
Adding Sparkle to Social Coding: An Empirical Study of
Repository Badges in the npm Ecosystem

Asher Trockman,† Shurui Zhou,‡ Christian Kästner,‡ Bogdan Vasilescu‡
†University of Evansville, USA ‡Carnegie Mellon University, USA

ABSTRACT
In fast-paced, reuse-heavy, and distributed software development,
the transparency provided by social coding platforms likeGitHub is
essential to decisionmaking. Developers infer the quality of projects
using visible cues, known as signals, collected from personal profile
and repository pages. We report on a large-scale, mixed-methods
empirical study of npm packages that explores the emerging phe-
nomenon of repository badges, with which maintainers signal un-
derlying qualities about their projects to contributors and users.
We investigate which qualities maintainers intend to signal and
how well badges correlate with those qualities. After surveying
developers, mining 294,941 repositories, and applying statistical
modeling and time-series analyses, we find that non-trivial badges,
which display the build status, test coverage, and up-to-dateness
of dependencies, are mostly reliable signals, correlating with more
tests, better pull requests, and fresher dependencies. Displaying
such badges correlates with best practices, but the effects do not
always persist. In short, .

1 INTRODUCTION
Contemporary software development is characterized by increased
reuse and speed. Open-source software forges like GitHub host
millions of repositories of libraries and tools, which developers
reuse liberally [25], creating complex, often fragile networks of
interdependencies [11]. This has earned GitHub a reputation as a
one-stop shop for software development [39] and as an influencer
of practices in both open-source and industry [33]. The DevOps
culture [31, 46] also contributes to this acceleration, with its empha-
sis on automation and rapid deployment. As a result, developers
are expected to make more decisions at higher speed, e.g., finding
which libraries to depend on and which projects to contribute to.

A key enabler of this decision making process is the transparency
provided by social coding platforms like GitHub [20, 21]. The de-
velopment history of open-source GitHub projects is archived and
publicly accessible in a standardized format, and user pages dis-
play aggregate information about one’s contributions and social
standing in the community (e.g., through stars and watchers). This

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180209

transparency can enhance collaboration and coordination [21]. Us-
ing visible cues—known in the literature as signals—collected from
personal profile and repository pages, developers can better man-
age their projects and dependencies, communicate more efficiently,
become informed about action items requiring their attention, learn,
socialize, and form impressions about each other’s coding ability,
personal characteristics, and interpersonal skills [21, 38, 40, 57].

However, open-source ecosystems are also competitive. In order
to survive and thrive, projects must successfully attract and retain
contributors, and fend off competitors [16, 36, 42, 45]. In a social
coding environment, the visible signals enabled by transparency
can, therefore, be seen as a survival mechanism, with high profile
signalers benefiting the most. For example, more popular and fa-
mous projects attract more contributors [62], coding “rock stars”
collect thousands of followers [20], and visible traces of developer
actions and interactions are used in recruitment and hiring [13, 37].

Here we focus on repository badges, images such as ,
embedded into a project’s README, often generated on-demand,
reflecting the current status of online services the project is using,
e.g., continuous integration and dependency management. From a
signaling theory [52] perspective (§2), badges can be seen as eas-
ily observable signals used by maintainers to convey underlying
qualities of their projects, e.g., code quality and adherence to best
practices. The resulting increased transparency (hard to observe
qualities become salient) may impact users’ and contributors’ deci-
sion making and the project’s chances of survival. Badges can also
be seen as a gamification mechanism [23], i.e., a game-like incentive
designed to engage participants (§2); e.g., a badge with real-time
code coverage information may act as an incentive for contributors
to improve the project’s test suite. In summary, badges are a poten-
tially impactful feature in transparent, social coding environments.
However, the value and effects of badges are not well understood.

