
Heard It through the Gitvine:
An Empirical Study of Tool Diffusion across the npm Ecosystem

Hemank Lamba
Carnegie Mellon University

Pittsburgh, PA, USA

Asher Trockman
Carnegie Mellon University

Pittsburgh, PA, USA

Daniel Armanios
Carnegie Mellon University

Pittsburgh, PA, USA

Christian Kästner
Carnegie Mellon University

Pittsburgh, PA, USA

Heather Miller
Carnegie Mellon University

Pittsburgh, PA, USA

Bogdan Vasilescu
Carnegie Mellon University

Pittsburgh, PA, USA

ABSTRACT

Automation tools like continuous integration services, code cov-
erage reporters, style checkers, dependency managers, etc. are all
known to benefit developer productivity and software quality. Some
of these tools are widespread, others are not. How do these au-
tomation “best practices" spread? And how might we facilitate the
diffusion process for those that have seen slower adoption? In this
paper, we rely on a recent innovation in transparency on code host-
ing platforms like GitHub—the use of repository badges—to track
how automation tools spread in open-source ecosystems through
different social and technical mechanisms over time. Using a large
longitudinal data set, network science techniques, and survival
analysis, we study which socio-technical factors can best explain
the observed diffusion process of a number of popular automation
tools. Our results show that factors such as social exposure, compe-
tition, and observability affect the adoption of tools significantly,
and they provide a roadmap for software engineers and researchers
seeking to propagate best practices and tools.

CCS CONCEPTS

• Software and its engineering→ Software libraries and reposi-
tories; • Human-centered computing → Empirical studies in

collaborative and social computing.

KEYWORDS

software tools, innovations, diffusion, open source ecosystem

ACM Reference Format:

Hemank Lamba, Asher Trockman, Daniel Armanios, Christian Kästner,
Heather Miller, and Bogdan Vasilescu. 2020. Heard It through the Gitvine:
An Empirical Study of Tool Diffusion across the npm Ecosystem. In Proceed-
ings of the 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), No-
vember 8–13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3368089.3409705

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7043-1/20/11.
https://doi.org/10.1145/3368089.3409705

More contagiousLess contagious

Travis

CircleAppveyor Codeship

Bithound

Gemnasium David Codecov

CodeClimate

Codacy

SauceLabs Coveralls

Figure 1: There is variance in the contagiousness of the dif-

ferent tools in our study (details in Section 5).

1 INTRODUCTION

Tools – from mundane ones like email to more specialized ones
like build managers, continuous integration services, and static
analyzers – are so integral to software engineering that for many it
is unimaginable to live, and develop software, without them. This
is especially the case nowadays, with the growing popularity of the
DevOps movement centered around automation of processes and
practices, and the myriad of tools implementing this automation.
Most software tools are useful, enabling improvements in developer
productivity and software quality. But not even the most handy of
tools are used universally, or spread equally fast among practition-
ers once released. For example, in the npm open-source ecosystem,
we have observed variance even among popular quality assurance
tools in how “contagious” the different tools are (Fig. 1), i.e., how
quickly they spread and get adopted by different projects.

Prior software engineering work offers one possible explana-
tion why some tools are less adopted: simply becoming aware of
tools that might be useful is a challenge [52, 53, 84]. More broadly,
Rogers’ well-established theory of innovation diffusion [61] identi-
fies five principal attributes of innovations (e.g., tools) that influence
their adoption: their observability, relative advantage, compatibil-
ity, complexity, and trialability. For example, the theory predicts
that the more observable (i.e., visible) and the more trialable (i.e.,
available for experimentation) the innovation is, the more likely an
individual becomes to adopt it [61, 68] (more details in Sec. 2).

On “social coding” platforms like GitHub, Gitlab, and Bit-
Bucket observability is high. Such platforms offer a high level of
transparency [16, 17], a wealth of channels through which devel-
opers and software projects can become interconnected [45], and
a diversity of signals [41, 73] through which people can get ex-
posed to each other’s practices and tools. For example, for GitHub
open-source projects using continuous integration, the pass or fail

https://doi.org/10.1145/3368089.3409705
https://doi.org/10.1145/3368089.3409705

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA H. Lamba, A. Trockman, D. Armanios, C. Kästner, H. Miller, and B. Vasilescu

status of each build is automatically displayed alongside each com-
mit in the user interface as cross () or check signs (), which
link to a specific tool’s website (e.g., Travis, Circle) and the build
logs produced by that tool; project maintainers can also choose to
display additional repository badges (e.g., ,)
indicating the continuous integration build outcome in real time,
also linking to the specific tool and corresponding build log.

What’s the tipping point? How many developers must be ex-
posed to a new tool or technology, and under what conditions,
before it catches on and is adopted en masse? What channels
or other means of signaling adoption influence tool diffusion the
most? And what explains why some people become early adopters
while others adopt late or not at all? While there is prior software
engineering literature on the diffusion of software development
methodologies [32, 65], object orientation [22], programming lan-
guages [2, 6, 47], and security tools [82, 84], quantitative, data-
driven answers to the questions above are hard to come by. Quan-
titatively understanding and modeling the complex mechanisms
through which software tools diffuse within practitioner commu-
nities can be beneficial: for example, one can begin to design in-
terventions to promote adoption of beneficial tools and practices
based on empirical evidence rather than just intuition, perceptions,
or beliefs; the former don’t always agree with the latter [19].

In this paper we present a novel methodology to begin to quanti-
tatively answer the questions above, that combines the creation of
a large-scale longitudinal network dataset of tool adoptions (Sec. 5)
with statistical hazard modeling techniques (Sec. 6). Our key insight
that allows us to study data on adoption at scale, across many tools
and projects, is that repository badges, i.e., those images such as

, , and embedded into a
project’s README file, are readily observable and consistent across
many tools, thus they can be used as proxies indicating usage of the
underlying software tools, i.e., continuous integration, dependency
management, and code coverage in these specific examples. More-
over, since the README file is part of a project’s version control sys-
tem, one can also precisely infer when a project adopted each tool.

Using this methodology and grounded in sociological theory
(Sec. 2), we report on a multiple case study on the diffusion of
the 12 most popular cloud-based automated testing and continu-
ous integration services, code coverage reporters, and dependency
managers used within the npm ecosystem on GitHub (Table 1).
Specifically, we test hypotheses about factors theorized to impact
how rapidly the software quality assurance tools spread through a
heterogeneous network, focusing on the tools’ observability, rela-
tive advantage, compatibility, and complexity (Sec. 3). Notably, our
methodology enables two refinements not typically present in prior
work. First, we provide estimates of the relative strength of the ef-
fects of different social and technical network ties between projects,
through which developers can observe each other’s practices and
tools. Second, we estimate the effects of these observability-related
factors while accounting for theorized covariates, such as compe-
tition between tools and degree of context fit between tools and
project environments.

At a high level, our results (Sec. 7) confirm the extent to which
observability plays a key role in software tool adoption, as the the-
ory predicts, and reveal that both social and technical network ties
between projects contribute to explaining tool adoption (in addition

Table 1: Overview of the software quality assurance tools in

our study, organized by task equivalence class; see Sec. 5.

Class Tools

Cont. integration Travis, Circle, Appveyor, Codeship
Dependency mgmt David, Bithound, Gemnasium
Code coverage Coveralls, Codeclimate, Codecov, Codacy
Cross browser test. Saucelabs

Control group Slack, Gitter, License, npm-version, npm-
downloads

to other theorized factors). However, while multiple types of ties
matter, the social ties introduced by shared committers have the
strongest effects on tool adoption, more so than, e.g., ties introduced
by direct technical dependencies. These results have implications
for software engineering researchers and tool builders (Sec. 8). For
researchers studying tool adoption, we provide a robust and theo-
retically grounded framework to study the diffusion of other tools
and practices, including the dataset compiled as part of our study
as a possible starting point. For tool builders and platform design-
ers, we provide evidence-based suggestions on where investments
to catalyze the adoption of software engineering tools and best
practices might pay off the most, given similar networks.

In summary, we contribute: (1) a longitudinal dataset of tool
adoptions for 12 quality assurance tools across a heterogeneous
network of npm open-source packages; (2) a methodology and in-
depth analysis (using hazard modeling) of the effects of multiple
socio-technical factors on the adoption of each tool, testing hy-
potheses grounded in sociological theory; (3) a characterization of
early tool adopters; and (4) a discussion of results with implications
for researchers and tool builders.

2 THEORY AND RELATEDWORK

Our work connects general social science theories of adoption of in-
novations to software engineering practice in transparent social cod-
ing environments like GitHub, Gitlab, and BitBucket, where the
potential to become exposed to new tools and practices is particu-
larly high, as wewill argue. In this section we review prior work and
relevant theories, before we derive testable hypotheses in Section 3.
Adoption of software tools. Software engineering researchers
and practitioners are often frustrated by the low adoption of prac-
tices and tools, such as static analysis, refactoring tools, program
comprehension, or security testing, even though many of them are
generally perceived to be beneficial. Researchers have found a wide
range of technical and social pain points in tool adoption, such
as false positives in static analysis tools [e.g., 39, 64, 71], missing
trust in correctness [e.g., 74], crypting tool messages [e.g., 38, 39],
slow response times [e.g., 80], lack of workflow integration [e.g.,
36, 41, 64, 86], lack of collaboration support [39], lack of manage-
ment buy-in [e.g., 18, 80], overwhelming configuration effort [e.g.,
25, 36, 39, 71, 80], and simply a lack of knowledge about tools [e.g.,
60, 74, 87]. In response, most software engineering research has
focused on technical solutions, such as improving functionality,
accuracy, and performance [e.g., 8, 64, 72], improving usability [e.g.,
38, 46, 51, 72, 79], and improving discoverability through recom-
mendation mechanisms or process integration [e.g., 49, 64, 87]. In

Heard It through the Gitvine: An Empirical Study of Tool Diffusion across the npm Ecosystem ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

this work, we explore an orthogonal question that does not focus
on a tool’s functionality but on how developers learn about it and
adopt it, that is, how it diffuses in a community.
Diffusion of innovations. Our main theoretical framework is
Rogers’ [61] well-established diffusion of innovations theory, con-
sisting of fivemain elements: (a) the innovation itself, (b) the adopters,
(c) the communication channel, (d) time, and (e) the social system.
The innovation can be any idea or practice that is novel to a group
or individual. Adopters are any individuals or entities that make
the decision to adopt the innovation or not. The communication
channels are the media through which innovations diffuse. Time is
inherently necessary for innovations to spread; not all individuals
will adopt the innovation at the same rate. The social system can be
considered as a combination of contextual, cultural, and environ-
ment influences, e.g., external influences such as mass media and
internal influences such as opinion leaders.

