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Abstract—A popular approach to assessing software main-
tainability and predicting its evolution involves collecting and
analyzing software metrics. However, metrics are usually defined
on a micro-level (method, class, package), and should therefore
be aggregated in order to provide insights in the evolution at the
macro-level (system). In addition to traditional aggregation tech-
niques such as the mean, median, or sum, recently econometric
aggregation techniques, such as the Gini, Theil, Kolm, Atkinson,
and Hoover inequality indices have been proposed and applied
to software metrics.

In this paper we present the results of an extensive correlation
study of the most widely-used traditional and econometric aggre-
gation techniques, applied to lifting SLOC values from class to
package level in the 106 systems comprising the Qualitas Corpus.
Moreover, we investigate the nature of this relation, and study
its evolution on a subset of 12 systems from the Qualitas Corpus.

Our results indicate high and statistically significant corre-
lation between the Gini, Theil, Atkinson, and Hoover indices,
i.e., aggregation values obtained using these techniques convey
the same information. However, we discuss some of the rationale
behind choosing between one index or another.

I. INTRODUCTION

Software maintenance is an area of software engineering
with deep financial implications. Indeed, it was reported that
between 60% and 90% of the software budgets represent main-
tenance and evolution costs [1]–[3]. Furthermore, maintenance
and evolution costs were forecasted to account for more than
half of North American and European software budgets in
2010 [4]. Similar or even higher figures were reported for
countries such as Norway [5] and Chile [6].

Controlling software maintenance costs requires predicting
how the system will evolve in the future, which in turn
requires a better understanding of software evolution [7]–[9].
A popular approach to assessing software maintainability and
predicting its evolution involves performing measurements on
code artifacts. It starts off by identifying a number of specific
properties of the system under investigation, and then collect-
ing the corresponding software metrics and analyzing their
evolution. Although it is debatable whether one cannot control
what one cannot measure, it is without a doubt that collecting
and analyzing metrics helps increase one’s familiarity and
understanding of the analyzed systems.

However, metrics are usually defined at micro level (method,
class, package), while the analysis of maintainability and
evolution requires insights at macro (system) level. Moreover,
due to privacy reasons, it might be undesirable to disclose
metrics pertaining to a single developer as opposed to those
pertaining to the entire project [10]. Metrics should therefore
be aggregated [11].

Popular aggregation techniques include such standard sum-
mary statistical measures as mean, median, or sum [12], [13].
Their main advantage is universality (metrics-independence):
whatever metrics are considered, the measures should be cal-
culated in the same way. However, as the distribution of many
interesting software metrics is skewed [14], the interpretation
of such measures becomes unreliable [15].

Alternatively, distribution fitting [14], [16], [17] consists of
selecting a known family of distributions (e.g., log-normal
or exponential) and fitting its parameters to approximate the
metric values observed. The fitted parameters can be then
seen as aggregating these values. However, the fitting process
should be repeated whenever a new metric is being consid-
ered. Moreover, it is still a matter of controversy whether,
e.g., software size is distributed log-normally [16] or double
Pareto [18]. We do not consider distribution fitting.

Recently, there is an emerging trend in using more advanced
aggregation techniques borrowed from econometrics, where
they are used to study inequality of income or welfare distribu-
tions [19]–[21]. The motivation for applying such techniques
to software metrics is twofold. First, as numerous countries
have few rich and many poor, numerous software systems
have few very big or complex components, and many small or
simple ones [15], [22], [23]. Consequently, it is common both
for software metrics, as well as for econometric variables to
have strongly-skewed distributions (Figure 1).

Second, the shape of these distributions, which appear
visually to follow a power law, renders the use of traditional
aggregation techniques such as the sample mean and variance
questionable at best. Indeed, it was reported that many impor-
tant relationships between software artifacts follow a power-
law distribution [16], [25], and it is known that a power-law
distribution may not have a finite mean and variance [22].
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Fig. 1. Software metrics (SLOC) and econometric variables (household
income in the Ilocos region, the Philippines [24]) have distributions with
similar shapes.

These realizations led to the application of econometric
techniques to aggregation of software metrics [15], [23],
[26]–[28], and to our current interest in these aggregation
techniques. In this paper we consider the Gini, Theil, Atkinson,
Hoover, and Kolm indices, commonly used in econometrics to
study inequality of income or welfare [19]–[21], and reliable
for highly-skewed distributions such as the ones of source lines
of code (SLOC) considered in this paper.

In two previous studies [26], [27], we have set the grounds
for a theoretical and an empirical comparison of different
aggregation techniques for software metrics. In this paper we
build on [26], [27] and extend this work in two ways. First, we
present the results of an extensive correlation study of the most
widely-used traditional (mean, median, sum, standard devia-
tion, variance, skewness, and kurtosis) and econometric (Gini,
Theil, Atkinson, Hoover, and Kolm) aggregation techniques,
applied to lifting SLOC values from class to package level in
the 106 systems comprising the Qualitas Corpus [29]. Second,
apart from measuring the strength of the correlation between
the various aggregation techniques, we also investigate the
nature of this relation, and study its evolution. Specifically,
we address the following questions:

1) Which and to what extent do the inequality indices
agree? Which and to what extent do the aggregation
techniques rank distributions of SLOC values similarly?