In this paper, we explore two main research questions regarding
badges. First, we explore the phenomenon quantitatively and quali-
tatively, and ask (RQ1)What are the most common badges and what
does displaying them intend to signal? Second, we analyze whether
badges indeed signal what developers expect, and ask (RQ2) Towhat
degree do badges correlate with qualities that developers expect? To
this end, we perform a large-scale mixed-methods empirical study
of the badges in npm, a large and vibrant open-source ecosystem for
JavaScript with documented interdependency-related coordination
challenges [11], wherein many badges originated. We observe the
frequency and historical adoption of badges among 294,941 npm
packages, we survey maintainers and contributors about their in-
tentions and perceptions, and we build regression models to test
hypotheses regarding developer perceptions (collected when ex-
ploring RQ1), such as, “coverage badges signal the importance of
tests and therefore attract more pull requests with tests.”

https://doi.org/10.1145/3180155.3180209

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Asher Trockman, Shurui Zhou, Christian Kästner, Bogdan Vasilescu

Our investigation reveals that badges are popular in npm, adopted
in 46 % of packages. The most frequent show the build status or ver-
sion of the latest release, but dependency managers, code coverage,
and download counts are also common. Maintainers intend to signal
various qualities with badges, and, indeed, we found among others
that build-status and coverage badges correlate with larger test
suites and encourage external contributors to include more tests,
popularity badges correlate with future gains in downloads, and
the introduction of dependency-manager badges correlates with a
lasting improvement in dependency freshness. Correlations are par-
ticularly strong for assessment signals, i.e., badges that test an under-
lying quality rather than just stating intentions. Our results provide
guidance for package maintainers to make more informed decisions
about badge adoptions, being more deliberate about what they in-
tend to signal and how that signal is supported. For users and con-
tributors, our results indicate which badges provide reliable signals.

In summary, we contribute (1) a survey among npm developers,
(2) a large scale analysis of 294,941 npm packages and their history,
and (3) an in-depth analysis (using multiple regression models
and time-series regression discontinuity designs) of 8 hypotheses
regarding the effect of badges on various qualities, showing many
badges are indeed reasonably reliable signals. Furthermore, (4) we
frame our discussion in the context of signaling theory and confirm
that badges based on assessment signals are more reliable.

2 THEORETICAL FRAMEWORK
We argue that badge are intended to signal an underlying quality
about the project to potential users and contributors. In addition,
certain badges (e.g., code coverage) may encourage certain kinds
of practices, or attempts to improve visible scores. Therefore, we
frame our study in the context of signaling theory and gamification.
Signaling theory. Signaling theory is widely applied to selection
scenarios in a range of disciplines, from economics [51] to biol-
ogy [63]. In these scenarios, the signaler benefits from actions taken
by the receiver (e.g., being selected over some alternative), which
would not have occurred in the absence of the signal. Signals are
observable pieces of information that indicate a hidden quality of
the signaler. Receiver cost to interpret the signal tends to outweigh
signal accuracy, with less reliable but more easily obtainable sig-
nals being preferred by receivers over more reliable signals that
are costlier to observe or assess [28]. The classical example in eco-
nomics is job market candidates signaling their quality through
education: holding a degree from a prestigious institution is easily
observable and communicates to potential employers the candi-
date’s ability, which is otherwise less readily observable [51]. Selec-
tion scenarios occur routinely in open-source, e.g., choosing which
libraries to depend on [11], repositories to watch [49], developers to
follow [10, 35] or hire [13, 37], and projects to contribute to [9, 14].

The phenomenon underlying signaling theory is information
asymmetry [52], which occurs between those having all the infor-
mation and those who could potentially make better decisions if
they had all the information. To reduce information asymmetry,
actors rely on observable signals (e.g., information in CVs). Informa-
tion asymmetry also occurs in the open-source selection scenarios
above. Even if activity traces are typically publicly accessible, not
all information is equally accessible, with some requiring special-
ized mining, e.g., of git histories and issue trackers. For example,

to avoid outdated, possibly vulnerable dependencies, developers
may adopt a dependency manager, e.g., Gemnasium, David [11, 41],
to receive notifications when a dependency is updated; however,
to potential users of the package, this practice is very difficult to
recognize unless it is made obvious. A badge reporting the result of
the same analysis, e.g., David’s , indicates pub-
licly that the tool is not only enabled, but also used regularly. That
is, we argue that repository badges are signals: by making certain
information about the project’s code base or practices transparent,
badges contribute to reducing information asymmetry between
maintainers (insiders) and users and contributors (outsiders).