The theory also describes five attributes of innovations that influ-
ence their adoption: observability, relative advantage, compatibility
(congruence with the individual’s context), complexity, and trialabil-
ity (availability for experimentation). In short, the more observable,
advantageous, compatible, and trialable, and the less complex an
innovation is, the more likely it is to get adopted.

Roger’s theory has been applied to a diversity of innovations
across a variety of domains, e.g., new types of corn by Iowa farm-
ers [63], family planning practices [62], mathematics in schools [12],
new medical technology [4], and language [59].
Diffusion of software innovations. Rogers’ theory has also been
used in the software engineering and programming languages com-
munities, to inspire or inform the design of adoption studies of
software development methodologies [13, 32, 34, 40, 65], object
orientation [22], programming languages [2, 6, 47], and security
tools [82, 84]. While most software engineering research on tool
adoption has focused on technical and social issues (as discussed
above), most factors identified by prior studies to influence the adop-
tion of software-related innovations can generally be traced back
to the elements of Rogers’ theory. Let us highlight three examples,
closest to our work: (1) Xiao et al. [84] studied how security tools
(the innovation) spread within commercial software companies (the
social system). Based on an interview study with 42 professional
software developers, the authors found that “developers are more
likely to adopt tools they learn about from their peers than ones
they learn about elsewhere,” and that “developers who interact with
security teams as part of the auditing process are more likely to
adopt security tools,” two findings which can be traced back to
observability and trialability. (2) In a follow-up study, Witschey et
al. [82] surveyed developers from 14 companies and 5 mailing lists
about their use of security tools and quantified the relative impor-
tance of self-reported tool adoption factors. The authors found that
the strongest predictor of security tool use in a multiple logistic
regression was “developers’ ability to observe their peers using
security tools,” further validating empirically the importance of
observability. (3) Finally, Rahman et al. [58] surveyed 268 software
professionals about their adoption of another innovation—build
automation tools—finding that compatibility with the practitioners’
existing tools and workflows is the strongest predictors of tool use
among the different self-reported factors.

Framing of our work.We consider open-source software devel-
opment on social coding platforms likeGitHub as the social systems
in which the innovations spread, and open-source projects part of
the npm ecosystem as the adopters. The specific innovations we
consider are a range of popular GitHub-integrated quality assur-
ance tools (Table 1). By design, all the innovations we consider are
expected to have similar trialability (they are all freely available
online and tightly integrated with GitHub). Our study investigates
how the other four important attributes of innovations impact their
diffusion: their observability through different communication chan-
nels on GitHub, their relative advantage, their compatibility with
the adopter’s context, and their relative complexity compared to
other practices with lower expected adoption cost.

According to Rogers’ theory, the decision to adopt an innovation
proceeds in stages, starting with becoming aware of the innovation,
building familiarity, making a decision and acting on it, and finally
re-evaluating whether to continue using the innovation or not [68].
Our work addresses primarily the earlier stages of gathering and
processing information about the innovation, to form perceptions
which later inform a decision to adopt or reject [1]. This is when
the observability of an innovation is expected to have most impact.

While the three related studies discussed above and our cur-
rent work all share the same goal—providing stakeholders with
empirically-validated, evidence-based recommendations to pro-
mote the adoption of beneficial software tools and practices—our
work is novel in several key ways. First, we adopt a network science
perspective and dive deep into the different channels through which
practitioners inGitHub-like transparent environments can become
aware of new tools and practices, quantifying the relative impact
of each channel on adoption. Second, we use sound hazard model-
ing techniques to analyze multidimensional longitudinal trace data
mined from thousands of open-source projects, therefore our work
provides robust triangulation for results from prior qualitative stud-
ies; our observational study is robust to the response biases, recall
errors, and self-serving biases typical of surveys and interviews.
As a side effect, our work also helps to generalize prior findings to
developers outside of industry.

3 DEVELOPMENT OF HYPOTHESES

Building awareness of potentially useful tools is a known chal-
lenge for software developers [30, 52]. Social coding platforms like
GitHub provide opportunities for tool use to be observed among
projects hosted there due to high levels of transparency [16, 17]. A
wealth of signals, such as traces in log files, status checks for com-
mits,1 and repository badges [73], are all publicly and prominently
visible in the user interface, providing high levels of transparency
into the tools and practices used in those projects. There is a di-
versity of channels through which open-source developers can be
exposed to these signals. Channels through which influence can
flow on platforms like GitHub include collaboration in the same
repositories, pull requests, and follower relationships, all of which
introduce links between adopters.

If heightened visibility is a crucial condition to diffusion, then
what drives an individual’s limited attention towards new tools
and technologies is a crucial factor to adoption [55]. The sociology

1https://help.github.com/en/articles/about-status-checks

https://help.github.com/en/articles/about-status-checks

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA H. Lamba, A. Trockman, D. Armanios, C. Kästner, H. Miller, and B. Vasilescu

literature offers mechanisms that compete to prompt the attention
needed for an innovation’s adoption, and describe which groups of
users are more susceptible to adopt. From the literature, we select
hypotheses that can be operationalized using empirical data that is
available, and only comment on them. The following hypotheses
in one way or another all help in understanding the mechanisms
through which tools diffuse through a highly transparent and net-
worked environment like the npm ecosystem on GitHub:
Early adopters as a driver of diffusion. The early adopters of an
innovation have arguably the highest impact on the eventual spread
of the innovation. According to Rogers’ theory, early adopters are
more socially forward than other groups, and they enjoy higher
social status and influence [68]; in our context, they may also be
more willing to experiment with new technologies and to take
risks. Due to their openness, opinion leadership, and high social
status, early adopters would be the ideal target for interventions to
increase tool use. it is they who should be targeted first by “change
agents” [61], since they set the adoption pace. We hypothesize:
H1. The higher the social standing and technological openness of a
project maintainer, the more likely the project is to adopt a new tool.

Network ties as a driver of diffusion. From a network theory
perspective, ties between individuals in a network are what drives
diffusion: Ties to peers can help individuals identify the most
promising ideas [11], as well as help build the necessary knowledge
to execute these ideas [31]. While there is a debate as to whether
such influence is indirect through shared common affiliations that
attract individuals together (e.g., homophily) or more direct learn-
ing between individuals that are idiosyncratic to the relationship
and not solely based on shared affiliations (e.g., peer influence),
the network perspective argues that diffusion and adoption occur
through interaction amongst tied individuals [5, 54]; network ties
are what influences an individual’s limited attention towards which
practices they should adopt or not. To the case here, network theo-
rists could argue that the diffusion of a specific tool is based on the
prior experiences that developers bring to their current software
project. If a developer on a project has worked on a prior project
that adopted a tool, that coder is likely to bring that practice to their
current project through this social connection. We hypothesize:
H2. The stronger the social connection of a project to other projects
that adopted a tool, the more likely the project is to adopt that tool.

Resource dependencies as a driver of diffusion. The resource
dependency perspective argues that adoption of a practice is driven
by power asymmetries between those who hold a critical resource
and those who depend on it: The former can dictate the activities
and operations of their dependents [57], and the latter must con-
tinuously gather information so as to be attuned to what that key
resource holder does and maintain or adapt their operations accord-
ingly [24, 56]. This perspective argues that critical resource holders
are what influences an individual’s limited attention towards which
practices they should adopt or not. Resource dependency theorists
could argue that the diffusion of a specific tool will depend upon
what critical resource holders adopt. Thus, if a project has key tech-
nical connections to other projects (e.g., through library reuse), it is
likely to pay attention to those whomanage these key dependencies
and what they do, to adapt accordingly if needed. We hypothesize:

H3. The stronger the technical connection of a project to other projects
that adopted a tool, the more likely the project is to adopt that tool.

Legitimacy as a driver of diffusion. The institutional theory per-
spective argues that what drives diffusion of a “best practice” is
whether it is deemed as legitimate. Legitimacy is defined as “a gen-
eralized perception or assumption that the actions of an entity are
desirable, proper, or appropriate within some socially constructed
system of norms, values, beliefs, and definitions” [69]. From this
perspective, adopting a practice happens through mimicry, copying
what others seem to already accept as legitimate [21]. In this pro-
cess, the individual first looks to their environment for legitimate
models of how they ought to understand their social world of inter-
est, and then adopt practices conforming to that model [66]. In our
case, institutionalists could argue that the more some tools become
widely-adopted by other projects in the social system (i.e., all of
GitHub), the more legitimate one’s project will be seen by other
developers if it were to also adopt those tools. We hypothesize:
H4. The more widely adopted tools are globally, the more likely a
project is to also adopt those tools.

Functional need as a driver of diffusion. While the previous
hypotheses all describe plausible tool diffusion mechanisms, it is
important to acknowledge that software projects span a diversity of
sizes, application domains, lifecycle stages, etc and, as a result, their
tool needs are likely to differ. For example, a continuous integration
service and a code coverage reporter would be an unusual choice
for projects without an automated test suite. Therefore, one has
to study tool adoption behavior considering the software projects’
underlying need for, and compatibility with, different tools. In line
with Rogers’ theory, we hypothesize that tool compatibility or
congruence with the adopter’s context is a main driver of diffusion.
Stated differently, if past adopters of a tool reflect some underlying
need for that tool among projects of that type:
H5. The more functionally similar a project is to other projects that
adopted a tool, the more likely the project is to adopt that tool.