2) What is the nature of the relation between the various
aggregation techniques, i.e., does the scatter plot of the
relation exhibit a clear shape?

3) How does the relation between the various aggregation
techniques change in time, i.e., how does the correlation
coefficient change as the systems evolve?

The remainder of this paper is organized as follows. Sec-
tion II introduces the aggregation techniques considered, while
Section III discusses related work. Section IV focuses on the
methodology to collect and analyse the data. Section V studies
agreement between different aggregation techniques and the
nature of relation between them, i.e., Questions 1 and 2, while
Section VI considers the change of this relation in time, i.e.,
Question 3. Finally, we present the conclusions and sketch
directions for future work in Section VII.

II. AGGREGATING SOFTWARE METRICS

In this section we introduce the aggregation techniques
considered, and discuss their appropriateness for software
metrics.

We consider two categories of aggregation techniques. The
first category includes standard summary statistics such as
additive measures (sum), central tendency measures (mean,
median), statistical dispersion measures (standard deviation,
variance), or distribution shape measures (skewness, kurtosis).

Let X = {x1, . . . , xn} be the collection of (metrics data)
values to be aggregated. For mean, sum, and median we
use standard definitions [26]. For standard deviation σ and
variance var we compute the measure for a sample rather than
the entire population [30]: var(X) = 1

n−1

∑n
i=1 (xi − x̄)2,

and σ(X) =
√

var(X). Both the standard deviation and
the variance are based on the mean, hence they also become
unreliable for highly skewed distributions, where they do not
convey information about the asymmetry. Moreover, albeit
easily computable, the sum is unbounded, making relative
comparisons difficult. On the other hand, the mean can be
misleading for highly skewed distributions due to influence of
outliers. The median is less sensitive to outliers, but can yield
different results if a small change occurs in the data set, e.g.,
one value is removed.

The skewness and the kurtosis offer two more alternatives
to aggregation techniques. Skewness, denoted as γ1, measures
the asymmetry of a distribution and is defined as γ1(X) =
1
n

∑n
i=1 (xi−x̄)3

σ3(X) . In contrast, kurtosis, denoted as γ2, measures
the peakedness of a distribution, i.e., high kurtosis corresponds
to a distribution with sharp peaks and long fat tails, while low
kurtosis corresponds to a distribution with rounded peaks and
short thin tails. Kurtosis is defined as γ2(X) = 1

n

∑n
i=1 (xi−x̄)4

σ4(X) .
Similar to the variance and standard deviation, the skewness
and kurtosis are unbounded, hence cause difficulties when
comparing systems with different population sizes [15].

The second category of aggregation techniques considered
consists of inequality indices, commonly used to study in-
equality of income or welfare distributions [19]–[21]. Specif-
ically, we consider the Gini [31], Theil [32], Atkinson [33],
Hoover [34] (also known as the Ricci-Schutz coefficient, or the
Robin Hood index), and Kolm [35] income inequality indices:

IGini(X) = 1
2n2x̄

∑n
i=1

∑n
j=1 |xi − xj |

ITheil(X) = 1
n

∑n
i=1

(
xi

x̄ log xi

x̄

)
IAtkinson(X) = 1− 1

x̄

(
1
n

∑n
i=1

√
xi
)2

IHoover(X) = 1
2

∑n
i=1

∣∣∣ xi∑n
j=1 xj

− 1
n

∣∣∣
IKolm(X) = log

[
1
n

∑n
i=1 e

x̄−xi
]

where |x| is the absolute value of x, ITheil is the so-called first
Theil index1, and IKolm and IAtkinson are standard instantiations
of the Kolm and Atkinson families of indices, for parameter

1In addition to ITheil above, Theil [32] has also introduced the second
Theil index, known as the mean logarithmic deviation IMLD, and defined as
IMLD(X) = 1

n

∑n
i=1

(
log x̄

xi

)
. In this paper we do not consider IMLD

and whenever “the Theil index” is mentioned, ITheil is meant.



values of 1 and 0.5, respectively. Mathematical properties of
the inequality indices and implications of these properties on
aggregation of software metrics have been discussed in [26].

In contrast with the traditional techniques, the econometric
inequality indices can be used successfully to aggregate soft-
ware metrics such as SLOC, since they provide a synthesis
of the skewness, kurtosis, mean, and variance statistics of the
data, while effectively capturing the nature of the software
metric under skewed distributions [15].

In econometrics, such indices are used to measure the
inequality of income or wealth distributions. For example,
inequality indices applied to 138 countries show reductions
in global inequality of GDP per capita during the 1980s
and 1990s [36]. Some inequality indices such as ITheil are
decomposable and hence can also be used to explain the
inequality [19]. For instance, inequality of expenditure in
Indonesian households can be better explained by the ed-
ucation level of the head of the household rather than by
the province of residence, or the gender of the household
head [37]. Formally, we say that the inequality index I is
decomposable if, for any given a partition of the population
into mutually exclusive and completely exhaustive groups, the
aggregation result computed at a population level is expressed
as the sum of a non-negative within-group term and a non-
negative between-groups term: the within-group contribution
is itself a weighted sum of applying the same inequality index
at the group level [38]. In econometrics, one commonly further
requires that the sum of the weighting coefficients be 1.