Research has confirmed that in transparent, social coding envi-
ronments, observable signals in online profiles are used as indica-
tions of expertise and commitment [20, 38, 48, 55, 56], e.g., Stack
Overflow reputation score, GitHub followers and longest activity
streak. We expect that repository badges may have a similar effect.
Assessment signals. The literature distinguishes between conven-
tional signals and assessment signals [24]. Both are used, but the
former are not inherently reliable; the quality they indicate is estab-
lished by convention and the signal is typically cheap to produce,
therefore easy to fake. The latter are considered more reliable, be-
cause “the quality they signal is ‘wasted’ in the production of the
signal, and the signal tends to be more expensive to produce for an
individual with less of the quality” [48]. Therefore, for a signal to
be effective, it must be both: (i) observable, i.e., readily noticeable by
outsiders (otherwise it might go unnoticed), and (ii) costly to produce,
such that only higher quality signalers can absorb the cost to pro-
duce it [17]. There is a great diversity of badges which, despite being
equally observable on READMEs, vary widely in production cost.
Some, e.g., David’s , indicate relatively deep
technical qualities that are achieved with specific, arguably costly,
practices. Others indicate technical or non-technical but relatively
shallow qualities that are easy to look up elsewhere, e.g., ,

, and , and others still are mere statements of
intentions without any automated validation and thus without any
associated costs, e.g., and .

Our goal is to evaluate the reliability of badges as signals, by as-
sessing signal fit [17], i.e., the extent to which signals correspond to
the desirable unobservable quality of the signaler, described by the
strength of the statistical association between public information—
the signal—and private information—the unobservable quality.
Gamification. Using game-design elements in non-gaming con-
texts [23] is mainstream in “social programming” [6, 54] environ-
ments, e.g., on Q&A sites like Stack Overflow. These gamification
elements are known to motivate existing users [3, 15, 27] as well as
attract new users, at the detriment of other platforms [53, 58].

Despite being voluntarily displayed on project READMEs by
maintainers, and not “earned” based on performance and automati-
cally displayed by the platform, we argue that repository badges
are also gamification mechanisms. Since badges typically represent
best practices and tools (e.g., continuous integration, code cover-
age, dependency freshness), there is little incentive for maintain-
ers to display badges indicative of “bad” practices (e.g., ,

). Therefore, we expect that themere presence ofGitHub
badges correlateswith best practices (i.e., they are in a sense “earned”).
Furthermore, as we will discuss, badges such as may

An Empirical Study of Repository Badges in the npm Ecosystem ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

incentivize contributors to follow better testing practices. Hence,
GitHub badges may have a similar effect to Stack Overflow
badges, steering user behavior towards specific practices [4].
Understanding practices in software ecosystems.Many stud-
ies have looked into specific practices in software ecosystems, in-
cluding communication [8, 29, 32, 50], change planning [11, 12, 22,
44], dependency updates [5, 19, 30, 34, 41], static analysis [7, 64],
testing and continuous integration [31, 60, 65], and many others.
Badges and their underlying tools are also ecosystem-level practices.
In contrast to prior work, however, we specifically take a broader
view on badges as signals beyond individual tools and practices.

3 RQ1: BADGES ON npm
We study the adoption and effects of badges in the npm ecosystem.
npm is a package manager and corresponding repository launched
in 2010, currently hosting package releases for 500,000+ distinct
packages. It was originally designed for Node.js developers, but is
used more broadly by many web developers today. As in other pack-
age managers and repositories, e.g., Maven and RubyGems, an npm
package bundles files (typically JavaScript) with a README and
metadata (package.json), which includes the unique release version
and dependencies to other packages. A client installs and updates
dependencies from the central npm repository. The npm commu-
nity is generally considered innovation friendly, frequently adopts
external packages, values making it easy to contribute and pub-
lish packages, and shows a healthy competition between multiple
equivalent packages to solve any single problem [1, 11, 22, 61].

