
Exploring Differences and Commonalities between
Feature Flags and Configuration Options
Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, Christian Kästner

Carnegie Mellon University

ABSTRACT
Feature flags for continuous deployment and configuration options
for customizing software share many similarities, both conceptu-
ally and technically. However, neither academic nor practitioner
publications seem to clearly compare these two concepts. We argue
that a distinction is valuable, as applications, goals, and challenges
differ fundamentally between feature flags and configuration op-
tions. In this work, we explore the differences and commonalities
of both concepts to help understand practices and challenges, and
to help transfer existing solutions (e.g., for testing). To better un-
derstand feature flags and how they relate to configuration options,
we performed nine semi-structured interviews with feature-flag
experts. We discovered several distinguishing characteristics but
also opportunities for knowledge and technology transfer across
both communities. Overall, we think that both communities can
learn from each other.
ACM Reference format:
Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, Christian Kästner. 2020.
Exploring Differences and Commonalities between Feature Flags and Con-
figuration Options. In Proceedings of Software Engineering in Practice, Seoul,
Republic of Korea, May 23–29, 2020 (ICSE-SEIP ’20), 10 pages.
https://doi.org/10.1145/3377813.3381366

1 INTRODUCTION
Feature flags and configuration options are broadly used in prac-
tice and share technical similarities and challenges, but they also
have distinguishing characteristics that are rarely made explicit
but that are important for practices around management, removal,
documentation, and testing. We explore these differences and what
lessons can be learned across both communities.

Feature flags have received a lot of attention recently: Practition-
ers discuss them and best practices around themwidely in blog posts
and at conferences, and multiple startups compete at providing tool
support. At a technical level, feature flags are a design pattern to
conditionally enable a code path (e.g., an if-statement controlled by
a Boolean flag), where the decision is typically controlled by an ex-
ternal configuration mechanism. In practice, feature flags are used
to enable collaborative development in the same branch (continuous
integration) [20, 34], as well as experimentation in production (con-
tinuous experimentation) [5, 50] and canary releases (continuous
deployment) [44, 49]. For example, as illustrated in Listing 1, feature

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7123-0/20/05.
https://doi.org/10.1145/3377813.3381366

Listing 1: Example of variability using feature flags [13].
1 renderCheckoutButton () {
2 if (features.for({user:currentUser }).
3 isEnabled (" showReallyBigCheckoutButton ")) {
4 return renderReallyBigCheckoutButton ();
5 } else {
6 return renderDefaultCheckoutButton ();
7 }
8 }

flags may be used to run an A/B test to determine whether changing
a button in a web application changes outcomes such as click rate.

At first glance, feature flags have a lot of similarities with config-
uration options, for example, command-line parameters, configu-
ration files, or even #ifdefs in the source code, which also control
the behavior of a program and often make decisions between differ-
ent code paths. With configuration options, users typically decide
which functionality to include (e.g., whether to perform logging
or whether to enable security features) or make tradeoffs between
competing qualities by setting parameters like buffer size or com-
pression levels. The implementations of feature flags and configu-
ration options often look similar and some discussed problems are
similar (e.g., testing, complexity).

However, unlike feature flags which have become popular re-
cently but have seen only limited attention from researchers, there
are several communities that have studied configuration options
for decades, including the community on software product lines [3,
11, 35] and the systems community [58]; some even argue that con-
figuration engineering should be its own discipline [43]. As a result,
there is a vast amount of accumulated knowledge about configu-
ration options, on topics such as design and management [11, 35],
implementation strategies [1, 3], feature interactions [10, 21], and
quality assurance strategies [33, 52]. How do the two worlds relate?
And what could each learn from the other? For example, regarding
configuration options, we have ample evidence from the literature
that the number of options seems to only ever grow [25, 56], often
creating significant challenges for users trying to configure the
systems [19, 57] and surprising interactions at runtime [10, 21];
but we also know how to diagnose, fix, or even prevent configu-
ration mistakes [16, 48, 59]. For feature flags, we now see similar
discussions again [14, 17, 26, 38]: too many flags, hard to remove,
hard to test, surprising interaction faults, and many more. Is there
an opportunity to transfer some of the lessons learned from the
configuration-options community?

To better understand practices and challenges around feature
flags and how they relate to configuration options, we performed
nine semi-structured interviews with experts with direct experience
using feature flags or developing infrastructure for feature flags, and

https://doi.org/10.1145/3377813.3381366
https://doi.org/10.1145/3377813.3381366

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, Christian Kästner

we contrast our findings to the literature on configurable systems
and software product lines. Through our interviews, we identify
many similarities and many opportunities for technology transfer
across the communities, but also several distinct challenges. For
example, testing challenges across large configuration spaces are
often similar and there are plenty of opportunities to adopt tools like
combinatorial interaction testing also for feature flags, whereas the
common temporary nature of feature flags raises new process and
tooling challenges but also novel opportunities for their removal,
as we will discuss. Our overall goal is to educate researchers and
engineers from both communities, feature flags and configurable
systems, about the differences between either concepts, and to point out
opportunities for technology transfer and novel research and tooling.

In summary, the contributions of this paper are:

• We report on the results of nine semi-structured interviews
with experts from the feature flags community.

• We identify differences and commonalities between feature
flags and configuration options.

• We discuss existing solutions and best practices from config-
urable systems that may help with feature flags.

2 RELATEDWORK ON FEATURE FLAGS
While feature flags have rarely been studied in academic research,
they are heavily discussed by practitioners and used in industrial
settings for purposes like trunk-based development, A/B testing,
and canary releases. Most of the literature around feature flags
comes directly from industry, in the form of talks and blog posts
(e.g., [14, 17]), typically in the context of discussions on continuous
delivery, continuous deployment, and continuous experimentation.
Rahman et al. [37, 38] and Mahdavi-Hezaveh et al. [26] performed
recent “grey literature” surveys of such blog posts and practitioner
talks on feature flags, providing an overview of common topics and
challenges, such as problems with cleaning up old flags.

On the academic side, Rahman et al. [37, 38] analyzed feature
flag usage in the open-source code base behind Google Chrome, and
found that feature flags are heavily used to control which features
to deploy but that they are often long lived, resulting in additional
maintenance and technical debt. Mahdavi-Hezaveh et al. [26] sur-
veyed developers from 38 companies on their practices regarding
feature flags, finding that most companies do not clean up feature
flags systematically. Tang et al. [50] and Bakshy et al. [5] discuss
how to implement A/B testing infrastructure at scale, though they
focus mostly on infrastructure design to support experiments.

We are not aware of any discussion contrasting feature flags
and configuration options in either academic or practitioner liter-
ature. As far as we are aware, feature flags are not mentioned in
publications of configurable systems or software product lines, and
configuration options are not raised as a contrast in discussions
around feature flags and continuous deployment. Rahman et al.
[37] and Fowler [14] mention that there are different categories of
feature flags, namely business and release toggles and release, experi-
ment, ops, and permission toggles, where business toggles and op
toggles roughly relate to configuration options, but neither relates
their discussion to the literature on configurable systems.