Similarly, in software engineering, inequality indices ap-
plied to software metrics can be used to measure the degree
of concentration of functionality (e.g., to identify packages
with unevenly-sized classes), to reveal significant architectural
shifts, or to indicate the presence of god classes or machine-
generated code [15], [28]. Furthermore, using the Theil index
it was observed that the partitioning of Debian Linux into
packages provides the best explanation for the inequality in
SLOC values, rather than the implementation language or the
maintainer [28]. This means that if one would like to reduce
this inequality, i.e., to distribute functionality across the units
in a more egalitarian way, one should focus on establishing
cross-package size guidelines first.

The Theil index, however, does not support negative values
since log x is undefined if x < 0. Nevertheless, SLOC has only
non-negative values, hence ITheil as well as all other techniques
considered here are appropriate under these circumstances.
Special care is necessary with the Theil index in the presence
of zero values, since log x is then also undefined. In [28]
we have distinguished between the particular meaning of a
value being zero. The usual approach in econometrics is to
consider that a person with no income does not contribute to
the income distribution, hence ITheil(x1, . . . , xn−1, 0) should
be defined as ITheil(x1, . . . , xn−1). Alternatively, for the sake
of simplicity, one can replace 0 by a very small ε > 0,
such that ITheil(x1, . . . , xn−1, 0)

def
= ITheil(x1, . . . , xn−1, ε).

This observation can be generalized for an arbitrary number
of zeros as long as at least one non-zero value is present.

While both approaches are valid for software metrics where
zero denotes emptiness (e.g., SLOC), in this paper we choose
the latter and we take ε to be equal to 10−50.

III. RELATED WORK

The term “aggregation of software metrics” can be under-
stood in two ways: either as aggregation of values obtained
by applying the different metrics to the same software arti-
facts, or as aggregation of values obtained by applying the
same metrics to different software artifacts. Maintainability
index (MI) [39] and modularization quality (MQ) [40] are
examples of aggregating results of different metrics applied
to the same software artefact: MI aggregates the Halstead’s
effort, McCabe’s cyclomatic complexity, lines of code count
and number of comment lines, while MQ aggregates intra-
connectivity (cohesion) and inter-connectivity (coupling). Our
work as well as the main body of papers discussed in this
section pertain to aggregation of values obtained by applying
the same metrics to different software artifacts.

Application of econometric inequality indices to software
metrics has been first advocated in [15]. The authors proposed
the Gini index as the aggregation technique as it is both
universal and reliable, can be given an intuitive interpretation
using the Lorenz curve, and ranges between 0 and 1. This
approach has been successfully applied to study the getter and
setter methods usage profiles in Java software [41]. While the
Gini index has a number of advantages, it is not decomposable,
and, hence, as realized in [28], the Gini index can be used
to measure inequality but not to explain it. Therefore, Theil
index, being universal, reliable and decomposable, has been
proposed [28]. In addition to the Gini index and the Theil
index, in their study of the Pareto principle evidence in open
source software activity, Goeminne and Mens [23] have also
applied the Hoover index. Considering multiple indices instead
of one [23] follows an existing practice in economics. For
instance, [42] employs six different indices, including the Gini,
Theil, and Atkinson indices. Still, a natural question arises:
when should one use each one of the aggregation techniques?

Champernowne [43] has applied six aggregation techniques
to synthetic data. The author observed that different indices
exhibit different sensitivity to different “dimensions of in-
equality”: while 1 − nITheil was most sensitive to inequality
associated with the exceptionally rich, IGini is second-most
sensitive to inequality reflecting a wide spread of the less
extreme incomes, without much tendency for the majority
of them to be bunched within quite a narrow range. A
similar study of synthetic data mimicking small countries with
relatively small population and a limited number of regions
has been recently conducted in [44]. These works, however,
do not consider real world data sets and, therefore, generality
of the observations and conclusions derived require additional
verification.

In a previous study [27], we have set the grounds for a
theoretical and an empirical comparison of different aggre-
gation techniques for software metrics (mean, as well as the
Gini, Theil, Atkinson, and Kolm inequality indices). We have



observed on a single snapshot of a case study (ArgoUML) that
the choice of aggregation technique matters, i.e., it influence
the correlation between the aggregated values and a validation
metric (in that case number of defects per package), and that
the aggregation techniques fall into two groups (mean and
Kolm on the one hand, and Gini, Theil, and Atkinson on
the other hand), for which we observed high and statistically
significant correlation among the methods in each group.

