Unfolding Recursive Autoencoders
for Paraphrase Detection. In Advances in Neural Information Processing Systems
(NIPS). 801–809.

[37] Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. 2011. Generating Pa-
rameter Comments and Integrating with Method Summaries. In International
Conference on Program Comprehension (ICPC). IEEE, 71–80.

[38] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[39] Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Processing
Systems (NIPS). 3104–3112.

[40] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. 2017. Recovering
Clear, Natural Identifiers from Obfuscated JavaScript Names. In Joint Meeting on
the Foundations of Software Engineering (ESEC/FSE). ACM. to appear.

[41] Yushi Wang, Jonathan Berant, and Percy Liang. 2015. Building a Semantic Parser
Overnight. In Annual Meeting of the Association for Computational Linguistics
(ACL). ACL, 1332–1342.

[42] Yi Wei, Nirupama Chandrasekaran, Sumit Gulwani, and Youssef Hamadi. 2015.
Building Bing Developer Assistant. Technical Report. MSR-TR-2015-36, Microsoft
Research.

[43] Edmund Wong, Taiyue Liu, and Lin Tan. 2015. CloCom: Mining Existing Source
Code for Automatic Comment Generation. In International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, 380–389.

[44] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. AutoComment: Mining question
and answer sites for automatic comment generation. In International Conference
on Automated Software Engineering (ASE). IEEE, 562–567.

[45] Di Yang, Aftab Hussain, and Cristina Videira Lopes. 2016. From query to usable
code: an analysis of Stack Overflow code snippets. In Working Conference on
Mining Software Repositories (MSR). ACM, 391–402.

[46] Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan Sun. 2018. StaQC: A
Systematically Mined Question-Code Dataset from Stack Overflow. In WWW
2018: The 2018 Web Conference.

[47] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-
Purpose Code Generation. In Meeting of the Association for Computational Lin-
guistics (ACL).

[48] Alexey Zagalsky, Ohad Barzilay, and Amiram Yehudai. 2012. Example overflow:
Using Social Media for Code Recommendation. In International Workshop on
Recommendation Systems for Software Engineering (RSSE). IEEE Press, 38–42.

http://arxiv.org/abs/1412.6980
http://aclweb.org/anthology/P17-1105

	Abstract
	1 Introduction
	2 Problem Setting
	3 Manual Annotation
	3.1 Annotation Protocol and Interface
	3.2 Annotation Outcome

	4 Mining Method
	4.1 Hand-crafted Code Structure Features
	4.2 Unsupervised Correspondence Features

	5 Evaluation
	5.1 Experimental Settings
	5.2 Results and Discussion
	5.3 Must We Annotate Each Language?
	5.4 Successful and Failed Examples

	6 Related Work
	7 Threats to Validity
	8 Conclusions
	References