In summary, there is ample discussion online about practices
around using feature flags and a rich academic research literature on

configuration options. However, it appears that both communities
are unaware of each other, while there seems to be potential to
learn from each other.

3 METHODOLOGY
Our goal is to identify fundamental similarities and differences be-
tween configuration options and feature flags. As discussed above,
these concepts are rarely distinguished explicitly in existing liter-
ature. We rely on the existing literature on configuration options
and our own background with years of research in this area, but
choose to interview practitioners having extensive experience with
feature flags to understand feature flags and how developers think
about them.
Participants. To recruit experienced participants for our interviews,
we (a) used our professional network to ask for references to devel-
opers working with feature flags or on feature-flag infrastructure,
(b) contacted authors of blog posts on feature flags and engineers
of open-source projects that use feature flags, and (c) contacted
developers suggested by previous interviewees. We conducted 9 in-
terviews, all with professionals deeply familiar with the topic, with
multiple years of experience working with feature flags. Six inter-
viewees (I1-6) work in three large software companies, one (I7) is
a consultant on DevOps topics, one (I8) works for a feature-flag
tooling service, and one (I9) works with a nonprofit software or-
ganization. Four interviewees work in different parts of the same
organization, but on different teams with very different perspec-
tives on feature flags. I3, I6, and I8 are developers of feature-flag
infrastructure; I1–I5 and I9 actively use feature flags in their work.
Semi-Structured Interviews. We developed an interview guide based
on our analysis of the existing literature on feature flags (academic
literature, blogs, talks, see Sec. 2) and hypothesized differences. The
interview guide covers commonly mentioned problems (e.g., testing
and removal of feature flags) and challenges that typically associ-
ated with configuration options (e.g., documenting dependencies
and feature interactions). This resulted in a list of topics that we
covered in every interview:

• Goals of using feature flags
• Development process:
– Creating new feature flags
– Changing the state of a feature flag
– Removing feature flags (cleanup) and consequences re-
garding (a) technical debt and (b) code complexity

• Documentation:
– Feature traceability (flag-to-code relation)
– Dependencies among feature flags

• Analysis:
– Testing
– Interactions among feature flags

• Open challenges when working with feature flags

We conducted semi-structured phone interviews which lasted
between 30 and 60 minutes. We structured the interviews to cover
all the topics of our interview guide, but the order in which we
asked questions was guided by the flow of each individual interview
and the experiences of the interviewee. During the interviews, we

Feature Flags vs Configuration Options ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

brought up relevant practices and problems with configuration op-
tions (e.g., challenges with feature interactions) and asked whether
the interviewees saw similar challenges or had developed solutions.
That is, we covered both feature flags and configuration options
from the perspective of interviewees who are experts in feature
flags. We recorded all interviews with the interviewees’ consent
and subsequently transcribed and analyzed them.
Saturation and Data Analysis. The authors discussed results after
each interview but saw little need to adjust the interview guide
for subsequent interviews. At the end of each interview we asked
whether we missed any topics regarding their experience with
feature flags, but we did not discover any missing topics. In fact,
we reached saturation after about 5 or 6 interviews; while we heard
more stories in later interviews, they only confirmed the differences
discussed in earlier ones and added no new insights. That is, we
believe that our interviews are sufficient to give us a generalizable
overview on the challenges and differences that we are looking for.

After completing all interviews, we analyzed the transcripts us-
ing standard coding techniques [41]. We started with a preliminary
coding frame derived from the interview guide and added extra
(sub)codes as we identified themes in the interviews. The first au-
thor coded all transcripts and the second author refined the coding
to mediate false and incomplete characterizations. All authors dis-
cussed the codes. Based on the coding, we derived an overview of
practices that use feature flags. This overview enables us to identify
new research directions and challenges, as well as existing solu-
tions and practices, including practical guidelines for feature flags,
resulting in the structure of Section 4.
Threats to Validity and Credibility. Our study has typical threats
for qualitative analysis. Our results are affected by selection bias
as developers who did not want to be interviewed may have dif-
ferent experiences. That is, they may not experience feature flags
as a challenge (e.g., due to the smaller size of their system or due
to better practices) or are not interested in this topic. Our inter-
viewees tend to work on very large and commercial systems, and
some participants (I7, I8) have experience with feature flags across
many different companies, but interviewee I9 was the only one
working on feature flags in an open-source context (we conjec-
ture that feature flags are less commonly used in open source).
Given the extensive experience of the interviewees and the quick
saturation we are confident that we have identified the relevant
concerns.

4 DIFFERENCES BETWEEN CONFIGURATION
OPTIONS AND FEATURE FLAGS

In the following, we discuss commonalities and differences between
configuration options and feature flags based on our interviews.
In general, we found that the concepts of configuration option and
feature flag are distinct but similar and it is often challenging to
distinguish them. They are used for different purposes and there is
value in distinguishing them explicitly as they have very different
goals and come with different practices (e.g., test, document, or
remove them). At the same time, they often face similar problems,
and are sometimes amenable to similar solutions.

We introduce a clear distinction between the concepts in Sub-
section 4.1 and discuss differences in subsequent subsections. In
Table 1, we summarize the key differences.

4.1 Goals
We distinguished three main goals for which our interviewees
introduce feature flags in their code, even though they use the same
technical mechanism to implement all of them:

• Hiding incomplete implementations: Hiding incomplete
implementations is important when collaborating on trunk-
based development, as one wants to avoid that an implemen-
tation affects other developers before it is finished; in this
case, the implementation is hidden behind an if statement
guarded by a Boolean flag that deactivates this code (by de-
fault); when the code is completed, the if statement and cor-
responding flag can be removed. This is a common practice
when developing “at HEAD” as popularized by Google [36]
and practiced by many other companies; and it is a strategy
to avoid late merge conflicts.

• Experimentation and release: Developers are often in-
terested in experimenting with different code paths, e.g., to
compare outcomes in an A/B test or to test changes in a
canary release with the ability to incrementally roll them
out and to quickly roll them back if needed. These decisions
are usually temporary and are not needed anymore once a
decision has been made or a feature has been deployed.

• Configuration: Developers often want to offer choices to
other stakeholders (e.g., end users, operations team, sales
team) about which functionality to include. For example,
configuration options are used to select which drivers to
include in a specific Linux kernel or to decide on a page size
for a database that balances query performance with storage
efficiency (density). In software product lines, configuration
options are planned strategically to serve many (actual or
potential) customers in a domain [3, 35].