Later, in another study [26] we have investigated a single
version from three case studies (ArgoUML, Adempiere, and
Mogwai Java Tools) by means of the aforementioned aggre-
gation techniques augmented by the sum, median, and Hoover
inequality index. We have observed that indeed the choice of
aggregation technique influences the correlation with defects
and that, e.g., mean leads to very inconsistent correlation
results. However, the separation of the techniques into two
groups with high and statistically significant correlation among
the elements in each was not as clear as before, and was
not consistent across systems. Nevertheless, the Gini, Theil,
Atkinson, and Hoover inequality indices showed high and
statistically significant correlation among themselves, i.e., the
aggregated values obtained using these techniques convey the
same information.

Apart from the corresponding nature of economic and
software societies, studies of software maintenance and econo-
metrics show other important similarities. Indeed, similar dif-
ferences between the economic behavior of the individual pro-
ducer and consumer (microeconomics) and nations total eco-
nomic behavior (macroeconomics) have been observed when
comparing the evolution of individual applications with the
evolution of compilations or distributions of applications [45].
Moreover, the common interest in evolutionary processes is
witnessed by studies of software evolution [8], as well as of
evolutionary economics [46] and econometrics [47].

Beyond the studies of software metrics aggregation by
means of econometric inequality indices, new techniques for
metrics aggregation have been proposed in Squale [11]. While
Squale covers both aggregation of different metrics of the
same artifact and aggregation of the same metric of different
artifacts, in the coming discussion we focus only on the second
form of aggregation. This form of aggregation is considered
as a two-phase process in Squale. First, values of individual
metrics are translated to individual marks such that clearly
desirable values get the highest mark (3), and clearly undesir-
able values get the lowest mark (0). The translation function
is chosen such that when a certain threshold is exceeded the
individual mark decreases following an exponential curve:
the individual mark tends quickly towards zero, stressing
the presence of undesirable metric values. Second, individual
marks are aggregated to the global mark, corresponding to the
entire project: − logλ( 1

n

∑n
i=1 λ

−xi), where xi (1 ≤ i ≤ n)
are individual marks, and λ reflects tolerance for bad in-
dividual marks (the authors consider λ = 3, λ = 9 and
λ = 30 corresponding to high, intermediate and low tolerance,
respectively). We consider the work of [11] as complementary
to ours. As opposed to the econometric approaches, the

aggregation technique of [11] is asymmetric, i.e., it labels
metric values as being desirable or not, while inequality
indices do not make this distinction. This also implies that
for the Squale approach to be applicable threshold values for
different metrics should be known. The Squale project has
published such thresholds [48] but a more extensive threshold
validation is desirable. Additional advantage of such inequality
indices as ITheil and IKolm consists in their decomposability
and invariance. A more extensive comparison of the Squale
approach with econometric indices is an ongoing collaboration
effort between both teams.

IV. METHODOLOGY

To perform empirical evaluation of different aggregation
techniques we conducted two series of experiments. In the
first set of experiments (Section V) we investigated relation
between pairs of aggregation techniques, i.e., we addressed
Questions 1 and 2. As case studies we chose the 106 open-
source Java systems comprising the Qualitas Corpus version
20101126r (Section IV-A). For each case study we determined
the metrics data (SLOC) and aggregated it from class level to
package level using all pairs of aggregation techniques. We
stress that statistical correlations are not transitive [49], i.e.,
we have to consider all pairs of aggregation techniques2.

An obvious threat to validity for such a study is the rep-
resentativeness of the versions considered. In order to reduce
this threat and to address Question 3, we performed a second
set of experiments (Section VI), in which we investigated the
evolution of the correlation between similar pairs of SLOC
data collections, again aggregated from class to package level
using all combinations of aggregation techniques. As case
studies, we chose 12 open-source Java systems with more than
10 versions, which are part of the Qualitas Corpus version
20101126e (Section IV-A).

A. Qualitas Corpus Dataset

The Qualitas Corpus [29] is a curated collection of open-
source Java software systems, intended to be used for empir-
ical studies of code artifacts.

In this paper we consider the Corpus version 201011263,
which comes in two main distributions. For our first study
(Section V) we consider the “r” (recent) variant, which con-
tains the most recent versions available at the time of release,
from 106 systems ranging from FitJava v1.1 (2 packages, 2240
SLOC) to NetBeans v6.9.1 (3373 packages 1890536 SLOC).

Our second study uses the “e” (evolution) variant of the
Qualitas Corpus 20101126, which contains all versions from
13 systems (out of the 106 systems) with 10 or more versions
available, totaling 414 versions. We have excluded Eclipse
SDK (represented by 35 versions) from the consideration,
because for 34 out of the 35 versions there is only bytecode
available, while we focus on SLOC. All other systems had the

2While [49] considered Pearson’s correlation coefficient, their counterex-
ample also shows lack of transitivity for Spearman’s ρ and Kendall’s τ .

3Qualitas Research Group, Qualitas Corpus Version 20101126,
http://qualitascorpus.com. The University of Auckland, February 2009.



source code available for all versions. From here on we refer
to the remaining twelve systems as the Evolution Corpus.