Market forces as a driver of diffusion. Software developers
nowadays often have a range of competing tools to choose from
for any given task. For example, one could choose between Travis,
Circle, and Appveyor for their continuous integration needs on
GitHub, just to name a few. At the same time, developers rarely
choose more than one competing tool for a given task, and rarely
switch tools once they have made a choice [41, 80]. Institutionalists
also note that getting an additional signal for the same source is seen
as redundant and has diminishing returns [44]. We hypothesize:
H6. Adopting a tool from an equivalence class makes it less likely to
adopt a competing tool from the same class.

Complexity as a hindrance of diffusion. All the quality assur-
ance tools we consider in this study (cloud-based automated testing
and continuous integration services, code coverage reporters, and
dependency managers) involve some kind of underlying analyses
(e.g., of builds and tests failing, or of dependencies being up-to-
date). They have relatively higher complexity and require relatively
more effort to adopt than other types of tools, e.g., communication
tools like Slack and Gitter. For example, adopting continuous
integration requires at the very least setting up a build system and

Heard It through the Gitvine: An Empirical Study of Tool Diffusion across the npm Ecosystem ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

an automated test suite, which is non trivial. Therefore, we hypoth-
esize that quality assurance tools are slower to diffuse and require
more social influence to spread because of the extra effort to adopt:
H7. Quality assurance tools require more social influence to diffuse
than tools without underlying analyses.

4 STUDY OVERVIEW

We first describe our study design at a high level, before diving into
the details of each step. Our key idea, inspired by Trockman et al.
[73], is to estimate the adoption of the different cloud-based auto-
mated testing and continuous integration services, code coverage
reporters, and dependency managers across all npm package repos-
itories on GitHub (over half a million at the time of data collection)
by tracking the spread of the corresponding repository badges,
e.g., , , and ; using the
badges implies using the underlying tools.2

We chose GitHub as it is currently the most popular software
development platform, with a broad range of tightly-integrated
and widely-used software quality assurance tools. We chose npm
as it is currently one of the largest and most popular open-source
ecosystems; by studying the diffusion of different tools within a
fixed software ecosystem we can reduce the influence of external
environmental and contextual confounding factors.

There are multiple reasons for studying badges as proxies for
tool use, instead of artifacts such as configuration files. Most impor-
tantly, badges are easily observable signals, often more readily ob-
servable and easier to interpret than changes to configuration files.
A developer interacting with a project on a platform like GitHub
would likely notice badges first, before noticing tool-specific config-
uration files. This makes badges more relevant than configuration
files for studying social influence in tool adoption. Second, from
a pragmatic study design perspective, we use badges as a uniform
proxy for tool use. That is, we can detect with high precision (and
given current practices often reasonably high recall) when projects
use certain tools. The detection is much easier, scales much better
(analyzing README files rather than all files in a repository), and
is much more uniform across tools (which may be configured in
one of many different files, e.g., depending on which build tool or
CI service is used, and sometimes without leaving any publicly
visible traces in the repository itself). Note that some developers
may perceive badges as increasingly noisy,3 possibly diminishing
their value as signals somewhat. Our study is neutral on this issue
but we do acknowledge this fundamental limitation of our design.

Next, to track how badges (tools) spread, we construct a het-
erogeneous longitudinal network, in which nodes represent npm
repositories and edges represent different interconnections between
repositories corresponding to our hypotheses (e.g., dependency re-
lation, joint contributors, project similarity). For each node, we
track when they adopt each badge; for each edge, we track when
the edge was introduced.

We then operationalize various characteristics of projects and
developers, and use multivariate statistical modeling on this net-
work to test our hypotheses. Specifically, we use logistic regression

2The converse is not true, one can use these tools without displaying badges. Therefore,
badge adoptions represent a lower bound on the adoption of the underlying tools.
3For example, https://github.com/BraveUX/for-the-badge.

Table 2: Overview statistics for our dataset.

Repositories 168,510
Commits 14,686,752
Developers (committers, pull req. submitters, watchers) 871,089
Repositories that adopted at least one badge 86,768

to model the characteristics of early badge adopters to test H1 (re-
call, this is the only developer-level hypothesis in our study; the
others are project-level). For hypotheses H2–H6, we analyze the
network’s adoption history using survival analysis, to model and
compare which of the different diffusion mechanisms above asso-
ciate with faster adoption through the network. In this step we
build separate survival models for each of the tools we consider.

Finally, for H7 we qualitatively4 compare the coefficient esti-
mates for the social-diffusion-related variables in our models be-
tween the quality assurance tools and the control group tools /
badges. The 12 quality assurance tools we consider all have non-
trivial underlying analyses/executions and all require non-trivial
setup, i.e., they are at least somewhat complex to use. Per the theory,
this complexity should act as a hindrance to adoption. Therefore,
when compared to a “control group” (Table 1) of tools with rela-
tively much simpler setup/usage and no underlying analyses, we
expect the 12 quality assurance tools to require more social influ-
ence to diffuse. In our models, if the distribution of estimated social
influence model coefficients for the experimental group appears
higher than for the control group, we would considerH7 supported.

5 DATA COLLECTION

We start from the longitudinal dataset collected by Trockman et al.
[73], containing 92 badges adopted by different packages across
npm. This dataset was collected fromGHTorrent [28], theGitHub
API, and git logs; it contains all npm packages which could be
cross-linked to their corresponding GitHub repositories at the
time of data collection in mid 2017. We then focus on a subset of
tools, perform several data cleaning steps, and compute additional
network data to test our hypotheses. This section describes our
data collection steps.

5.1 Tool Selection

From the original dataset, we select the badges corresponding to the
most popular 12 quality assurance tools, ranging from the continu-
ous integration tool Travis as the most popular (60, 350 adopters)
to another continuous integration tool Codeship as the least popu-
lar (430 adopters); see Table 1 for the complete list. For comparison
when testing H7, we also select 5 popular badges without underly-
ing analyses (i.e., with relatively lower adoption cost), as a “control
group” (also listed in Table 1).

Note that the decision to focus on the most widely adopted tools,
driven by the computational requirements of our data analysis tech-
nique (Section 6), may limit the generalizability of our results to rela-
tively unpopular and newly released tools with few users. However,
there is still high variance in adoption between the most popular
(Travis) and least popular (Codeship) tools in our sample, and our
results are generally robust to this variance, as we will show below.

4The relatively small size of our two samples, 12 experimental tools and 5 control
group tools/badges, precludes sound statistical comparison.

https://github.com/BraveUX/for-the-badge

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA H. Lamba, A. Trockman, D. Armanios, C. Kästner, H. Miller, and B. Vasilescu

Figure 2: Overview of the network construction process.

5.2 Preprocessing

Data cleaning. We take several steps to further clean the original
badge adoption dataset by Trockman et al. [73]. First, we filtered
out small inactive repositories, which add unnecessary effort to
our network data collection effort (Section 5.3), without carrying
much information. As a proxy for small and inactive, we removed
repositories with fewer than 10 commits recorded in GHTorrent.

Second, we removed obvious bots, which would introduce ar-
tificial links between repositories, biasing our network measures.
Based on the intuition that bots are likely to have “contributed” to
many repositories or authored many commits [20], we manually in-
spected the top 30most active GitHub user accounts in our dataset
along these two dimensions. This way we found, and subsequently
removed, many instances of bots, e.g., web-flow, renovate-bot.

Third, we cleaned tool adoption dates in our dataset, since they
are important for our analyses. By plotting and inspecting the his-
tograms of adoption dates per badge, we discovered sets of highly
synchronized repositories, typically all owned by the same account
(e.g., the prefixes npmdoc/node-npmdoc-%, npmtest/node-npmtest-%).
Badges in these repositories appeared automatically introduced,
perhaps by a bot, because they had identical timestamps. We re-
moved these clusters completely.

Fourth, when inspecting the data we also discovered a few repos-
itories with identical name and creation date, that had multiple
entries in GHTorrent. We combined all such repositories into one
single instance and aggregated their metrics (e.g., we computed the
union of their respective sets of commits).

Finally, we performed de-aliasing on the developers in our sam-
ple. Multiple aliases belonging to the same individual are a well-
known type of noise when mining software repositories [3, 43, 81],
which can also directly impact our network measures and down-
stream analyses. To merge aliases, we refine an existing heuristic
approach, matching on name, email address, and other similar
heuristics, used in different variations in prior work [e.g. 76, 77, 81].
Our flavor of the algorithm (see Supplementary Material) makes
two passes over the input data, with separate de-aliasing at project-
and global-level. At project level, we tune the heuristics for high
recall, since the risk of collisions (false positive matches) is smaller

because the size of the input is smaller. At global level, we use
only high-precision heuristics, since the risk of collisions increases.
To combine the results of the two steps, we then find connected
components on the graph formed out of the merges discovered
earlier (nodes are aliases, edges are links discovered during either
pass). This way, each connected component represents all of a user’s
aliases; summarizing the distribution of the number of aliases per
cluster, we observe a minimum of 1, maximum of 21, mean of 1.19,
and median of 1. We validated our approach by manually analyzing
a random sample of 100 alias clusters with at least two aliases. One
author checked GitHub user and project contributor pages, repos-
itory git logs, and Google search results, discovering no obvious
false positives; note, however, that there may still be false negatives.

Our final dataset (Table 2), a strict subset of the one by Trock-
man et al. [73] in terms of projects, contains 168, 510 repositories.
All the network data and other variables included in our analysis
are computed after de-aliasing users and, where applicable, they
represent aggregations of data from individual aliases.