Our interviewees reported that they usually do not distinguish
between different kinds of flags and do not explicitly keep track of
the goals behind each flag. Moreover, the goals behind a flag can
shift over time. For example, a feature flag that initially guards a
new feature may become a configuration option that should be only
available for ‘premium’ users. Alternatively, a configuration option
such as a database’s page size may be tweaked during experiments
in production to find a good value.

The discussion above reveals an important distinction between
feature flags and configuration options: The traditional notion of
configuration options covers only the third goal, whereas the first
two are specific to feature flags. That is, depending on one’s per-
spective, configuration options can be seen as a special subset of
feature flags or one can see feature flags as using configuration
options for a new purpose. Therefore, in the remainder of the paper,
we refer to all configuration decisions that relate to the first two goals
as feature flags and to all configuration decisions relating to the third
goal as configuration options. If the distinction is not important, we
refer to them together as configuration decisions.

We argue that it is important to distinguish the different goals
behind feature flags and configuration options. This sentiment is

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, Christian Kästner

Theme Configuration Options Feature Toggles
Goals Customization Continuous deployment / rollout / experimentation
Who makes configuration decisions? End user / system vendor Developer / operator
Complexity High Depends on number of flags
Removing configuration decisions No Yes (ideally)
Feature traceability Depends on implementation Often difficult due to indirections
Documentation Description, dependencies, . . . Owner, expiration date, . . .
Constraints Complex None or very few
Dependencies Many, often hierarchical groups Few, at most nesting or grouping
Feature interactions Yes Mostly not important
Testing Sampling, systematic Few specific configurations, single flips for unit tests

Table 1: Overview on differences between configuration options and feature flags.

also shared by interviewee I6: “I definitely wish that there was a
clear separation between feature flags and configuration flags.” As
we will discuss, this distinction relates to dependent issues such
as management, removal, documentation, and testing that differ
based on the intended goal of a configuration decision.

Key differences: Configuration decisions may be introduced
either for concurrent development, for experimentation and
release, and for configuration. These goals are distinct and
have different associated challenges.
Recommendation: Clearly label the goals of each configura-
tion decision, for example, using naming conventions to avoid
confusion and technical debt.

4.2 Who is Making Configuration Decisions?
In the world of product lines and configurable systems, one key dis-
tinction that drives many other considerations (especially testing)
is who is in charge of configuring the system:

• Developers/operators configure: In many traditional soft-
ware product lines, companies release a small to medium
number of distinct products (e.g., a basic, professional, and
enterprise version of a product, or distinct variants for 15 dif-
ferent customers). Some features of a product or service may
be activated for premium customers only. In these cases, de-
velopers or operators are in charge of configuring the system
and users receive the configured (and tested) configuration.
For example, HP’s printer firmware has over 2000 Boolean
flags, but the company releases only around 100 distinct
printers, each of which goes through continuous integration
before release [39].

• Users configure: Most end-user and system software has
dozens or even thousands of configuration options with
which end users can customize the software. For example,
end users can use graphical interfaces to change various
options in Firefox or Chrome, specify hundreds of parame-
ters in Apache’s httpd.conf configuration file, or select from
over 14 000 compile-time options when they compile their
own Linux kernel. When configuration is in the user’s hands,
developers do not know which configurations will be used
eventually. In most cases (except for web-based systems and

Figure 1: Screenshot of Chrome’s configuration dialog to en-
able experimental features.

systems with good telemetry), they may not even know
which configurations are actually used.

This distinction has consequences for testing, because one can
focus quality assurance on a few known configurations before they
are delivered to the customer in the first case, but one may want to
systematically make assurances for all potential configurations a
user may select in the second case. Being in control of the configura-
tion has further advantages: One can observe which configurations
are used, such as monitoring which configuration decisions have
not been changed in weeks; one does not have to care about all the
combinations of configuration decisions that are not actually used;
and one can safely remove configuration decisions without having
to fear breaking user configurations.

None of our interviewed experts brought this distinction up by
themselves, but they realized it when prompted. Most feature flags
are clearly in the operators configure world. In most of our inter-
views the individual developers are in charge of configuring the
feature flags. When used for A/B testing, for canary releases, or
to hide unfinished features, they are controlled by the operation
teams and the used configurations are (or should be) known to
the operators. However, feature flags are sometimes also used for

Feature Flags vs Configuration Options ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

experimental releases that end users can configure (e.g., Chrome’s
‘chrome://flags/’ [37], see Figure 1), blurring the distinction and
raising testing challenges. Similarly, some interviewees reported
that they expose experimental feature flags of their infrastructure
software to other developers within the same organization, essen-
tially turning them into configuration options and thus also giving
up control over the used configurations.

Interviewees recognize a conflict here. On the one hand, early
feedback from beta users who know that they are using new (un-
finished) features can be beneficial. On the other hand, giving up
control over the options may make it hard to remove them. It needs
to be made clear that features are experimental (as in Chrome) to
manage the expectations of end users who will use them. Intervie-
wee I9 reported experience of exposing experimental feature flags
as follows: “We don’t have control, especially if [company x] builds it
into something and we’re just like, well you know also that’s not sound
and it has problems and it will break and you’ll lose some data [...] We
do want people to experiment with it. But it’s usually not everybody.”

Key differences: Operator-controlled configuration deci-
sions have many advantages and most feature flags fall into
this category. Exposing feature flags to end users has conse-
quences, especially for cleanup and testing, and should be a
carefully considered deliberate decision.
Recommendation: Explicitly plan and document configura-
tion decisions that are exposed to end users; prefer operator-
controlled decisions.

4.3 Complexity and Combinatorial Explosion
Each additional configuration decision in a system increases that
system’s complexity (independent of its goal), where the number
of configurations that developers and tools may need to reason
about grows exponentially with the number of configuration de-
cisions. That is, developers spend additional time understanding
the branching structure and thus have a harder time to deliver
and implement new features. It becomes harder to test the system
and reason about different configurations. For example, a recent
study has shown that as few as three configuration options can
severely challenge developers to correctly understand the behavior
of 20-line programs [30].

Although one might argue that the huge number of potential
combinations does not matter as long as one cares only about a
small set of fixed configurations (e.g., because they are operator-
controlled, see Sec. 4.2), developers may still need to reason about
all the different code paths when maintaining or extending the
implementation. Large configuration spaces are also challenging
for those making the configuration decisions (operators or end
users), who may need to decide between many alternatives, often
without well understanding the choices, their consequences, or
even their interactions [57]

This problem is well recognized in the literature on configurable
systems and also our interviewed feature-flag experts are well
aware, e.g., interviewee I4 remarked that feature flags challenge
code comprehension “especially if they are pre-existing because you
wouldn’t know why they are there or how they interact or how they

are actually set” and interviewee I6 further argues that feature flags
“lead to a lot of accidental complexity as opposed to apparent complex-
ity.” There is a general agreement among our interviewees to keep
the number of feature flags in check. Interviewee I7 suggests that
having more than 20 feature flags per team is “worrisome.” This
aligns with the struggle to remove feature flags, as we will discuss.