The most covered systems of the Evolution Corpus in terms
of number of versions available are Hibernate (86 versions),
Azureus/Vuze (51 versions), and Weka (49 versions), while
the least covered three systems are ArgoUML (10 versions),
ANTLR (18 versions), and JMeter (18 versions). In terms of
size (in terms of number of packages), the Evolution Corpus
ranges between 634 packages in Hibernate v3.6.0-beta4 and
6 packages in Ant v1.1.

B. Data collection

For both the single snapshot study, as well as the evolu-
tionary study, the source code for each version of each system
was automatically processed, and first the list of packages,
and then the list of classes contained in each package were
built. Alternatively, one could have used the Qualitas Corpus
metadata in order to extract such information. However, we
have preferred to extract the metadata using our own tooling
as it was reported in the release notes of the 20101126 version
of the Corpus [50] that some of the previous metadata files
contained incorrectly-computed values.

An important note is the distinction between source code of
the actual system, and source code of third-party libraries. It is
possible that some systems distribute original source code of
third-party libraries (in a previous release of the Corpus [29] it
was reported that, e.g., Compiere v250 distributes a copy of the
source code of the Apache Element Construction Set), while
others provide their own implementations of such libraries,
i.e., they distribute modified versions of third-party libraries
together with their own source code.

In this paper we focus on source code of the actual systems
and we exclude libraries. The decision regarding what is iden-
tified as actual source code of a version, and what is considered
third-party is documented and provided as metadata alongside
the Corpus, i.e., a space-separated list of prefixes of packages
of Java types which are considered as developed for the
system. For example, for ArgoUML all packages with names
prefixed by org.argouml are considered as source packages
(e.g., org.argouml.model.uml), while all others are
considered as externals (e.g., org.apache.xerces).

For all pairs of aggregation techniques compared, we con-
sidered packages containing at least 2 classes. This is moti-
vated by the fact that, when applied to packages containing
only one class, most of the traditional aggregation techniques
(standard deviation, variance, skewness, and kurtosis) are un-
defined, and all inequality indices are equal to 0. For Qualitas
Corpus 20101126r, the most affected systems by this filtering
were some of the small ones, namely IvataGroupware v0.11.3
(lost 34 out of 81 packages), Sandmark v3.4 (lost 45 out of
123 packages), and Quilt v0.6-a-5 (lost 5 out of 14 packages).
Over the entire Corpus 20101126r, 86.7% of all systems lost
less than 20% of their packages.

For each package in each version of each system (in both
studies), we aggregate the SLOC values of all the classes
directly contained in that package, in turn, using each of the

aggregation techniques considered. We say that a class C is
directly contained in a package P if there exists no subpackage
P ′ of P different from P such that C is contained in P ′.

C. Data analysis

To measure correlation between values aggregated using
different techniques we have a choice between linear or rank
correlation coefficients.

Linear coefficients (e.g., Pearson [51]) are sensitive only to a
linear relation between two variables. On the other hand, rank
coefficients (e.g., Kendall [52] or Spearman [53]) are more
robust to nonlinear relations since they only measure the extent
to which an increase in one variable (not necessarily linear)
corresponds to an increase in the other variable. Consequently,
since the nature of the relation between different aggregation
techniques is one of the objects of our study rather than an
assumption, we use a rank coefficient. We opt for Kendall’s
rank correlation coefficient τ since Spearman’s ρ is known to
be difficult to interpret [54].

All computations were performed using R [55]. Next we
describe the two series of experiments performed.

V. STUDYING THE CORRELATION
BETWEEN AGGREGATION TECHNIQUES

In the first series of experiments we study correlation
between the aggregation techniques on a single snapshot of
each system in the Corpus, and we answer Questions 1 and 2
from the introduction.

A. Which and to what extent do aggregation techniques agree?

We start by measuring the Kendall correlation between val-
ues aggregated using the inequality indices (Figure 2) across
the entire Corpus. Note that the percentage of the systems
in the Corpus for which the correlation value is statistically
significant using the common threshold of 0.05 is displayed
between parentheses below each boxplot, and the name of each
aggregation technique is abbreviated to its first three letters.
Moreover, we display horizontal dotted lines to indicate the
median for each of the boxplots. To simplify comparison of
the plots in Figure 2 with similar plots on Figures 3 to 7 we
opt for the same scale for all figures.
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Fig. 2. Significant Kendall correlation between inequality indices.

We observe high and statistically significant correlation
between Theil, Gini, Atkinson, and Hoover in more than 90%
of the Corpus, i.e., aggregation values obtained using these
techniques convey the same information. Correlation between
Kolm and the other indices is average at best (0.4–0.5), and



significant for only approximately 70% of the Corpus. This
confirms our observation in [27] and answers the first part
of Question 1 from the introduction: IGini, ITheil, IHoover and
IAtkinson agree, i.e., they rank distributions of SLOC values
similarly (there is high and statistically significant correlation
between them).

Next we study how the other aggregation techniques cor-
relate to each other and to the inequality indices. Since IKolm
did not show high correlation with any of the other inequality
indices, we are also interested in studying whether and to
which traditional techniques IKolm correlates more.
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Fig. 3. Significant Kendall correlation between mean and the other aggre-
gation techniques.