5.3 Network Construction

The central part of our study is the analysis of diffusion mecha-
nisms through a network of projects: new projects becoming aware
of and adopting tools already in use in other related projects. To
this end, we first build graphs where nodes are repositories and
edges capture different socio-technical relationships between them.
Then, we combine all these graphs into a unified heterogeneous
network. Finally, to enable longitudinal analysis, we update these
graphs in 4-week intervals to reflect additional relationships (e.g., a
dependency is introduced or a developer joins a second project) and
we track (based on the badges dataset above) which repositories
have adopted which tool by the end of that interval. This section
describes the network construction process; see also Figure 2. Note
that we assume that once a link between two projects is formed,
e.g., through a shared contributor, that connection persists; e.g., we
assume that a developer leaving a project may return in the future.
This means that we only add edges to our network over time, not
remove them. Other operationalizations, e.g., to decay edges over
time, are beyond the scope here but may increase precision.

Heard It through the Gitvine: An Empirical Study of Tool Diffusion across the npm Ecosystem ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 3: Basic statistics for the social connection graphs.

Graph Committer (GCN) Watcher (GWN)

Num. nodes 148,582 150,857
Num. edges 4,461,796 16,001,804
Avg. degree 30.03 106.01

Avg. cluster. coeff. 0.80 0.36

Committer graph (social). Developers committing to multiple
repositories can create strong social connections between the reposi-
tories, throughwhich practices can spread (recallH2 above). For our
committer graph (GCN), we add edges to represent links through
developers that authored commits to both repositories, either directly
or through pull requests. To accurately reflect the temporal order of
commit events and to capture the direction of the possible influence
flow, these edges are directed from the repository to which the de-
veloper committed first. Furthermore, the edge is added in the time
interval in which the developer has first committed to both projects.
In Figure 2 we show an example, where Alice commits to R1 at time
t1 and then to R2 at time t5, resulting in an edge R1 → R2, available
at t5 and later. We then compute, and model in our regressions
below, the variable Num_activated_GCN _neighbors, counting the
number of a node’s neighbors in GCN that have already adopted a
given tool by a particular time window.
Watcher graph (social).Another potential information flow chan-
nel is the watcher–committer relationship: A user subscribed to a
particular repository (“watching” in GitHub lingo) may observe
that repository using a tool and may take that practice with them
(H2). We add an edge (in the watcher graph GWN) when a com-
mit author in a repository has been watching another repository,
again directed from the watched repository to the one contributed
to. In our example, Carl starts watching R2 at time t3, and then
starts committing to R3 at time t6, thus creating the edge R2 → R3
starting t6. The corresponding variable in our models, computed
analogously, is Num_activated_GWN _neighbors.

Note how the two social graphs, GCN and GWN , capture dif-
ferent ends of the social connection spectrum: GCN is expected to
indicate the strongest connection between repositories, and GWN
the weakest, because of the relatively high bar to committing as
opposed to watching. Table 3 summarizes the two graphs.
Dependency graph (technical). To capture library reuse as a
technical channel of potential information diffusion (H3), i.e., npm
packages reusing other npm packages as libraries, we also extract
a repository–repository dependency graph Gdep from the corre-
sponding package.json files. For example, in Figure 2, R6 is directly
dependent on both R3 and R4. The corresponding variable in our
models is Num_activated_Gdep_neighbors. Note that to reduce the
data collection effort, our dependency graph is static, reflecting the
dependencies at the time of data collection. By manually inspecting
a small sample of projects, we observed that dependency changes
typically occur when new libraries get added, while existing li-
braries rarely get removed [85]; therefore, our static graph can be
considered as an over-approximation of the true dependencies.

5.4 Other Operationalizations

Next we describe how we operationalized the other concepts in-
volved in the hypotheses in Section 3, and several control variables.

We discuss operationalizations related to early adopters (people)
first, corresponding to H1—recall the difference in study design for
testing this hypothesis, discussed in Section 4—followed by opera-
tionalizations related to repositories, corresponding to H4–H6.
Early adopters. We used the git logs to identify the developers
(project maintainers) who introduced each badge in each reposi-
tory (recall, badges are embedded into README files, which are
part of the version control system). We then collected data using
GHTorrent to characterize the developers’ social standing and
technological openness (H1). We operationalize social standing with
two variables for each developer: the total number of stars on all
their projects, and the number of users that follow them. We opera-
tionalize technological openness in terms of programming language
diversity, i.e., the number of distinct languages (as determined by
GitHub’s linguist library) used across all repositories contributed
to by that developer. Early adopters may also be more experienced
and embedded in the open-source community, so we include a de-
veloper’s total commit count and days of membership on GitHub
as control variables.

But what constitutes an early adopter? The theory (Section 2)
predicts that adopters fall into one of five categories: innovators,
early adopters, early majority, late majority, and laggards. Since
the diffusion effect typically results in a bell-shaped curve of new
adopters per unit time [61], Rogers argued that these adopter cate-
gories should be defined by the standard deviations of the normal
adoption curve, and that it is useful for empirical frameworks to
define these so-called “ideal types” [61]. Therefore, to categorize
each developer in our sample, we found the date of their first badge
adoption (of any kind) across all repositories, and labeled the first
16%5 of developers as innovators and early adopters. We will later
compare the characteristics of this group to the group of early
majority, late majority, and laggards (the remaining 84%).
Dependency similarity. As a proxy for functional similarity be-
tween two repositories (H5), we compute the degree to which their
sets of dependencies are similar [70]. Specifically, we consider each
set of dependencies as a “document” and compute the TF-IDF corre-
lation matrix similarity score of the two documents [10]. We then
record an undirected edge between two repositories in the Gdepsim
graph, e.g., R2 ↔ R7 in Figure 2, if each repository has three or more
dependencies (to avoid spurious links), and if their TF-IDF similar-
ity score is 0.9 or greater; we determined the threshold empirically
after manually reviewing a random sample of pairs of reposito-
ries and their similarity scores. Table 4 shows examples of pairs of
repositories we discovered to be similar this way. The correspond-
ing variable in our models, Num_activated_Gdepsim_neighbors, cap-
tures the number of neighboring repositories that adopted the tool
in a previous time window.
Description similarity. As another proxy for functional simi-
larity between two repositories (H5), we compute the degree to
which their README files are similar. Specifically, we consider
each README as a “document” and compute the TF-IDF similarity
scores of the two documents. If the score is 0.7 or greater (thresh-
old chosen empirically, as above), we record an undirected edge
between the two repositories in the network above, e.g., R4 ↔ R5

5In a normal distribution values between the 16th and the 84th percentile ranks, i.e.,
within one standard deviation of the mean, are considered “within the normal range.”

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA H. Lamba, A. Trockman, D. Armanios, C. Kästner, H. Miller, and B. Vasilescu

Table 4: Examples of dependency similarity scores. Com-

mon dependencies are marked in bold.

Repo 1 Repo 2 Score

bluedapp/rotate-log: win-

stonjs/winston, substack/node-

mkdirp, winstonjs/winston-

daily-rotate-file

treelite/asuka:
winstonjs/winston,

substack/mkdirp,

winstonjs/winston-daily-rotate-

file, tj/commander.js

0.95

tandrewnichols/grunt-only:
chalk/chalk, caolan/async, lo-

dash/lodash

shama/grunt-hub: chalk/chalk,
caolan/async, lodash/lodash

1.0

Table 5: Examples of README similarity scores.

Repo 1 Repo 2 Score

tshamz/gulp-shopify-upload-

with-callbacks

mikenorthorp/gulp-shopify-

upload

0.91

kosmoport/generator-kosmoport jackong/generator-webpack-

library

0.98

in Figure 2. Table 5 shows examples of pairs of repositories we
discovered to be similar this way. The corresponding variable in
our models is Num_activated_Gdescsim_neighbors.
Competition. For every node in our network, we operationalize
the presence of competing tools (H6) as Has_competitor_badge, a
binary variable capturing whether or not the repository has already
adopted any competing tool from the same equivalence class, as
classified in Table 1.
Global tool adoption. To measure the overall popularity of tools
(H4), we compute Num_badges_adopted_globally as the total num-
ber of badges that have been adopted by any repository in our
dataset up until the current time window.
Control variables. In addition to the concepts directly involved in
the hypotheses in Section 3, we operationalize as control variables
the following constructs: (1) A repository’s proclivity to adopt a
badge—binary variable Has_other_badges, set as True if the reposi-
tory has adopted any badge before. (2) A repository’s overall level
of project activity—numeric variable Num_commits; since badges are
added to a repository through a commit, the more commits in a
repository, the higher the chances to adopt a badge. (3) A reposi-
tory’s popularity—numeric variable Num_stars.

6 ANALYSIS

A variety of computational approaches exist for analyzing diffusion
processes and how innovations spread. Some models are macro-
scopic, e.g., SIR (susceptible-infected-recovered) and SIS (susceptible-
infected-susceptible) [33] in epidemiology, and the Bass model [7].
For example, we fit a standard Bass diffusion model [7] to our lon-
gitudinal adoption data for each of the 12 quality assurance tools
in our sample. That is, we model the total number of projects hav-
ing adopted a badge until time t as a function of two parameters:
F (t) = (1− e−(p+q)t)/(1+ q

p e
−(p+q)t), where p is interpreted as the

coefficient of “innovation,” capturing the rate at which new adopters
that have not been influenced by previous adopters, adopt the in-
novation; and q is interpreted as the “imitation” rate, capturing the
rate at which new adopters adopt the innovation after coming in

contact with the previous adopters [75]. Fitting the model reveals
generally low values and little difference between the estimates of
p, i.e., little “innovation,” and generally high values with variance
between the estimates of q, i.e., high “imitation,” or contagion (Fig-
ure 1). While such models can offer a macroscopic picture of the
adoption of a tool over time, they are quite limited — no network,
no project characteristics, etc.