Key differences: Feature flags and configuration options
both add complexity – they challenge understanding, mainte-
nance, and quality assurance. Feature flag experts generally
try to keep the number of flags low.
Recommendation: Raise awareness of the complexity cost
of configuration decisions and remove unnecessary decisions.

4.4 Temporary versus Permanent
Configuration Decisions

The central difference that follows from the distinct goals of feature
flags and configuration options (see Sec. 4.1) is that configuration
options are usually intended to be permanent whereas feature flags
are intended to be temporary.

Empirical evidence shows that configuration options are often
added but almost never removed [25, 56]. It is cheap to introduce
an option, but it can be expensive to maintain. If end users can
configure the system, it can be very difficult to ever remove options
that some users might use, especially since developers often do not
know which options are actually used.

In contrast, our interviewees generally agree that feature flags
for concurrent development, experimentation, and releases should
be removed once the feature is completed, the experiment is done,
and the feature is released. Since the value of feature flags and the
rationale for introducing them are often known, there are great
opportunities to track feature flags and introduce automation or
enforcement mechanisms for removal. In practice though, feature
flag removal and technical debt from not removing feature flags
seem to be a key (process) challenge [37], which almost all inter-
viewees strongly confirm (e.g., interviewee I1 states “If you’re not
prompt on cleaning up, tech debt can actually wind up staying around
a long time [...]. One of the big drivers of tech debt that we have is
still code paths sticking around under a feature flag that’s not being
used anymore.”), and which we discuss next.

Key differences: Feature flags are generally temporary and
should be scheduled for removal, which is not usually a con-
cern for configuration options.
Recommendation: Be explicit about the expected lifetime of
a feature flag and the condition when it will become obsolete.

4.5 Removing Configuration Decisions
As discussed in Sec. 4.3, each configuration decision increases com-
plexity and may make reasoning, testing, and debugging harder. Re-
moving configuration decisions can fight this growing complexity.

Classic configuration options are usually intended as permanent
and are rarely removed, despite complaints that many options are
rarely used and that too large configuration spaces are challenging

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, Christian Kästner

for developers and users [56]. In contrast, the temporary nature of
feature flags suggests that feature flag removal should be common,
though both observations from Rahman et al. [37] in Chrome and
comments from most of our interviewees indicate that developers
intend to remove feature flags, but rarely do so consistently. In fact,
removal of obsolete flags from the code and configurations was
consistently identified as the key challenge for feature flags. For
example, interviewee I3 explains that “you develop the feature or
maybe just a bug fix, you wrap it into a flag, you deploy it, and then
you start working on something else. [...] [3 month later] when it could
be removed, it’s very hard to think about, go back, and remove this
one feature flag that wrapped five lines of code.”

Deciding which configuration decisions can be removed can be
challenging. In feature flags that decision is often associated with
completing a specific task (e.g., finishing a feature implementation,
an experiment, or a rollout), whereas for configuration options it
may be less obvious. While users and developers tend to complain
about too many options [56], configuration options are often kept
in case they might be useful for special or future use cases. Further-
more, who makes configuration decisions (see Sec. 4.2) influences
how challenging it is to identify what can be removed: When users
configure the system, it is often not clear which configuration op-
tions are actually used, whereas in operator-configured systems
one can usually identify unused options.

Once one decides to remove a configuration decision, the techni-
cal removal requires changes to the implementation and potentially
multiple places of the configuration infrastructure that manage the
list of options and their values. In theory, removal could be as simple
as removing an if statement and a Boolean variable, but if the scope
of the implementation is not well understood it is easy to make
mistakes. Even for #ifdef directives, removal is more complicated
than one might expect due to possible data-flow among options
with #define and #undef statements [8]. Conceptually, removing an
option is merely a form of partial evaluation [22], where a program
is specialized for known values of certain options, but in practice
few practical tools exist for removing options.

Our interviews revealed that removing feature flags is still a
mostly manual process, if done at all. Interviewee I8 points out that
indirections (e.g., use of design patterns to hide feature flags) make
it hard for engineers to remove feature flags safely. In addition, two
interviewees explain that they face technical dependencies in the
configuration infrastructure that require multiple steps: first remov-
ing the if statement, then all configuration settings, and finally the
configuration declaration – each step having to go through code
review and continuous integration separately, turning a seemingly
simple removal process into a week-long tedium. One interviewee
reports observing that late removal is particularly challenging if the
task is given to new developers after the original developer left the
team (a common occurrence and pain point in their organization).

How strictly removal is pursued differs from project to project
and we heard very different approaches. In general, the stricter the
process of removing flags the fewer problems and pain points with
feature flags our interviewees report. Some organizations track a
feature flag’s lifetime and, once it expires, automatically create an
issue that assigns to the original creator the task of removing the
flag. Other organizations define a maximum number of flags per
team. One organization even fails the build if stale feature flags

are detected, thus pressuring developers into immediate removal.
Interviewees from organizations that do not enforce cleanup as part
of the development process reported that feature flags accumulate.

A common theme among interviewees who report often lacking
removal and growing technical debt is that developers have no
incentive for removal. They are not required by policies or tools
and the short-term cost of removal is not offset by a clear long-term
benefit of a simpler code base. In fact, it was a common theme that
the cost-benefit calculation is difficult to make and that many devel-
opers have no appreciation of the potential long-term cost. The cost
of leaving flags in is difficult to estimate as it manifests very differ-
ently and is only observable indirectly. For example, interviewee I6
reported that “we identified [...] tens of thousands of flags that, as far
as we know from our available data sources, were no longer necessary.
[...] And the refactoring involved to actually safely remove all of the
flags was fairly labor intensive. So I think in practice we removed
like 1% of the things that we identified and couldn’t really identify,
in provable terms, how much does that matter?” Both managers and
developers tend to prefer developing new features over cleanup.
Interviewee I2 performs specific training and gives talks to educate
developers and managers about feature-flag related technical debt,
to foster a mindset favorable of cleaning up feature flags.

Our interviewees generally agree that it is good to make the
cleanup of a flag part of finishing a feature. That is, flags should
be removed timely following a (possibly automatically enforced)
policy, for example making removal mandatory after two stable
builds where the feature did not cause any problems. It might
be useful to invest in tools that simplify such removal, as some
interviewees have done in their organizations.

Key differences: Feature flags are usually temporary and de-
velopers often intend to remove them, but rarely do so unless
forced by policy or technical steps. Removal can be a signifi-
cant pain point.
Recommendation: Implement a process and explore au-
tomation for removing feature flags.