In Figure 3, mean shows very low significant correlation
(0.3) with all the inequality indices except IKolm (in approx-
imately 50% of the Corpus). The correlation between mean
and IKolm is the highest (0.8) among all other techniques,
and also statistically significant for 92% of the systems,
i.e., aggregates obtained using these techniques convey the
same information. Moreover, mean shows high (0.7–0.8) and
statistically significant correlation for 90% of the Corpus with
median, standard deviation, and variance.
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Fig. 4. Significant Kendall correlation between median and the other
aggregation techniques.

In the case of median (Figure 4), the highest measured
correlation is the one with mean (0.7 for 88% of the Corpus),
and there is very low correlation (-0.2) with skewness, kurtosis,
or either of IGini, ITheil, IHoover and IAtkinson.

Closer inspection at IKolm (Figure 5) reveals high (0.8) and
statistically significant correlation in 90% of the Corpus with
mean, standard deviation, and variance. It is interesting to
observe that while mean shows high correlation with both
median (0.7) and IKolm (0.8), the correlation between median
and IKolm is lower (0.5–0.6).
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Fig. 5. Significant Kendall correlation between IKolm and the other
aggregation techniques.
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Fig. 6. Significant Kendall correlation between sum and the other aggregation
techniques.

Sum shows at most average correlation (0.3–0.6) with
mean, kurtosis, standard deviation, variance, and IKolm for
approximately 80% of the Corpus (Figure 6).

The close mathematical relations between standard devia-
tion and variance, as well as between skewness and kurtosis
are reflected in the perfect (1) and high (0.8) correlation values
from Figure 7, respectively.
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Fig. 7. Significant Kendall correlation between standard deviation, variance,
skewness, and kurtosis.

Hence, to summarize our answer to Question 1 from the
introduction, we note that:
• IGini, ITheil, IHoover and IAtkinson show consistently high

and statistically significant correlation between them, i.e.,
the aggregates obtained using these techniques convey the
same information.

• The correlation between mean and IKolm is statistically
significant, and the highest among all other techniques
considered. Moreover, mean shows high and statistically
significant correlation with median, standard deviation,
and variance.

• Median shows high and statistically significant correlation
with mean, while sum does not correlate with any of
the other techniques. Aggregated values obtained using



standard deviation or variance on the one hand, or
skewness and kurtosis on the other hand convey the same
information.

B. What is the nature of the relation between aggregation
techniques?

In order to study the nature of these relations, we draw
scatter plots for each pair of aggregation techniques and each
system in the Corpus and we analyze if the scatter plots exhibit
a clear shape. In particular, we are interested in observing
linear, superlinear, or chaotic patterns, although the Kendall
rank correlation values previously computed are not sensitive
to the linearity of these relations.

To illustrate the relation between values aggregated using
the inequality indices, Compiere is a representative example4.
In Figure 8 we distinguish a clear linear relation between ITheil
and IAtkinson, which also confirms the highest measured corre-
lation between these two indices among all indices considered.

The also high measured correlation between ITheil and
IGini, however, corresponds to a clear relation which visually
exhibits superlinear rather than linear growth. This observa-
tion agrees with the econometric-based distinction between
different dimensions of inequality [43], and the sensitivity of
the different inequality indices to different such dimensions.
For example, in econometrics one can distinguish between
inequality due to extreme relative wealth, among the less
extreme incomes, or due to extreme poverty [43]. In case
of SLOC, extreme relative wealth, i.e., inequality associated
with the exceptionally rich, corresponds to a non-egalitarian
distribution of functionality caused by systems having few
very big or complex components and many small or simple
ones. Analogously, inequality due to extreme poverty is caused
by systems having few very small components rather than few
very big ones. Inequality among the less extreme incomes
corresponds to a more uniform distribution of differences in
functionality among the components of the system.

It is known, for example, that the Theil index is highly
sensitive to inequality associated with the exceptionally rich,
while the Gini coefficient is highly sensitive to inequality
reflecting a wide spread of the less extreme incomes, without
much tendency for the majority of them to be bunched within
quite a narrow range [43], [56]. This results in a sharper
increase in ITheil as IGini increases, i.e., as the inequality
between the “rich” and the “poor” increases, which is visible
in Figure 8.

The high correlation values between ITheil and IHoover are
also supported by a relation similar to the one between ITheil
and IGini, which appears visually to be superlinear, although
we observe more dispersion, i.e. disagreement, towards the
“rich”. On the other hand, the chaotic pattern is observed
between ITheil and IKolm (Figure 2).

Next we study the relation between mean and some of
the other aggregation techniques with which it showed high

4The other systems in the Corpus exhibit similar patterns. For complete
results see www.student.tue.nl/X/b.n.vasilescu/scatterPlots/scatter SLOC.html
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Fig. 8. Shape of the relation between ITheil and each of IAtkinson, IGini,
IHoover, and IKolm.

correlation, using JRE as illustration (Figure 9). We observe a
linear relation between mean and IKolm. For median, standard
deviation and variance the relation is much more chaotic.
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Fig. 9. Shape of the relation between mean and IKolm (top left), median
(top right), standard deviation (bottom left), and variance (bottom right).