We chose npm because: (1) it provides API access to all package
releases and metadata, including download counts, (2) most npm
packages point to a GitHub repository, (3) the npm registry and
GitHub both prominently show the package’s README file, pro-
viding a common place where badges are displayed, and (4) the
npm community is innovation friendly and broadly experiments
with and adopts developer services [11, 41], including cloud-based
continuous integration, dependency managers, and badges.

3.1 Research Methods
To explorewhich badges are common andwhat they intend to signal
(RQ1), we conducted a survey and mined repositories at scale.
Survey design. To gauge perceptions and anticipated effects we
designed two online surveys targeting npm package maintainers
and corresponding GitHub contributors; the former focused on
what maintainers intend to signal about their packages by display-
ing badges and what effects, if any, they expect badges would have
on their users and contributors, while the latter focused on what
inferences contributors make about a package given its badges (for
the specific questions see appendix). Both groups were asked to
name specific badges when answering. We used mostly open-ended
questions with free-text answers, and we piloted the survey first.

We extracted contact information and commit counts per person
from the git logs of the 10,000 most popular npm packages by down-
loads, and classified developers as maintainers (≥ 33% of project
commits) or contributors (< 10 %). We resolved multiple aliases us-
ing standard heuristics about common first name/last name/email
formats [59]. We then randomly sampled two mutually exclusive

sets of contributors and maintainers, 300 each, and sent personal-
ized invitation emails (580 succeeded, 294 to maintainers and 286
to contributors). We received 32 maintainer and 57 contributor re-
sponses, for a total response rate of 15.3 %. Our respondents have a
median 5 years of experience with open source and many surveyed
maintainers have contributed to dozens of packages. We analyzed
the textual responses using standard open-coding techniques.
Repositorymining.We collected amultidimensional longitudinal
data set of 294,941 npm packages, as follows. We started mining all
npm packages on July 11, 2017 (512,834), then kept only 346,369 that:
(1) had metadata on downloads, releases, dependencies, dependents,
and maintainers and (2) linked to a GitHub repository. In 11,316
cases when multiple packages linked to the same GitHub repos-
itory,1 we kept only the most downloaded one, which further re-
duced the size of our sample to 322,734. Next, we attempted to clone
allGitHub repositories locally, and succeeded for 294,941 packages;
the others’ repositories were either private or missing.

To identify badges and their evolution, we used the git history of
each repository’s README file.2 This was iterative: We began by
matching the markdown expression typically used to insert an SVG
badge, i.e., [![Badge Name](Image URL)](Service URL), but
discovered packages with badges added as plain HTML, markdown
reference links, and PNG. Consequently, we converted the mark-
down to HTML and matched img tags. To reduce false positives
(not all images are badges), we curated a list of services frequently
associated with badges, e.g., Travis and Coveralls, and devised
regular expressions for classification. We then split all images into
other-badge or other-images and iteratively refined the classification
rules to define badge classes for specific services, such as Travis.
To support the iterative process, we generated web pages showing
all found badges per class to inspect them manually for accuracy.
As needed, we refined our classification until we reached stability
(very few false positives in each class) and until the other-badge
category comprised only obscure badges and non-badge images.
Overall, we identified 88 kinds of badges (examples in Table 1). By
analyzing READMEs longitudinally (following only first parents in
the commit history so as not to detect temporary discrepancies be-
tween the mainline and other branches), we could identify the dates
when badges were introduced or removed. Note that we analyzed
badges on GitHub, not npm. GitHub provides a finer temporal
granularity of commits, whereas npm typically shows the same
README files but only updates them with each new release.
Threats to validity. As typical for a survey, our sample may suf-
fer from selection bias. One should be careful when generalizing
the results beyond the studied corpus of npm packages with cor-
responding GitHub accounts. The npm community has certain
characteristics and results may differ in other communities; e.g.,
Python and Java developers may adopt innovations at a different
pace and may use different kinds of tools; not all package reposi-
tories show READMEs with badges as prominently as npm does.
Results may also differ outside of an open-source context, e.g., when
using badges to advertise practices among corporate teams.