4.6 Documenting Feature Flags
In the product line community, features are a central mechanism
for communication, planning, and decision making. Much effort is
taken to explicitly document features (and options) and their depen-
dencies. The description of features, their possible values, and their
constraints is explicitly separated from the actual values chosen
for any specific configuration. Simple notations such as feature dia-
grams [3, 12] are widely adopted to group and document features
and especially to describe constraints on possible configurations
(most prominently documenting multiple features to be optional,
mutually exclusive, depending on another, or in a hierarchical re-
lationship where child features depend on parent features). Clear
documentation of constraints enables automated reasoning and
checking of configurations.

Beyond tools focusing on product lines like FeatureIDE1 [28] or
pure::variants,2 a great example is the Linux kernel’s variability

1https://featureide.github.io/
2https://www.pure-systems.com/

https://featureide.github.io/
https://www.pure-systems.com/

Feature Flags vs Configuration Options ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

model [46], for which the kernel developers have built their own
domain-specific language to describe and document options and an
interactive configurator to select configurations that adhere to all
constraints. These kconfig files, illustrated in Listing 2, are part of
the Linux kernel source tree and versioned with git. Configurations
are simple option-value mappings in a separate file that can be gen-
erated and checked by tools that process the kconfig language. This
is used for over 14 000 configuration options in the kernel alone.

Listing 2: Excerpt of the Linux configuration model
1 menu "Power management and ACPI options"
2 depends on !X86_VOYAGER
3 config PM
4 bool "Power Management support"
5 depends on !IA64_HP_SIM
6 ---help ---
7 "Power Management" means that ...
8 config PM_DEBUG
9 bool "Power Management Debug Support"
10 depends on PM
11 config PM_SLEEP
12 bool
13 depends on SUSPEND || XEN_SAVE_RESTORE
14 default y

Academic research has invested a considerable amount of effort
into tools that can work with such documented feature models, for
example, detecting inconsistencies among constraints [6, 9], analyz-
ing the evolution of model changes [25, 53], resolving conflicts in
configurations [55], or guiding humans through the configuration
process [18, 45]. For configurable systems more broadly, Sayagh
et al. [42, 43] has found quite some consensus on how to specify,
load, and document options.

In contrast, in our interviews we found that feature-flag practi-
tioners pay significantly less attention to documentation and de-
pendency management. They often use ad-hoc mechanisms and
spread configuration knowledge across many source files and con-
figuration files. While several interviewees wished for better docu-
mentation practices, especially for learning about the purposes and
goals behind various feature flags, many also indicate that more
sophisticated mechanisms for describing dependencies are rarely
needed and would be considered as a sign of over-engineering a
simple concept. Given the short-lived nature of feature flags, they
argue that documentation is less important and simple comments
and grouping mechanisms are sufficient. Almost all interviewees
suggested that dependencies among feature flags are rare, at most
there is nesting of feature flags within a feature controlled by one
other feature flag; there is usually no concept of an invalid combi-
nation of flags. Hence, they see limited need for a more complicated
modeling language, e.g., interviewee I7 notes “I think that the poten-
tial benefits of having that capability [of specifying dependencies] are
far outweighed by the extra complexity, in terms of implementing it
and in terms of reasoning about it.” Having to document constraints
among flags is even seen by some as a sign of technical debt, as
there are too many flags in the system.

At the same time, our interviewees identify useful metadata, that
is currently rarely tracked formally, such as (a) the flag owner, to
knowwho is responsible for it andwho should eventually be blamed

for failures and for cleanup, (b) an expiration date or event such as
successful integration, (c) a description, (d) the location to find the
flag in the code, and (e) valid states the flag can take.We suspect that
feature flag practitioners can learn from best practices in the product
line community, to use a single (and simple) unified configuration
language and maintain a version-controlled central configuration
model that ensures that all options are documented in a single place.

Finally, we note that documentation and implementation of fea-
tures may drift apart. For example, researchers have found flags in
the Linux kernel implementation that can never be enabled, as well
as documented flags that are never used in the implementation [51].
A static consistency checker that assures that only documented
options can be used in the implementation and that all documented
options are used in the implementation can be a good idea and
is easy to implement. In addition, more advanced static analyses
have been developed in academia to identify dependencies among
features from the implementation and check whether those align
with the documented constraints [e.g., 31].

Key differences: Documenting configuration options and
their dependencies has been explored in depth in product lines,
enabling many forms of automation. Documentation require-
ments for feature flags are different given their short-term
nature, but current feature flag practice seems to largely rely
on ad-hoc mechanisms.
Recommendation: Set and enforce clear documentation
standards for feature flags and configuration options.

4.7 Tracing Configuration Decisions
For many tasks, from debugging to removal, developers may need to
find and understand the implementation associated with a feature
flag or configuration option. In some cases, tracing configuration
decisions to corresponding implementations is fairly straightfor-
ward, e.g., search for the #ifdef or if statement that evaluate a
well-named flag and guard a few statements. However, tracking a
configuration decision’s flow from where it is defined to where it
is used in an if statement, and identifying what code is guarded
directly or indirectly by that if statement can be nontrivial, when
configuration values are stored in intermediate data structures (e.g.,
hash maps) or propagated across function calls and various vari-
ables (in control flow and data flow). Furthermore, even when only
few statements in a method are directly guarded by a flag, these
few statements can of course invoke lots of other code elsewhere,
that might not obviously be associated with this decision [24].

Two strategies may help to simplify traceability:
• Disciplined implementation: Tracing and analysis can
be much simplified if discipline is used for implementing
configuration decisions. A key hygiene strategy is to sep-
arate configuration options as much as possible from other
computations in the program; that is, avoid using options as
input parameters to more sophisticated implementations,
but rather mostly propagate them to the if statement where
they make a decision. In our interviews, most feature-flag
practitioners report using APIs rather than local variables
to query decisions (see Listing 1) and using those API calls

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, Christian Kästner

Figure 2: Understanding how code fragments rely on An-
droid’s options from [24].

almost exclusively in if statements.
• Modularity: There are many attempts at modularizing fea-
tures in product lines into modules or plug-ins, and driving
configuration and composition at an architectural level [35].
Many researchers have even explored dedicated language
mechanisms (feature modules, aspects, delta modules), al-
though they have not seen much adoption in practice yet [3,
7]. Research has also shown that, in configurable systems,
configuration options usually have fairly local effects and do
not interact with most other options (but also that effects of
options are often not strictly local and often cause indirect
effects through control-flow and data flows) [23, 24, 29, 40].
Several feature-flag practitioners report that they try to hide
features behind abstractions to simplify reasoning about
their impact and ease cleanup; they tend to try to localize
feature code to a single if decision per feature flag.