There are also more powerful longitudinal event history analysis
models that estimate the relative impact of multiple time-constant
and time-varying factors on the likelihood of a person adopting a
particular innovation at a given time [50, 67]. Moreover, such mod-
els can also be combined with social network analysis techniques to
study how innovations spread through a network, e.g., by modeling
the network exposure as one of the effects. Two types of network
exposure modeling approaches are common among social network
analysis researchers: (1) independent cascade models [26] assume
that each node has a fixed probability of adopting a particular inno-
vation or behavior; and (2) threshold models [29] assume that a node
in the network adopts a particular innovation only if the fraction
of neighbors who have already adopted is greater than a certain
threshold. Both models have generally been used in conjunction
with viral marketing or influence maximization applications [42];
that is, given limited budget to promote a certain product, the goal is
to find which people to “infect” first such that the overall adoption
of the product in the network is maximized.

In our case, the network data is continuous, therefore we can
model exposure continuously rather than as a threshold, i.e., for
any repository node at a given point in time, we can observe the
number of neighboring repositories in a given graph (Section 5.3)
that have previously adopted the tool. Based on these measures
and the operationalizations in Section 5.4 above, we use survival
analysis, a popular multivariate event history modeling technique,
to estimate the average hazard rate of a repository adopting a
particular tool at a given time and the relative strength of the
effects of the different factors considered. We are not aware of
other software engineering research combining social network
analysis with survival analysis this way; however, in other domains,
interested readers can refer to studies of the spread of obesity [14],
happiness [23], new products [35], memes [27], or health-related
interventions [83] through social networks for more examples of
comparable computational approaches.
Survival analysis specifics. In our case an “event” is the adoption
of a tool, for which we can observe the adoption time. However,
if the event has not occured for a particular repository until the
end of the observation period, we cannot infer anything about the
chances of it occurring in the future. Survival analysis techniques
are designed to handle such right censored data effectively [48].

To make the problem more tractable, rather than updating our
variables after every new event, we compute feature values only in
monthly (4-week) windows; e.g., the number of commits variable
for a given window is the cumulative number of commits in the
repository by the end of this window. The observation period ends
at the window in which the tool is adopted—for adopters—or at the
time of the repository’s last commit—for repositories yet to adopt.

We model jointly the effects of the different factors above on the
time to adoption of a tool by a given repository, while controlling for

Heard It through the Gitvine: An Empirical Study of Tool Diffusion across the npm Ecosystem ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

covariates. For each repository, we have a survival time T on record
(number of months until the binary dependent variable Adoption
becomes True). The probability of reaching a given survival time
t is given by the hazard rate h(t) = P (T <t+δ t |T ≥t)

δ t . We use Cox
proportional hazard models [48] to estimate this probability and the
coefficients of the regression h(t,X) = θ (t) exp (βTX) using partial
likelihood, without making any assumptions about the baseline
hazard rate [37, 48].

As validation, we tested our models for multicollinearity and
removed predictors if they had a variance inflation factor (VIF)
above 5 [15]. Two variables consistently exceeded this threshold:
the number of other repositories in the same organization as the
focal repository, that have adopted the same tool before—a control
for organization structure we considered including—was collinear
with Num_activated_GCN _neighbors; and the overall popularity
of a given tool itself—another control we considered including—
was collinear with Num_badges_adopted_globally. In other cases,
some variables exceeded this threshold only in some models; these
collinear variables are the ones omitted from Tables 6 and 7.
Early adopters.We use the survival models described above to test
hypotheses H2–H7. For the remaining H1 (characteristics of early
adopters), we estimate a logistic regression model, with a binary
dependent variable Is_early_adopter and the variables described
above in Section 5.4 as independent variables.

7 RESULTS

Overall, we built survivalmodels for each of the 12 quality assurance
tools and 5 control-group badges in Table 1. Given limited space, we
only present the survival modeling summaries for six representa-
tive tools and two representative non-tool badges for comparison in
Tables 6 and 7, but summarize and discuss the patterns we observe
across all models. We also report separately on the logistic regres-
sion model for early adopters. Our replication package6 contains
all the modeling results discussed but not included here.

For every variable in the survival models in Tables 6 and 7,
we show in the “HR (St Err)” column the Hazard Ratios, i.e., the
exponentiated estimated regression coefficients β , together with
the standard errors and the statistical significance p-value ranges
(∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05) for the coefficients. One can
interpret these directly, e.g., if βi = 0.3 and statistically significant,
then a unit increase in the variableXi increases the adoption hazard
on average by HR = exp (0.3), i.e., by a factor of 1.35, while holding
all the other variables fixed.7 We also report in the “LR Chisq” col-
umn the amount of variance explained by each variable, as derived
from an ANOVA analysis. One can interpret these as a measure
of a variable’s effect size, by computing the fraction of variance
explained by that variable relative to the total amount of variance
explained by the model, i.e., the sum of “LR Chisq” values.
H1: Early adopters (✓).We find strong evidence supporting our
hypothesis that there are considerable differences in social stand-
ing and technological openness between early adopters and other
GitHub users. The total number of languages (4.5% increase in
odds per language), stars (2.4% increase per 1,000), and followers
6https://github.com/BadgeDiffuser/badge_diffusion_supplementary
7Note that some variables have been log-transformed to reduce heteroscedasticity,
which should be accounted for in the interpretation.

(10% per 1,000) are significantly and positively associated with the
odds of being an early adopter. Among the control variables, older
users are more likely to be early adopters (3.9% increase per month);
the number of commits does not have a significant effect.
H2: Social network ties (✓). For most tools, both social diffusion
channels (the committer and watcher networks), after controlling
for other factors, had a significant effect on whether the tool was
adopted. The more projects that a particular repository is socially
connected to, that have already adopted the tool, the greater the
probability it will also adopt the tool. As hypothesized, the commit-
ter network has the strongest effects. In all the models in Tables 6
and 7, the Num_activated_GCN _neighbors variable is always signifi-
cant and hasmuch larger effects than Num_activated_GWN _neighbors.
H3: Technical network ties (✓). We found that if a repository
includes as a dependency any other repository that has already
adopted the tool, then there is a higher probability for the reposi-
tory to adopt that tool as well, holding other variables fixed. For
example, this can be clearly seen in Table 6 forCoveralls: the adop-
tion “hazard” increases by a factor 1.73 for every factor e increase
in the number of direct dependencies (note the log-transformed
Num_activated_Gdep_neighbors).
H4: Global tool adoption (✓/✗). For all tools butTravis, themore
widely adopted other tools and badges are globally, the more likely a
repository is to also adopt the tool, in line with the hypothesis. The
Travis exception can perhaps be explained by the tool’s absolutely
highest popularity among all the tools we considered.

We also observe that if a repository has adopted a tool (badge)
before, then it was highly probable that the repository will go on
and adopt other tools (badges); note the hazard ratios above 1 for
Has_other_badges across all models.
H5: Functional similarity (✓). In our models, we discover that
although functional similarity as captured by similar dependencies
(Num_activated_Gdepsim_neighbors) does not have a strong effect
on adoption for most tools, user-defined similarity as captured by
similar READMEs (Num_activated_Gdescsim_neighbors) is highly
significant in almost all adoption scenarios, with sizable positive
effects (higher likelihood of adoptionwhen similar repositories have
already adopted). The exceptions are Codeship and Codeclimate,
which may not have sufficient data to detect these effects.
H6: Competition (✓/ ✗). Competition has significant effects in
most applicable cases. In our models Has_competitor_badge is signif-
icant and typically negatively correlated with the outcome, i.e., if a
repository has adopted a competing tool, then the likelihood of the
repository adopting the focal tool decreases significantly. Continu-
ous integration tools are most illustrative, given the strong compe-
tition among Travis, Circle, and Codeship: Repositories are less
likely to adopt any one of these tools if they have already adopted
another of one of these tools. Appveyor is the exception, with no
significant effect. We expect that since Appveyor is a Windows-
specific tool, maintainers may adopt it in addition to other CI tools,
not in place of, but there is insufficient evidence in our model to
conclude either way. The Appveyor model also shows strong user-
defined similarity effects (Num_activated_Gdescsim_neighbors), fur-
ther suggesting Windows specificity.

https://github.com/BadgeDiffuser/badge_diffusion_supplementary

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA H. Lamba, A. Trockman, D. Armanios, C. Kästner, H. Miller, and B. Vasilescu

Table 6: Survival models for the four competing continuous integration tools in Table 1.