1In most cases, code is developed together in one repository, but deployed as multiple
packages to reduce user download size when only parts of the project are needed.
2We considered all GitHub-supported filename extensions for markdown files (see
github.com/github/markup), most commonly README.md.

https://github.com/github/markup

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Asher Trockman, Shurui Zhou, Christian Kästner, Bogdan Vasilescu

Table 1: Categories of badges present in our data.

Badge Name Description Adoption ST

Quality Assurance
Travis CI Build status 92789 (31.5%) A
Coveralls Test coverage 17603 (6.0%) A
CodeClimate Coverage & static analysis 6652 (2.3%) A
CodeCov Test coverage 4788 (1.6%) A
Circle CI Build status 3518 (1.2%) A
AppVeyor Build status 2629 (0.9%) A
BitHound Static analysis & dep. mgmt 1181 (0.4%) A
SauceLabs Cross-browser testing 751 (0.3%) A
Inch CI Documentation 437 (0.1%) A

Dependency Management
David DM Version tracking 23601 (8.0%) A
Gemnasium Version tracking 2851 (1.0%) A
Greenkeeper Version tracking 1599 (0.5%) A
Snyk Vulnerability tracking 883 (0.3%) A
VersionEye Version & vuln. tracking 240 (0.1%) A

Information
Version npm/GitHub version 64200 (21.8%) L
License License information 6250 (2.1%) S
JS Standard Coding style 5299 (1.8%) S
Semantic Rel. Release strategy 1001 (0.3%) S
Commitizen Commit msg. conventions 705 (0.2%) S
Heroku Installation help 463 (0.2%) S
PRs Welcome Static information 299 (0.1%) S

Popularity
Downloads npm download statistics 15552 (5.3%) L
cdnjs Host of popular libraries 1902 (0.6%) L
Twitter Twitter link and stats 810 (0.3%) S
GitHub Stars Github statistics 630 (0.2%) L

Support
Gitter Chat & collaboration 4786 (1.6%) S
GitHub Issues Issue statistics 1213 (0.4%) L
Slack Chat & collaboration 688 (0.2%) S

Other
Donation link PayPal, Patreon, ... 1632 (0.6%) S
Donation stats Gratipay, Gittip, ... 919 (0.3%) L
Ember Observer Reviews and scoring 474 (0.2%) A

ST (signal type): A—assessment signal based on nontrivial analysis or aggregation;
L—lookup of readily available information; S—static statement of information

3.2 Survey Insights and Hypotheses
Maintainer respondents to our survey generally see badges as im-
portant and a vast majority (88 %) agree with the statement “I con-
sider the presence of badges in general to be an indicator of project
quality.” Among contributors, badges were seen as more controver-
sial: only 53 % agreed with the same statement and 61 % stated that
badges do not influence their decision to contribute to a package.
In their explanations some contributors indicated that badges pale
in comparison to other reasons for contribution, but many also say
that they consider them or expect to be influenced unconsciously.

Answers from both groups covered a spectrum of badges, most
commonly build status, downloads, latest version on npm, and test
coverage, but many others were also mentioned. We group badges
in the following categories (see also Table 1): quality assurance, de-
pendency management, information, popularity, support, and other.
Corresponding to the distinction in signaling theory (§2), in Table 1
we distinguish badges with different signaling types [24] depend-
ing on whether they show results of deeper analyses (assessment
signal), summarize readily available information, or merely state
unvalidated information (both conventional signals).