Most developers seem to already follow a fairly strong disci-
pline for configuration options and feature flags, because they still
want to be able to reason about their effects. Interviewees confirm
concerns that feature flags that interact and hide in complicated
data flows are difficult to reason about for humans and analysis
algorithms alike due to the combinatorial explosion of possible
combinations and corresponding code paths; hence such implemen-
tations are usually avoided. With regard to modularity, we heard
different opinions: While most interviewees value abstractions, es-
pecially for larger features, some explained that the extra effort
and added implementation overhead for the abstraction step is not
worth it for short-lived and small features.

More broadly, our interviews revealed different solutions for
traceability issues. In almost all cases, finding code that belongs to a
feature flag involves manual code search. However, interviewees I1
and I5 put additional comments andmetadata in the implementation
to establish a clearer mapping. Interviewee I2 described how they
document features they work on in commit messages such that
git-blame can reveal which feature a line of code belongs to. Finally,
interviewee I3 reported that they were working on dedicated IDE
support to show context information in the editor (without giving
much technical detail on how the information is retrieved).

Regarding configuration options, several researchers have devel-
oped analysis tools to track configuration options across various
data and control flows, for example, to approximate possible inter-
actions, detect the scope of an option’s implementation, or detect
dependencies among options [2, 24, 29, 31, 47, 51, 57–59]. These

analyses are more precise for more disciplined implementations
that better separate configuration logic from program logic. None
of our interviewees were aware of any such tools for feature flags.

Key differences: Identifying how flags relate to implemen-
tations can be surprisingly complicated, but discipline in the
implementation and modularity can make both manual and
automated analyses easier.
Recommendation: Keep implementations simple and sepa-
rate configuration logic from program logic.

4.8 Analysis and Testing
As discussed, configuration decisions drastically increase the com-
plexity of a program (see Sec. 4.3). This makes any quality assurance
activities that go beyond a single configuration challenging. Every
Boolean configuration decision doubles the size of the configuration
space and it quickly becomes infeasible to test all possible configura-
tions – 320 independent Boolean options result inmore possible con-
figurations than there are atoms in the universe, which is still small
compared to the Linux kernel’s over 14 000 compile-time options.

Testing features behind a configuration decision in isolation
is often not enough. Even when features work in isolation, they
may interact with other features in unanticipated ways. Feature
interactions have long been studied, e.g., in telecommunication sys-
tems [10, 21]. Feature interactions are a failure of compositionality:
Developers think of two features as independent and develop and
test them independently, but when composed, surprising things
may happen. Often interactions are intended (true orthogonality
is rare) and extra coordination mechanisms are needed, such as
prioritizing one feature over another. Coordination is usually easy
once interactions are known, however finding and understanding
interactions is nontrivial, especially when features are developed
separately and there are no clear specifications.

Feature interactions are a key problem in software product lines
and configurable systems and much research has been devoted to
detection and resolution. Our interviewed feature-flag experts were
often less concerned about interactions. Even though all of them
acknowledge the possibility of interactions among feature flags,
and most had at least one story to share, they consider interactions
as rare and consider most of their features guarded by flags as inde-
pendent and orthogonal. For example, interviewee I5 said “I don’t
believe we really have many flags that are dependent on each other.”
If they cared about interactions, they often did not know where to
start – for example interviewee I3 reported that “it’s very hard to
figure out which kinds of combinations of flags need to be tested.”

For quality assurance of configurable systems, there are generally
two strategies: test exactly the configurations that are going to be
deployed or attempt to assure quality across the entire configuration
space. The strategy of testing individual configurations is commonly
used in operator-controlled settings with few configurations. With
feature flags it is common to run the specific configurations that are
going to be deployed (e.g., in an A/B test or deployment) through
continuous integration first, while not performing any tests on
any other configurations. With this strategy bugs and interactions
among specific configuration decisions may remain undetected

Feature Flags vs Configuration Options ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

until an affected configuration is actually needed, but it also means
that developers do not proactively need to fix interactions that
never occur in any used configurations.

In contrast, if configurations are user-controlled or if operators
plan to change between configurations rapidly and frequently (e.g.,
in self-adaptive systems), it may be worth to proactively attempt
to identify defects across the entire configuration space. While sep-
arately testing all configurations is clearly infeasible for all but the
smallest configuration spaces, there are many different approaches
to cover large configuration spaces (e.g., sampling configurations).

None of the feature-flag practitioners we talked to adopt a proac-
tive strategy for quality assurance of the entire configuration space.
Typically, they are vaguely interested but regard the strategy as
too expensive. Most organizations ensure that each configuration
undergoes continuous integration tests before it is deployed. In day
to day practice though, it seems that many teams make changes to
configurations without testing the specific configurations – which
is dangerous. Interviewees reported that they sometimes rapidly
change to untested configurations in emergency situations, e.g., to
quickly roll back a feature that crashes the entire system. Some
discussed that one could build infrastructure to restrict such emer-
gency changes to tested configurations, but they had yet to imple-
ment such infrastructure.

To proactively explore large configuration spaces, there are differ-
ent strategies. While some academic approaches can even provide
guarantees for an entire configuration space [52, 54], the more prag-
matic and ready to use approaches systematically sample configu-
rations from the configuration space. The most promising approach
is combinatorial testing [33]: Combinatorial testing selects a small
set of configurations, such that every combination of every pair of
options is included in at least one configuration, as exemplified in
Table 2. Since a single configuration can cover specific combinations
of many pairs (e.g., a single configuration A, B, !C covers A and B
together as well as A without C and B without C), combinatorial
testing can cover interactions among many options with very few
configurations (e.g., 18 test configurations for pairwise coverage of
1000 Boolean options). It is easy to get started with NIST’s existing
tables3 or with one of the many academic and commercial tools to
generate configurations. Many other sampling strategies for large
configuration spaces have been explored and compared [27].

None of our interviewees were aware of combinatorial testing or
other systematic sampling strategies. They were surprised to learn
how small covering arrays could be even for large configuration
spaces. We suspect that this is primarily a technology transfer
problem and expect that it would be easy to integrate systematic
sampling strategies in a feature flag infrastructure and test regime.

Finally, automated tests are only as good as the executed tests.
It can be a good idea to write feature-specific tests that are only
executed if the feature is enabled, and test the behavior of that
feature independent of other features [4, 15, 32]. Only interviewee
I8 described any specific test strategies for feature flags.

Key differences: While configurable systems research has
produced many strategies to proactively assure the quality

3https://math.nist.gov/coveringarrays/ipof/tables/table.2.2.html

A B C D E F G H I J K L M N O
0 0 1 0 0 0 1 1 1 0 0 1 1 1 1
0 1 0 1 1 0 0 0 1 1 0 0 0 1 1
1 0 0 1 0 1 0 1 0 0 0 0 0 1 0
1 1 1 0 1 1 0 1 1 0 1 1 0 0 0
1 1 0 0 0 0 1 0 0 1 1 1 1 0 1
0 0 1 1 1 1 1 0 0 1 1 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 0 1 1 1 1 1 1

Table 2:With 8 configurations all pair-wise combinations of
15 options (A–O) can be covered. For every pair of options
there is at least one configuration that enables both options,
one of the options, or none of the options.

of the entire configuration space, feature flag practitioners
tend to test only individual configurations. It is controversial
whether testing larger configuration spaces would be useful.
Recommendation: Explore the feasibility of random sam-
pling and combinatorial testing.