Travis Circle Codeship Appveyor

response: Adoption = T response: Adoption = T response: Adoption = T response: Adoption = T

HR (St Err) LR Chisq HR (St Err) LR Chisq HR (St Err) LR Chisq HR (St Err) LR Chisq

N_commits (log) 1.58 (0.00)∗∗∗ 8224.62∗∗∗ 1.44 (0.02)∗∗∗ 291.79∗∗∗ 1.49 (0.05)∗∗∗ 68.10∗∗∗ 1.37 (0.02)∗∗∗ 188.53∗∗∗
N_stars (log) 0.89 (0.00)∗∗∗ 659.32∗∗∗ 0.92 (0.02)∗∗∗ 22.93∗∗∗ 0.96 (0.05) 0.70 0.93 (0.02)∗∗∗ 15.33∗∗∗
Has_other_badges 1.97 (0.01)∗∗∗ 3094.72∗∗∗ 1.91 (0.05)∗∗∗ 158.65∗∗∗ 1.52 (0.13)∗∗ 10.15∗∗ 4.65 (0.08)∗∗∗ 532.32∗∗∗
N_badges_globally (log) 0.92 (0.00)∗∗∗ 449.12∗∗∗ 2.18 (0.05)∗∗∗ 316.97∗∗∗ 1.11 (0.06) 3.11 1.29 (0.04)∗∗∗ 45.31∗∗∗
Has_competitor_badge 0.01 (0.32)∗∗∗ 1528.14∗∗∗ 0.09 (0.12)∗∗∗ 815.57∗∗∗ 0.16 (0.25)∗∗∗ 84.07∗∗∗ 0.97 (0.05) 0.30
N_activ_GWN _neighb (log) 1.00 (0.00) 0.57 1.04 (0.03) 1.63 1.15 (0.12) 1.23 1.07 (0.02)∗∗ 8.43∗∗
N_activ_GCN _neighb (log) 1.37 (0.00)∗∗∗ 4237.64∗∗∗ 2.14 (0.03)∗∗∗ 404.49∗∗∗ 2.63 (0.07)∗∗∗ 162.54∗∗∗ 1.92 (0.03)∗∗∗ 483.34∗∗∗
N_activ_Gdep_neighb (log) 1.18 (0.01)∗∗∗ 272.48∗∗∗ 1.65 (0.09)∗∗∗ 31.08∗∗∗ 1.27 (0.37) 0.41 1.95 (0.07)∗∗∗ 80.54∗∗∗
N_activ_Gdepsim_neighb (log) 0.96 (0.02)∗ 4.14∗ 0.42 (0.39)∗ 5.91∗ 2.63 (0.24)∗∗∗ 12.20∗∗∗
N_activ_Gdescsim_neighb (log) 1.46 (0.02)∗∗∗ 339.70∗∗∗ 2.06 (0.11)∗∗∗ 31.13∗∗∗ 5.41 (0.14)∗∗∗ 86.43∗∗∗
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 7: Survival models for two competing code coverage tools and two control-group badges in Table 1.

Coveralls Codeclimate License NPM-Downloads

response: Adoption = T response: Adoption = T response: Adoption = T response: Adoption = T

HR (St Err) LR Chisq HR (St Err) LR Chisq HR (St Err) LR Chisq HR (St Err) LR Chisq

N_commits (log) 1.62 (0.01)∗∗∗ 2205.75∗∗∗ 1.70 (0.02)∗∗∗ 1002.49∗∗∗ 1.48 (0.02)∗∗∗ 497.82∗∗∗ 1.31 (0.01)∗∗∗ 641.90∗∗∗
N_stars (log) 0.87 (0.01)∗∗∗ 249.54∗∗∗ 0.94 (0.01)∗∗∗ 19.26∗∗∗ 0.98 (0.02) 2.50 1.04 (0.01)∗∗∗ 24.67∗∗∗
Has_other_badges 2.92 (0.03)∗∗∗ 1456.79∗∗∗ 2.70 (0.05)∗∗∗ 504.00∗∗∗ 2.14 (0.05)∗∗∗ 276.70∗∗∗ 2.53 (0.03)∗∗∗ 1002.85∗∗∗
N_badges_globally (log) 1.12 (0.01)∗∗∗ 73.30∗∗∗ 1.07 (0.02)∗∗ 9.91∗∗ 2.39 (0.04)∗∗∗ 701.28∗∗∗ 1.67 (0.02)∗∗∗ 792.98∗∗∗
Has_competitor_badge 1.13 (0.13) 0.87 2.36 (0.07)∗∗∗ 111.08∗∗∗
N_activ_GWN _neighb (log) 0.95 (0.01)∗∗∗ 28.45∗∗∗ 0.83 (0.02)∗∗∗ 92.56∗∗∗ 0.78 (0.02)∗∗∗ 121.53∗∗∗ 0.95 (0.01)∗∗∗ 28.41∗∗∗
N_activ_GCN _neighb (log) 1.67 (0.01)∗∗∗ 1911.11∗∗∗ 1.86 (0.02)∗∗∗ 1051.27∗∗∗ 2.38 (0.02)∗∗∗ 1102.76∗∗∗ 1.78 (0.01)∗∗∗ 2683.36∗∗∗
N_activ_Gdep_neighb (log) 1.73 (0.03)∗∗∗ 351.03∗∗∗ 1.86 (0.05)∗∗∗ 132.14∗∗∗ 1.91 (0.07)∗∗∗ 77.80∗∗∗ 1.83 (0.03)∗∗∗ 385.91∗∗∗
N_activ_Gdepsim_neighb (log) 0.89 (0.06)∗ 4.57∗ 1.06 (0.17) 0.14 1.36 (0.12)∗ 5.43∗ 0.96 (0.08) 0.31
N_activ_Gdescsim_neighb (log) 2.04 (0.05)∗∗∗ 138.70∗∗∗ 2.19 (0.06)∗∗∗ 110.80∗∗∗ 2.38 (0.04)∗∗∗ 295.42∗∗∗
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Additionally, for coverage tools, we found that there is no compe-
tition effect. The only notable exception is Codeclimate, where the
effect is reversed, i.e., if a repository has adopted a competing tool,
then it is highly likely to also adopt Codeclimate. One explanation
could be that Codeclimate has more features than Codecov and
Coveralls [41]. In addition, badges for Codecov and Coveralls
look the same, while the badge for Codeclimate is visually distinct.
H7: Tools vs badges (✗). Surprisingly, the two sets of hazard ra-
tios corresponding to Num_activated_GCN _neighbors (one for the
quality assurance tools we consider, and one for the control group
tools/badges) appear qualitatively similar; see the models for Li-
cense and NPM-Downloads in Table 7 and the rest in the online
replication package. That is, there does not appear to be much
difference between the factors affecting the diffusion of quality
assurance tools and those affecting the spread of non-tool badges,
contrary to our hypothesis.

8 DISCUSSION AND IMPLICATIONS

There is strong empirical evidence in the software engineering
literature for the effectiveness of many tools and practices (e.g.,
continuous integration [78], dependency management [49]). That
is, in addition to individual companies that may want to promote

their tools, it may be beneficial for an entire community or ecosys-
tem to encourage the adoption of tools and practices, to improve
productivity, sustainability, code quality, documentation quality,
security, and many other qualities. Similarly, it may be in the best
practice of a company to spread tools and best practices among all
its teams [53].

Our results provide strong empirical support that social science
theories of adoption of innovations, including Rogers’ with many
theorized relationships, also hold for software engineering tools
used throughout the npm ecosystem. Concretely, we find supporting
evidence for multiple factors that impact adoption: the increased so-
cial standing of early adopters (H1); the legitimacy that comes from
using popular tools (H4); network ties, both social and technical
(H2,H3); good context fit (H5); and the absence of competitors (H6).
Practically, these results have potentially far-reaching implications
for open-source and industrial developers, as well as academic and
commercial tool builders, all of which could benefit from evidence-
based insights into how to speed up tool adoptions.

One mechanism stands out as having particularly strong empiri-
cal evidence in our models of tool adoption across npm reposito-
ries: the network ties through which projects may pick up tooling-
related cues from each other, especially the social dependencies
via joint contributors. These networks, taken together with visi-
ble indicators of a tool’s existence in an open-source project (e.g.,

Heard It through the Gitvine: An Empirical Study of Tool Diffusion across the npm Ecosystem ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

badges), begets exposure to these tools: in the absence of compe-
tition, the probability of a tool’s adoption is proportional to

the amount of exposure the tool has through social network

ties. This answers a question from the introduction (“How many
developers must be exposed to a new tool or technology, and under
what conditions, before it catches on and is adopted en masse?”) —
there is no threshold; the more developers get exposed, the higher
the chances of adoption.

A practical recommendation that follows is that if you want to
enable more adoption, one way is tomake the tool in question

more visible. Likewise, the converse seems to be true: if potentially
meaningful tools and best practices aren’t visible, they might not
be uptaken and used, leading to a missed opportunity for adoption.
There are many ways to increase visibility. For example, other
means for tools to be made visible, beyond badges, include GitHub
integrations and webhooks. There are also other latent sources
of information and social influence beyond GitHub, e.g., social
media websites like Twitter, other online communities, the user’s
workplace, or friends. All of these factors can increase the visibility
and exposure of developers to tools, and should be considered.

Another practical recommendation to increase adoption, beyond
making the tool more visible to any particular potential user, is to
exposemore potential users to the tool in question. For example,
to do this efficiently, stakeholders looking to promote tool adoption
can consider strategies not far from viral marketing campaigns in
advertising. This means targeting a select few nodes in the network,
focusing on them for adoption of a tool or technique first, and due
to natural diffusion, an increased rate of adoption may follow.

Another potentially actionable finding of this work is the appar-
ent similarity in the diffusion processes between quality assurance
tools and other non-tool badges (H7). That is, analysis tools and
CI seem to be adopted and uptaken as quickly as simple textual
badges with no underlying automated validation or analysis. While
we remain cautious of replication and confirmation on more data
and on data from other ecosystems, the implication, if the result
holds, we believe is quite significant for tool builders and policy
makers: the relatively higher complexity of the quality assurance
tools and relatively higher effort to adopt, which are largely intrin-
sic to the task and unavoidable, do not appear to be what’s holding
back adoption; instead, the factors driving adoption seem much
more within one’s control. Therefore, toolsmiths should be able
to get complex tools as widely adopted as possible, if promoted
appropriately; tool complexity does not appear to be as much

of a barrier to adoption as the theory predicts. Practically, the
recommendation is to invest in promotion and increased visibility.

Our results, while a promising first step, also have implications
for future academic research. In particular, recalling Rogers’s five
attributes of innovations that influence their adoption, this work
did not address trialability, which could also meaningfully affect
diffusion. For example, cloud-based CI tools such as Travis or
Circle could be considered more trialable than CI tools initially
offered for standalone installation on a local server, such as Drone
and Jenkins. In this case, the increased effort required to experiment
with the non-cloud-based CI tools could hinder their spread.

Another potential future work direction is exploring the observ-
ability attribute of tools beyond badges. More research is needed to
work out which factors contribute the most to increased visibility,

both among the ones afforded by the platform (e.g., integrations
and webhooks) as well as the latent ones (e.g., social media). All of
these are worthwhile directions.