Finally, the close mathematical connections between stan-
dard deviation and variance, as well as between skewness
and kurtosis are witnessed by clear superlinear patterns in
Figure 10, using Tomcat as representative illustration.
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Fig. 10. Shape of the relation between skewness and kurtosis (left), and
standard deviation and variance (right).

Hence to summarize our answer to Question 2 from the
introduction, we note that linear, superlinear, as well as chaotic



patterns can be observed in the scatter plots. However high
correlation values do not always correspond to clear-shaped
relations (e.g., between mean and standard deviation). We
observe that linear or superlinear relations always correspond
to high correlation values, while chaotic patterns correspond
to both high and average/low correlation values.

C. Which index to choose?

Answering Questions 1 and 2 from the introduction, allows
us to provide a guideline when different aggregation tech-
niques should be used. The only inequality index showing
strong correlation with the mean is IKolm. Since the inter-
pretation of the mean is known to become unreliable for
skewed distributions [15], IKolm can be seen as more easily
interpretable alternative.

It might seem that since IGini, ITheil, IHoover and IAtkinson
convey the same information, all these indices are equally
appropriate. This is, however, not true as different indices have
different application domains, emphasize different dimensions
of inequality and possess different decomposability properties.
Neither ITheil nor IAtkinson are applicable to negative values,
while IGini and IHoover can be applied to any values as long as
the mean of the values being aggregated differs from 0. We
stress, however, that the range of IGini and IHoover becomes R in
presence of negative values, challenging interpretation of the
aggregated values. If the quality assessor believes presence of a
few very large (“rich”) modules to be undesirable, she should
use ITheil and IAtkinson as these indices are most sensitive to
the “rich”. Alternatively, if she chooses to focus on deviations
from a more uniform distribution of size among the compo-
nents of the system, IGini and IHoover are more appropriate as
they are more sensitive to mid-range inequality. Finally, if the
inequality index is intended to be used to explain the inequality
observed, the inequality index should be decomposable. ITheil
is the only decomposable index of the four and hence the only
one that can be used to also explain inequality [28].

VI. STUDYING THE EVOLUTION OF THE CORRELATION
BETWEEN AGGREGATION TECHNIQUES

In the second series of experiments we study the evolution
of the Kendall correlation between the aggregation techniques
on the Evolution Corpus, and we answer Question 3 from
the introduction. In order to better understand the evolution
of the correlation, we employ two thresholds for statistical
significance: we draw the correlation coefficients supported
by two-sided p-values at most equal to 0.01 as filled blue
squares, those supported by two-sided p-values between 0.01
and 0.05 as empty blue squares, and finally those supported
by two-sided p-values above 0.05 as empty blue triangles.

In the previous section we have observed high and statis-
tically significant correlation between IGini, ITheil, IHoover and
IAtkinson. For the Evolution Corpus5, Weka is a representative il-
lustration (Figure 11), which shows that this observation holds
across all versions, i.e., the correlation coefficient between

5For complete results see www.student.tue.nl/X/b.n.vasilescu/evolution/
SLOC.html
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ITheil and each of IGini, IAtkinson, and IHoover does not drop
below 0.8 and is always statistically very significant.
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Fig. 12. Evolution of Kendall correlation between IKolm and ITheil,
IAtkinson, respectively.

However, the evolution is different between ITheil and IKolm,
as well as between IAtkinson and IKolm. For example, for
Hibernate (Figure 12) we observe that the correlation became
statistically significant and, although still average (0.5), the
correlation coefficient significantly increased (from 0.2–0.3)
starting with v3.0 in both cases. Closer inspection revealed



that Hibernate underwent a significant increase in size when
moving from v2.1.8 (29 packages) to v3.0 (109 packages).

An interesting case is the correlation between mean and
IKolm, which we previously observed to be high (0.8) and
statistically significant in 90% of the Corpus. On the other
hand, in the Evolution Corpus, there are significant variations
in the correlation coefficient between different versions of
the system. We illustrate this in Figure 13 on Hibernate and
Weka. While correlation between mean and IKolm seems to
fluctuate without clear relation to system size, “jumps” of the
correlation values in both graphs of Figure 13 show major
releases such as 3.5.0 in Hibernate and 3.6.0 in Weka.
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Fig. 13. Evolution of Kendall correlation between mean and IKolm in
Hibernate and Weka.

To summarize our answer to Question 3, we note that:
• Consistently high (> 0.8) and statistically significant

correlation can be observed between IGini, ITheil, IHoover
and IAtkinson across the Evolution Corpus.

• Correlation between ITheil and IKolm, as well as between
IAtkinson and IKolm increases as the system size increases,
while correlation between mean and IKolm fluctuates
without clear relation to system size.