5 CONCLUSIONS
Feature flag and configuration option are similar concepts, but we ar-
gue that they have distinguishing characteristics and requirements.
This paper explores commonalities and differences between them.
We performed nine semi-structured interviews with feature-flag
experts and contrasted the findings with existing literature and
research from configurable systems. We suggest to explicitly distin-
guish configuration option and feature flag as separate concepts,
but also point out the many opportunities to transfer knowledge
and tools, for example for more systematic testing of feature flags.

ACKNOWLEDGEMENTS
We are grateful to our interviewees for their time and input. We also
appreciate the many informal discussions on the topic with other
researchers. Kästner, Meinicke, and Wong have been supported in
part by the NSF (awards 1552944, 1717022, and 1813598) and AFRL
and DARPA (FA8750-16-2-0042). Vasilescu has been supported in
part by the NSF (awards 1717415 and 1901311).

REFERENCES
[1] Michalis Anastasopoules and Critina Gacek. 2001. Implementing Product Line

Variabilities. In Proc. Symposium on Software Reusability (SSR). ACM, 109–117.
[2] Florian Angerer, Andreas Grimmer, Herbert Prähofer, and Paul Grünbacher. 2015.

Configuration-aware change impact analysis (t). In Proc. Int’l Conf. Automated
Software Engineering (ASE). IEEE, 385–395.

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer-Verlag.

[4] Sven Apel, Alexander von Rhein, Thomas Thüm, and Christian Kästner. 2013.
Feature-Interaction Detection based on Feature-Based Specifications. Computer
Networks 57, 12 (2013), 2399–2409.

[5] Eytan Bakshy, Dean Eckles, and Michael S Bernstein. 2014. Designing and
deploying online field experiments. In Proc. Int’l Conf. World Wide Web (WWW).
ACM, 283–292.

[6] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas.. In
Proc. Int’l Software Product Line Conference (SPLC) (Lecture Notes in Computer
Science), Vol. 3714. Springer-Verlag, 7–20.

https://math.nist.gov/coveringarrays/ipof/tables/table.2.2.html

ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, Christian Kästner

[7] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. 2004. Scaling Step-Wise
Refinement. IEEE Trans. Softw. Eng. (TSE) 30, 6 (2004), 355–371.

[8] Ira Baxter and Michael Mehlich. 2001. Preprocessor Conditional Removal by
Simple Partial Evaluation. In Proc. Working Conf. Reverse Engineering (WCRE).
IEEE, 281–290.

[9] David Benavides, Sergio Seguraa, and Antonio Ruiz-Cortés. 2010. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (2010), 615–636.

[10] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec.
2003. Feature Interaction: A Critical Review and Considered Forecast. Computer
Networks 41, 1 (2003), 115–141.

[11] Paul Clements and Linda Northrop. 2001. Software Product Lines: Practices and
Patterns. Addison-Wesley.

[12] Krzysztof Czarnecki and Ulrich Eisenecker. 2000. Generative Programming: Meth-
ods, Tools, and Applications. ACM/Addison-Wesley.

[13] Patricio Echagüe and Pete Hodgson. 2019. Feature Flag Best Practices. O’Reilly
Media, Inc.

[14] Martin Fowler. 2010. FeatureToggle. https://martinfowler.com/bliki/
FeatureToggle.html

[15] Michaela Greiler, Arie van Deursen, and Margaret-Anne Storey. 2012. Test
Confessions: A Study of Testing Practices for Plug-In Systems. In Proc. Int’l Conf.
Software Engineering (ICSE). IEEE, 244–254.

[16] Rebecca M. Henderson and Kim B. Clark. 1990. Architectural Innovation: The
Reconfiguration of Existing Product Technologies and the Failure of Established
Firms. Administrative Science Quarterly 35, 1 (March 1990), 9–30. Special Issue:
Technology, Organizations, and Innovation.

[17] Pete Hodgson. 2017. Feature Toggles (aka Feature Flags). https://martinfowler.
com/articles/feature-toggles.html

[18] Arnaud Hubaux, Patrick Heymans, Pierre-Yves Schobbens, Dirk Deridder, and
Ebrahim Khalil Abbasi. 2013. Supporting multiple perspectives in feature-based
configuration. Software & Systems Modeling 12, 3 (2013), 641–663.

[19] Arnaud Hubaux, Yingfei Xiong, and Krzysztof Czarnecki. 2012. A User Survey of
Configuration Challenges in Linux and eCos. In Proc. Int’l Workshop on Variability
Modelling of Software-intensive Systems (VaMoS). ACM, 149–155.

[20] Jez Humble andDavid Farley. 2010. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Pearson Education.

[21] Michael Jackson and Pamela Zave. 1998. Distributed Feature Composition: A
Virtual Architecture for Telecommunications Services. IEEE Trans. Softw. Eng.
(TSE) 24, 10 (1998), 831–847.

[22] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial Evaluation and
Automatic Program Generation. Prentice-Hall.

[23] Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory, Sabrina
Souto, Paulo Barros, and Marcelo d’Amorim. 2013. SPLat: Lightweight Dynamic
Analysis for Reducing Combinatorics in Testing Configurable Systems. In Proc.
Europ. Software Engineering Conf./Foundations of Software Engineering (ESEC/FSE).
ACM, 257–267.

[24] Max Lillack, Christian Kästner, and Eric Bodden. 2018. Tracking Load-time
Configuration Options. IEEE Trans. Softw. Eng. (TSE) 44, 12 (2018), 1269–1291.

[25] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej
Wąsowski. 2010. Evolution of the Linux Kernel Variability Model. In Proc. Int’l
Software Product Line Conference (SPLC). Springer-Verlag, 136–150.

[26] Rezvan Mahdavi-Hezaveh, Jacob Dremann, and Laurie Williams. 2019. Feature
Toggle Driven Development: Practices usedby Practitioners. arXiv preprint
arXiv:1907.06157 (2019).

[27] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. In Proc. Int’l Conf. Software Engineering (ICSE). ACM, 643–654.

[28] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.

[29] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and Gunter
Saake. 2016. On Essential Configuration Complexity: Measuring Interactions In
Highly-Configurable Systems. In Proc. Int’l Conf. Automated Software Engineering
(ASE). ACM, 483–494.

[30] Jean Melo, Claus Brabrand, and Andrzej Wąsowski. 2016. How does the degree
of variability affect bug finding?. In Proc. Int’l Conf. Software Engineering (ICSE).
ACM, 679–690.