Our study is limited to a single ecosystem, npm, which has a
unique culture and community that is particularly open to inno-
vations [9]. However, other software ecosystems can have vastly
different cultures and practices [9]. Future studies could investigate
differences in diffusion patterns in different software ecosystems
in comparison to their unique cultures and communities.

Moreover, while we investigated whether quality assurance tools
spread differently than non-tool badges, in reality even tools within
the same task class may vary in terms of configuration overhead and
features [41]; from the perspective of toolsmiths, it would worth
studying which usability features allow more effective diffusion.

Finally, while we saw differences in social standing between
adopter categories, e.g., early and late adopters, this was also only
a beginning. Future work may design, e.g., case studies of particu-
larly influential users who are effective in spreading new practices;
however, “influential” users remain hard to define.

9 CONCLUSION

We performed a large-scale longitudinal analysis of diffusion of
12 quality assurance tools in the npm ecosystem. Grounded in
diffusions of innovation theory, our results confirm the extent to
which observability plays a key role in software tool adoption, as
per the theory. We also provide an in-depth analysis using sur-
vival analysis-based regression models on the effect of multiple
social-technical factors on the adoption of tools. We found that
social factors such as exposure to repositories that have already
accepted a tool contribute significantly the probability of tool adop-
tion. We additionally provide a characterization to differentiate
between early and late adopters. There we found characteristic
differences between early adopters and late adopters–for example,
early adopters tend to have more experience with more program-
ming languages and programming paradigms, and they tend to
have more stars and followers on GitHub. We also explored the ef-
fect of competition between tools and how that impacted diffusion.
We found, in the context of CI tools, that once a repository chose
a CI tool, it rarely adopted another one. Besides many concrete
results, our study provides a robust and theoretically grounded
framework to study the diffusion of other software engineering
tools and practices through (social) networks.

ACKNOWLEDGEMENTS

Lamba and Vasilescu have been supported in part by the NSF
(awards 1717415, 1901311). Kästner has been supported in part
by the NSF (awards 1318808, 1552944, and 1717022).

SUPPLEMENTARY MATERIAL AND

REPLICATION PACKAGE

A replication package for our analysis, also including the results
discussed but not presented here, is available online at https://
github.com/CMUSTRUDEL/badge_diffusion_supplementary.

https://github.com/CMUSTRUDEL/badge_diffusion_supplementary
https://github.com/CMUSTRUDEL/badge_diffusion_supplementary

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA H. Lamba, A. Trockman, D. Armanios, C. Kästner, H. Miller, and B. Vasilescu

REFERENCES

[1] Ritu Agarwal and Jayesh Prasad. 1997. The role of innovation characteristics and
perceived voluntariness in the acceptance of information technologies. Decision
Sciences 28, 3 (1997), 557–582.

[2] Ritu Agarwal and Jayesh Prasad. 2000. A field study of the adoption of software
process innovations by information systems professionals. IEEE Transactions on
Engineering Management 47, 3 (2000), 295–308.

[3] Sadika Amreen, Audris Mockus, Russell Zaretzki, Christopher Bogart, and Yuxia
Zhang. 2020. ALFAA: Active Learning Fingerprint based Anti-Aliasing for cor-
recting developer identity errors in version control systems. Empirical Software
Engineering (2020), 1–32.

[4] James G Anderson and Stephen J Jay. 1985. The diffusion of medical technology:
Social network analysis and policy research. The Sociological Quarterly 26, 1
(1985), 49–64.

[5] Sinan Aral, Lev Muchnik, and Arun Sundararajan. 2009. Distinguishing influence-
based contagion from homophily-driven diffusion in dynamic networks. Proceed-
ings of the National Academy of Sciences 106, 51 (2009), 21544–21549.

[6] Emanoel Francisco Sposito Barreiros. 2016. The epidemics of programming lan-
guage adoption. Ph.D. Dissertation. Universidade Federal de Pernambuco.

[7] Frank M Bass. 1969. A new product growth for model consumer durables.
Management Science 15, 5 (1969), 215–227.

[8] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A few billion
lines of code later: using static analysis to find bugs in the real world. Commun.
ACM 53, 2 (2010), 66–75.

[9] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016.
How to break an API: cost negotiation and community values in three soft-
ware ecosystems. In Proc. Joint Meeting on Foundations of Software Engineering
(ESEC/FSE). ACM, 109–120.

[10] Kurt D Bollacker, Steve Lawrence, and C Lee Giles. 1998. CiteSeer: An au-
tonomous web agent for automatic retrieval and identification of interesting
publications. In Proc. International Conference on Autonomous Agents (AGENTS).
116–123.

[11] Ronald S Burt. 2004. Structural holes and good ideas. Amer. J. Sociology 110, 2
(2004), 349–399.

[12] Richard O Carlson. 1964. School superintendents and adoption of modern math:
a social structure profile. Innovation in education. New York: Teacher’s College,
Columbia University (1964).

[13] Frank KY Chan and James YL Thong. 2009. Acceptance of agile methodologies: A
critical review and conceptual framework. Decision Support Systems 46, 4 (2009),
803–814.

[14] Nicholas A Christakis and James H Fowler. 2007. The spread of obesity in a large
social network over 32 years. New England Journal of Medicine 357, 4 (2007),
370–379.

[15] Patricia Cohen, Stephen G West, and Leona S Aiken. 2014. Applied multiple
regression/correlation analysis for the behavioral sciences. Psychology Press.

[16] Laura Dabbish, Colleen Stuart, Jason Tsay, and James Herbsleb. 2012. Leveraging
transparency. IEEE Software 30, 1 (2012), 37–43.

[17] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In Proc.
ACM Conference on Computer Supported Cooperative Work and Social Computing
(CSCW). ACM, 1277–1286.

[18] Adam Debbiche, Mikael Dienér, and Richard Berntsson Svensson. 2014. Chal-
lenges when adopting continuous integration: A case study. In International
Conference on Product-Focused Software Process Improvement. Springer, 17–32.

[19] Premkumar Devanbu, Thomas Zimmermann, and Christian Bird. 2016. Belief &
evidence in empirical software engineering. In Proc. International Conference on
Software Engineering (ICSE). IEEE, 108–119.

[20] Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry, Bogdan Vasilescu, Anna
Filippova, and Audris Mockus. 2020. Detecting and Characterizing Bots that
Commit Code. In Proc. International Conference on Mining Software Repositories
(MSR). ACM.

[21] Paul J DiMaggio and Walter W Powell. 1983. The iron cage revisited: Institu-
tional isomorphism and collective rationality in organizational fields. American
Sociological Review (1983), 147–160.

[22] Robert G Fichman and Chris F Kemerer. 1993. Adoption of software engineering
process innovations: The case of object orientation. Sloan Management Review
34 (1993), 7–7.

[23] James H Fowler and Nicholas A Christakis. 2008. Dynamic spread of happiness
in a large social network: longitudinal analysis over 20 years in the Framingham
Heart Study. BMJ 337 (2008), a2338.

[24] Jay Galbraith. 1973. Designing complex organizations. (1973).
[25] Keheliya Gallaba and Shane McIntosh. 2018. Use and misuse of continuous

integration features: An empirical study of projects that (mis) use Travis CI. IEEE
Transactions on Software Engineering (2018).

[26] Jacob Goldenberg, Barak Libai, and Eitan Muller. 2001. Talk of the network: A
complex systems look at the underlying process of word-of-mouth. Marketing
letters 12, 3 (2001), 211–223.

[27] Manuel Gomez-Rodriguez, Jure Leskovec, and Bernhard Schölkopf. 2013. Model-
ing information propagation with survival theory. In Proc. International Confer-
ence on Machine Learning. 666–674.

[28] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: GitHub’s data from a
firehose. In Proc. International Conference on Mining Software Repositories (MSR).
IEEE, 12–21.

[29] Mark Granovetter. 1978. Threshold models of collective behavior. Amer. J.
Sociology 83, 6 (1978), 1420–1443.

[30] Tovi Grossman, George Fitzmaurice, and Ramtin Attar. 2009. A survey of software
learnability: metrics, methodologies and guidelines. In Proc. SIGCHI Conference
on Human Factors in Computing Systems (CHI). ACM, 649–658.

[31] Morten T Hansen. 1999. The search-transfer problem: The role of weak ties in
sharing knowledge across organization subunits. Administrative Science Quarterly
44, 1 (1999), 82–111.

[32] Bill C Hardgrave, Fred D Davis, and Cynthia K Riemenschneider. 2003. Investi-
gating determinants of software developers’ intentions to follow methodologies.
Journal of Management Information Systems 20, 1 (2003), 123–151.

[33] Herbert W Hethcote. 2000. The mathematics of infectious diseases. SIAM Rev.
42, 4 (2000), 599–653.

[34] Susan H Higgins and Patrick T Hogan. 1999. Internal diffusion of high technology
industrial innovations: an empirical study. Journal of Business & Industrial
Marketing 14, 1 (1999), 61–75.

[35] Raghuram Iyengar, Christophe Van den Bulte, and Thomas W Valente. 2011.
Opinion leadership and social contagion in new product diffusion. Marketing
Science 30, 2 (2011), 195–212.

[36] Ciera Jaspan, I-Chin Chen, and Anoop Sharma. 2007. Understanding the value
of program analysis tools. In Companion Proc. ACM SIGPLAN Conference on
Object-Oriented Programming Systems and Applications. 963–970.

[37] Stephen P Jenkins. 2005. Survival analysis. Unpublished manuscript, Institute for
Social and Economic Research, University of Essex, Colchester, UK 42 (2005), 54–56.

[38] Brittany Johnson, Rahul Pandita, Justin Smith, Denae Ford, Sarah Elder, Emerson
Murphy-Hill, Sarah Heckman, and Caitlin Sadowski. 2016. A cross-tool commu-
nication study on program analysis tool notifications. In Proc. Joint Meeting on
Foundations of Software Engineering (ESEC/FSE). 73–84.