VII. CONCLUSIONS

A popular approach to assessing software maintainability
and predicting its evolution involves collecting and analyzing
software metrics. As metrics are usually defined on a micro-
level, and should provide insights in the evolution at the
macro-level, the metrics values should be aggregated. Two
main groups of aggregation techniques can be found in the
literature on software metrics: traditional aggregation tech-
niques such as the mean, median, or sum, and more recent
econometric aggregation techniques, such as the Gini, Theil,
Kolm, Atkinson, and Hoover inequality indices. Profound
comparison of different aggregation techniques was, however,
missing so far.

In this paper we present the results of an extensive compar-
ative study of both traditional and econometric aggregation

techniques, applied to lifting SLOC values from class to
package level in the 106 systems comprising the Qualitas
Corpus. Question 1 concerned agreement between different
aggregation techniques. We have observed that IGini, ITheil,
IHoover and IAtkinson show consistently high and statistically
significant correlation between them, and similarly, the corre-
lation between mean and IKolm is statistically significant, and
the highest among all other techniques considered.

Furthermore, we investigate the nature of the relation be-
tween various aggregation techniques (Question 2). We note
that linear (e.g., between ITheil and IAtkinson), superlinear (e.g.,
between ITheil and IGini), as well as chaotic (e.g., between
ITheil and IKolm) patterns can be observed in the scatter plots.
This led to the observation that some indices may be more
appropriate than others depending on which dimension of
inequality one is interested in emphasizing, the choice of
metric, or the intended application.

Finally, we study evolution of the correlation between
different aggregation techniques on a subset of 12 systems
from the Qualitas Corpus, comprising the Evolution Corpus
(Question 3). We note that consistently high (> 0.8) and
statistically significant correlation can be observed between
IGini, ITheil, IHoover and IAtkinson across the Evolution Corpus.
Moreover, correlation between ITheil and IKolm, as well as be-
tween IAtkinson and IKolm increases as the system size increases,
while correlation between mean and IKolm fluctuates without
clear relation to system size.

We consider a number of directions of future work. First, by
means of empirical studies we intend to compare the inequality
indices with the aggregation technique of [11]. Application of
inequality metrics to some of the Squale metrics and MQ will
allow us to cover both notions of “aggregation of software
metrics” (cf. Section III). From the econometric perspective
application of inequality indices to data involving multiple
economic indicators (metrics) is known as multidimensional
inequality indices [57]. Therefore, studying such multidimen-
sional inequality indices should also be considered as future
work. Finally, the comparative study presented in Section V
focused on aggregating the SLOC values of different Java
files. We intend to replicate the study by considering other
software metrics. Specifically, we intend to investigate limited-
range metrics such as the normalized distance from the main
sequence [17], [58], low variance metrics such as NOC and
DIT [59], [60] and metrics with negative values such as
MI [39].
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Squale Quality Model. Modèle enrichi d’agrégation des
pratiques pour Java et C++, INRIA, 2010. [Online]. Avail-
able: http://www.squale.org/quality-models-site/research-deliverables/
WP1.3 Practices-in-the-Squale-Quality-Model v2.pdf

[49] E. Langford, N. Schwertman, and M. Owens, “Is the property of being
positively correlated transitive?” The American Statistician, vol. 55,
no. 4, pp. 322–325, 2001.

[50] E. Tempero, “Qualitas Corpus 20101126 release notes,” http://
qualitascorpus.com/docs/history/20101126.html, 2010.

[51] K. Pearson, “Note on Regression and Inheritance in the Case of Two
Parents,” Royal Society Proceedings, vol. 58, pp. 240–242, 1895.

[52] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
no. 1/2, pp. 81–93, 1938.

[53] C. Spearman, “The proof and measurement of association between two
things,” The American journal of psychology, pp. 441–471, 1987.

[54] G. E. Noether, “Why Kendall tau?” Teaching Statistics, vol. 3, no. 2,
pp. 41–43, 1981.

[55] R Development Core Team, R: A language and environment for
statistical computing, R Foundation for Statistical Computing, Vienna,
Austria, 2010. [Online]. Available: http://www.R-project.org

[56] P. N. Conceicao and P. M. Ferreira, “The Young Person’s Guide to
the Theil Index: Suggesting Intuitive Interpretations and Exploring
Analytical Applications,” SSRN eLibrary, 2000.

[57] K.-Y. Tsui, “Multidimensional Generalizations of the Relative and Ab-
solute Inequality Indices: The Atkinson-Kolm-Sen Approach,” Journal
of Economic Theory, vol. 67, no. 1, pp. 251–265, 1995.

[58] R. Martin, “OO design quality metrics: An analysis of dependencies,”
1994. [Online]. Available: http://condor.depaul.edu/∼dmumaugh/OOT/
Design-Principles/oodmetrc.pdf

[59] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, 1994.

[60] G. Succi, W. Pedrycz, S. Djokic, P. Zuliani, and B. Russo, “An empirical
exploration of the distributions of the Chidamber and Kemerer object-
oriented metrics suite,” Empirical Softw. Eng., vol. 10, pp. 81–104, Jan.
2005.