[31] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. 2015.
Where do Configuration Constraints Stem From? An Extraction Approach and
an Empirical Study. IEEE Trans. Softw. Eng. (TSE) 41, 8 (2015), 820–841.

[32] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. 2014. Exploring
Variability-Aware Execution for Testing Plugin-Based Web Applications. In Proc.
Int’l Conf. Software Engineering (ICSE). ACM, 907–918.

[33] Changhai Nie and Hareton Leung. 2011. A Survey of Combinatorial Testing.
ACM Computing Surveys (CSUR) 43, 2 (2011), 11:1–11:29.

[34] Chris Parnin, Eric Helms, Chris Atlee, Harley Boughton, Mark Ghattas, Andy
Glover, James Holman, John Micco, Brendan Murphy, Tony Savor, et al. 2017. The

Top 10 Adages in Continuous Deployment. IEEE Software 34, 3 (2017), 86–95.
[35] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Prod-

uct Line Engineering: Foundations, Principles and Techniques. Springer-Verlag,
Berlin/Heidelberg.

[36] Rachel Potvin and Josh Levenberg. 2016. Why Google stores billions of lines of
code in a single repository. Commun. ACM 59, 7 (2016), 78–87.

[37] Md Tajmilur Rahman, Louis-Philippe Querel, Peter C Rigby, and Bram Adams.
2016. Feature toggles: practitioner practices and a case study. In Proc. Conf.
Mining Software Repositories (MSR). ACM, 201–211.

[38] Md Tajmilur Rahman, Peter C Rigby, and Emad Shihab. 2019. The modular and
feature toggle architectures of Google Chrome. Empirical Software Engineering
24, 2 (2019), 826–853.

[39] Jacob G. Refstrup. 2009. Adapting to Change: Architecture, Processes and Tools:
A Closer Look at HP’s Experience in Evolving the Owen Software Product Line.
In Proc. Int’l Software Product Line Conference (SPLC). Keynote presentation.

[40] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and Adam Porter.
2010. Using Symbolic Evaluation to Understand Behavior in Configurable Soft-
ware Systems. In Proc. Int’l Conf. Software Engineering (ICSE). ACM, 445–454.

[41] Johnny Saldaña. 2015. The Coding Manual for Qualitative Researchers. Sage.
[42] Mohammed Sayagh, Zhen Dong, Artur Andrzejak, and Bram Adams. 2017. Does

the choice of configuration framework matter for developers? Empirical study on
11 Java configuration frameworks. In Proc. Int’l Workshop Source Code Analysis
and Manipulation (SCAM). IEEE, 41–50.

[43] Mohammed Sayagh, Noureddine Kerzazi, Bram Adams, and Fabio Petrillo. 2018.
Software Configuration Engineering in Practice: Interviews, Survey, and System-
atic Literature Review. IEEE Trans. Softw. Eng. (TSE) (2018).

[44] Gerald Schermann, Jürgen Cito, Philipp Leitner, Uwe Zdun, and Harald Gall.
2016. An empirical study on principles and practices of continuous delivery and
deployment. Technical Report 4:e1889v1. PeerJ Preprints.

[45] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. 2011. AComparison of Decision
Modeling Approaches in Product Lines. In Proc. Int’l Workshop on Variability
Modelling of Software-intensive Systems (VaMoS). ACM, 119–126.

[46] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2010. The Variability Model of The Linux Kernel. In Proc. Int’l Work-
shop on Variability Modelling of Software-intensive Systems (VaMoS). University
of Duisburg-Essen, Essen, 45–51.

[47] Larissa Rocha Soares, Jens Meinicke, Sarah Nadi, Christian Kästner, and Ed-
uardo Santana de Almeida. 2018. In Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE). ACM, 41–52.

[48] Ya-Yunn Su, Mona Attariyan, and Jason Flinn. 2007. AutoBash: Improving Config-
uration Management with Operating System Causality Analysis. In Proc. Symp.
Operating Systems Principles (SOSP). ACM, 237–250.

[49] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,
Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. 2015. Holis-
tic configuration management at Facebook. In Proc. Symp. Operating Systems
Principles (SOSP). ACM, 328–343.

[50] Diane Tang, Ashish Agarwal, Deirdre O’Brien, and Mike Meyer. 2010. Overlap-
ping experiment infrastructure: More, better, faster experimentation. In Proc. Int’l
Conf. Knowledge Discovery and Data Mining (KDD). ACM, 17–26.

[51] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-
Preikschat. 2011. Feature Consistency in Compile-Time-Configurable System
Software: Facing the Linux 10,000 Feature Problem. In Proc. Europ. Conf. Computer
Systems (EuroSys). ACM, 47–60.

[52] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. ACM Computing Surveys (CSUR) 47, 1 (6 2014), Article 6.

[53] Thomas Thüm, Don Batory, and Christian Kästner. 2009. Reasoning about Edits
to Feature Models. In Proc. Int’l Conf. Software Engineering (ICSE). IEEE, 254–264.

[54] Alexander von Rhein, Jörg Liebig, Andreas Janker, Christian Kästner, and Sven
Apel. 2018. Variability-Aware Static Analysis at Scale: An Empirical Study. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 27, 4 (2018), Article No. 18.

[55] Yingfei Xiong, Hansheng Zhang, Arnaud Hubaux, Steven She, Jie Wang, and
Krzysztof Czarnecki. 2015. Range fixes: Interactive error resolution for software
configuration. IEEE Trans. Softw. Eng. (TSE) 41, 6 (2015), 603–619.

[56] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. 2015. Hey, you have givenme toomany knobs!: Understanding
and dealing with over-designed configuration in system software. In Proc. Europ.
Software Engineering Conf./Foundations of Software Engineering (ESEC/FSE). ACM,
307–319.

[57] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do Not Blame Users for Miscon-
figurations. In Proc. Symp. Operating Systems Principles (SOSP). ACM, 244–259.

[58] Tianyin Xu and Yuanyuan Zhou. 2015. Systems approaches to tackling configu-
ration errors: A survey. ACM Computing Surveys (CSUR) 47, 4 (2015), 70.

[59] Sai Zhang and Michael D. Ernst. 2014. Which Configuration Option Should I
Change?. In Proc. Int’l Conf. Software Engineering (ICSE). ACM, 152–163.

https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html

	Abstract
	1 Introduction
	2 Related Work on Feature Flags
	3 Methodology
	4 Differences between Configuration Options and Feature Flags
	4.1 Goals
	4.2 Who is Making Configuration Decisions?
	4.3 Complexity and Combinatorial Explosion
	4.4 Temporary versus Permanent Configuration Decisions
	4.5 Removing Configuration Decisions
	4.6 Documenting Feature Flags
	4.7 Tracing Configuration Decisions
	4.8 Analysis and Testing

	5 Conclusions
	References