[39] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
Proc. International Conference on Software Engineering (ICSE). IEEE, 672–681.

[40] Richard Johnson. 1999. Applying the technology acceptance model to a systems
development methodology. Proc. AMCIS (1999), 197.

[41] David Kavaler, Asher Trockman, Bogdan Vasilescu, and Vladimir Filkov. 2019.
Tool choice matters: JavaScript quality assurance tools and usage outcomes in
GitHub projects. In Proc. International Conference on Software Engineering (ICSE).
IEEE, 476–487.

[42] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of
influence through a social network. In Proc. ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 137–146.

[43] Erik Kouters, Bogdan Vasilescu, Alexander Serebrenik, and Mark GJ Van
Den Brand. 2012. Who’s who in Gnome: Using LSA to merge software repository
identities. In Proc. International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 592–595.

[44] Lauren Lanahan and Daniel Armanios. 2018. Does more certification always
benefit a venture? Organization Science 29, 5 (2018), 931–947.

[45] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
2019. World of code: an infrastructure for mining the universe of open source
VCS data. In Proc. International Conference on Mining Software Repositories (MSR).
IEEE, 143–154.

[46] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Mind your
language: on novices’ interactions with error messages. In Proc. Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software. 3–18.

[47] Leo A Meyerovich and Ariel S Rabkin. 2013. Empirical analysis of program-
ming language adoption. In Proc. International Conference on Object Oriented
Programming Systems Languages & Applications (OOPSLA). ACM, 1–18.

[48] Rupert G Miller Jr. 2011. Survival analysis. Vol. 66. John Wiley & Sons.
[49] Samim Mirhosseini and Chris Parnin. 2017. Can automated pull requests encour-

age software developers to upgrade out-of-date dependencies?. In Proc. Interna-
tional Conference on Automated Software Engineering (ASE). IEEE, 84–94.

[50] Mark R Montgomery and John B Casterline. 1998. Social networks and the
diffusion of fertility control. (1998).

[51] EmersonMurphy-Hill and Andrew P Black. 2008. Breaking the barriers to success-
ful refactoring: observations and tools for extract method. In Proc. International
Conference on Software Engineering (ICSE). 421–430.

[52] Emerson Murphy-Hill and Gail C Murphy. 2011. Peer interaction effectively, yet
infrequently, enables programmers to discover new tools. In Proc. ACMConference
on Computer Supported Cooperative Work and Social Computing (CSCW). ACM,
405–414.

[53] Emerson Murphy-Hill, Edward K Smith, Caitlin Sadowski, Ciera Jaspan, Collin
Winter, Matthew Jorde, Andrea Knight, Andrew Trenk, and Steve Gross. 2019.
Do developers discover new tools on the toilet?. In Proc. International Conference

Heard It through the Gitvine: An Empirical Study of Tool Diffusion across the npm Ecosystem ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

on Software Engineering (ICSE). IEEE, 465–475.
[54] Ramana Nanda and Jesper B Sørensen. 2010. Workplace peers and entrepreneur-

ship. Management Science 56, 7 (2010), 1116–1126.
[55] William Ocasio. 1997. Towards an attention-based view of the firm. Strategic

Management Journal 18, S1 (1997), 187–206.
[56] Jeffrey Pfeffer. 1976. Beyond management and the worker: The institutional

function of management. Academy of Management Review 1, 2 (1976), 36–46.
[57] Jeffrey Pfeffer and R Gerald. 1978. Salancik. 1978. The external control of organi-

zations: A resource dependence perspective.
[58] Akond Rahman, Asif Partho, David Meder, and Laurie Williams. 2017. Which

factors influence practitioners’ usage of build automation tools?. In Proc. In-
ternational Workshop on Rapid Continuous Software Engineering (RCoSE). IEEE,
20–26.

[59] Colin Renfrew. 1989. The origins of Indo-European languages. Scientific American
261, 4 (1989), 106–115.

[60] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How do
professional developers comprehend software?. In Proc. International Conference
on Software Engineering (ICSE). IEEE, 255–265.

[61] Everett M Rogers. 2010. Diffusion of innovations. Simon and Schuster.
[62] Everett M Rogers and D Lawrence Kincaid. 1981. Communication networks:

Toward a new paradigm for research. (1981).
[63] Bryce Ryan and Neal C Gross. 1943. The diffusion of hybrid seed corn in two

Iowa communities. Rural Sociology 8, 1 (1943), 15.
[64] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Söderberg, and Collin

Winter. 2015. Tricorder: Building a program analysis ecosystem. In Proc. Interna-
tional Conference on Software Engineering (ICSE), Vol. 1. IEEE, 598–608.

[65] Mali Senapathi. 2010. Adoption of software engineering process innovations: The
case of agile software development methodologies. In International Conference
on Agile Software Development. Springer, 226–231.

[66] David Strang and John W Meyer. 1993. Institutional conditions for diffusion.
Theory and Society 22, 4 (1993), 487–511.

[67] David Strang and Nancy Brandon Tuma. 1993. Spatial and temporal heterogeneity
in diffusion. Amer. J. Sociology 99, 3 (1993), 614–639.

[68] Evan T Straub. 2009. Understanding technology adoption: Theory and future
directions for informal learning. Review of Educational Research 79, 2 (2009),
625–649.

[69] Mark C Suchman. 1995. Managing legitimacy: Strategic and institutional ap-
proaches. Academy of Management Review 20, 3 (1995), 571–610.

[70] Bart Theeten, Frederik Vandeputte, and Tom Van Cutsem. 2019. Import2vec
learning embeddings for software libraries. In Proc. International Conference on
Mining Software Repositories (MSR). IEEE, 18–28.

[71] Kristín Fjóla Tómasdóttir, Maurício Aniche, and Arie van Deursen. 2017. Why
and how JavaScript developers use linters. In Proc. International Conference on
Automated Software Engineering (ASE). IEEE, 578–589.

[72] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Aravkin. 2014.
Aletheia: Improving the usability of static security analysis. In Proc. ACM SIGSAC
Conference on Computer and Communications Security. 762–774.

[73] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. 2018.
Adding Sparkle to Social Coding: An Empirical Study of Repository Badges in
the npm Ecosystem. In Proc. International Conference on Software Engineering
(ICSE). ACM, 511–522.

[74] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P
Bailey, and Ralph E Johnson. 2012. Use, disuse, and misuse of automated refac-
torings. In Proc. International Conference on Software Engineering (ICSE). IEEE,
233–243.

[75] Thomas W Valente. 1996. Network models of the diffusion of innovations.
Computational & Mathematical Organization Theory 2, 2 (1996), 163–164.

[76] Bogdan Vasilescu, Alexander Serebrenik, and Vladimir Filkov. 2015. A Data Set
for Social Diversity Studies of GitHub Teams. In Proc. International Conference on
Mining Software Repositories (MSR), Data Track. IEEE, 514–517.

[77] Bogdan Vasilescu, Alexander Serebrenik, Mathieu Goeminne, and Tom Mens.
2014. On the variation and specialisation of workload? A case study of the Gnome
ecosystem community. Empirical Software Engineering 19, 4 (2014), 955–1008.

[78] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and productivity outcomes relating to continuous integra-
tion in GitHub. In Proc. Joint Meeting on Foundations of Software Engineering
(ESEC/FSE). 805–816.

[79] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy
Zaidman, and Harald C Gall. 2018. Context is king: The developer perspective
on the usage of static analysis tools. In Proc. International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 38–49.

[80] David Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu. 2019. A
Conceptual Replication of Continuous Integration Pain Points in the Context of
Travis CI. In Proc. Joint Meeting on Foundations of Software Engineering (ESEC/FSE).
ACM.

[81] Igor Scaliante Wiese, José Teodoro da Silva, Igor Steinmacher, Christoph Treude,
and Marco Aurélio Gerosa. 2016. Who is who in the mailing list? Comparing six
disambiguation heuristics to identify multiple addresses of a participant. In Proc.
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
345–355.

[82] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-Hill, Chris May-
horn, and Thomas Zimmermann. 2015. Quantifying developers’ adoption of
security tools. In Proc. Joint Meeting on Foundations of Software Engineering
(ESEC/FSE). ACM, 260–271.

[83] Jiacheng Wu, Forrest W Crawford, David A Kim, Derek Stafford, and Nicholas A
Christakis. 2018. Exposure, hazard, and survival analysis of diffusion on social
networks. Statistics in Medicine 37, 17 (2018), 2561–2585.

[84] Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill. 2014. Social influ-
ences on secure development tool adoption: why security tools spread. In Proc.
ACM Conference on Computer Supported Cooperative Work and Social Computing
(CSCW). ACM, 1095–1106.

[85] Ahmed Zerouali, Tom Mens, Jesus Gonzalez-Barahona, Alexandre Decan, Eleni
Constantinou, and Gregorio Robles. 2019. A formal framework for measuring
technical lag in component repositories—and its application to npm. Journal of
Software: Evolution and Process 31, 8 (2019), e2157.

[86] Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and Vladimir Filkov. 2018. One
size does not fit all: an empirical study of containerized continuous deploy-
ment workflows. In Proc. Joint Meeting on Foundations of Software Engineering
(ESEC/FSE). ACM, 295–306.

[87] Sedigheh Zolaktaf and Gail C Murphy. 2015. What to learn next: Recommending
commands in a feature-rich environment. In Proc. International Conference on
Machine Learning and Applications (ICMLA). IEEE, 1038–1044.

	Abstract
	1 Introduction
	2 Theory and Related Work
	3 Development of Hypotheses
	4 Study Overview
	5 Data Collection
	5.1 Tool Selection
	5.2 Preprocessing
	5.3 Network Construction
	5.4 Other Operationalizations

	6 Analysis
	7 Results
	8 Discussion and Implications
	9 Conclusion
	References