Most importantly, the survey provides insights into what main-
tainers intend to signal and what consequences they expect, as well
as insights into how contributors and users might interpret badges:

Quality assurance. All surveyed maintainers and most contribu-
tors (89 %) mentioned specific badges related to quality assurance.
Most maintainers (84 %) stated explicitly that they intend to signal
code and development quality—from “having any tests and running
them regularly,” to signaling good quality assurance practices more
generally, including striving for high coverage, standardizing code
layout, and using static analysis tools. Respondents often intended
to signal quality broadly, e.g., stating that their badges show that
their code was “built with love” or “well written” by an “experienced
developer” who pays “attention to quality.”
H1. The adoption of quality-assurance badges correlates with other
indicators of code quality (metric: test suite size).
H2. The adoption of quality-assurance badges correlates with in-
creased user confidence and attractiveness (metric: downloads).

Several maintainers (28 %) also indicated that continuous inte-
gration, test coverage, and static analysis badges set expectations
of contribution quality for new contributors. As one maintainer
phrases it, with a coverage badge, “PRs with new functionality tend
to include new tests, as not to decrease coverage.” This suggests
coverage badges may have an additional gamification effect relative
to other quality assurance badges.
H3. The adoption of a quality-assurance badge, and even more so of a
coverage badge, correlates with more external contributors including
tests (metric: percentage of PRs with tests).

Dependency management. Dependency-management badges
(mentioned in 26% of all responses) indicate whether direct and
indirect dependencies refer to outdated versions or even versions
with known vulnerabilities. Respondents indicate that good depen-
dency management practices (signaled with these badges) reduce
the chance of “conflicting versions of nested dependencies” and
indicate attention to updates and security patches.
H4. The adoption of dependency-management badges correlates with
fresher dependencies (metric: freshness, see below).

Information and navigation links. Though mentioned by many
(56 %), usually as convenient shortcuts, we expect that link-related
badges do not provide much signaling impact beyond other state-
ments or links in the package description. Respondents suggested
the following potential effects: Showing the latest npm version of a
package as a badge might encourage more users to more quickly
update to the latest version. Badges linking to npm, Heroku, CDNJS,
or other external sites make it convenient for users to download
and experiment with a package and may thus attract more users.
Badges indicating high code quality (including style conventions)
might encourage more users to attempt to read the code. Badges
indicating explicitly that the package is open for contributions may
lower the bar for new contributors. Badges indicating licenses can
make it easier for users to make adopting decisions. Nonetheless,
following signaling theory, we expect at most marginal effects.
H5. The adoption of a link-related badge does not correlate with
either popularity or code quality.

Popularity. Popularity badgeswerementioned in 25 % of responses.
Five maintainers explicitly mentioned that they intend to signal
package popularity, to “instill confidence in new users,” and sev-
eral contributors indicated that popularity is an important signal
when deciding between similar packages, because the “wisdom of

An Empirical Study of Repository Badges in the npm Ecosystem ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

●●●●

●

●

●

●
●●

●●●
●●●●

●●

●●●●

A
do

pt
io

n
ra

te

2012 2013 2014 2015 2016 2017

0.
00

0.
10

0.
20

0.
30

●●●

●

●

Quality assurance
Information
Dependency mgmt.
Popularity
Support

Figure 1: Badge adoption rate, by category; showing % of all
npm packages in a given month with 1+ badge of that type.

the crowd” has deemed a package safe to use or of high quality.
In addition, popularity is seen as a sign for likely sustainability.
Especially the npm-downloads badge was mentioned frequently as
an important addition to GitHub signals like stars and number of
contributors. While downloads can be looked up on npm, a badge
was often mentioned as a more convenient and direct means.
H6. The adoption of popularity-related badges in popular packages
correlates with more future downloads (metric: monthly downloads).

Support. Support badges were mentioned infrequently (9 %), but
some interpret them to signal “dedication to offering support.”
H7. The adoption of a support-related badges correlates with more
responsive support (metric: issue closing time).

Too many badges. An interesting facet to explore that came up a
few times in the survey is that packages with too many badges can
be perceived as cluttered or “trying too hard” and may be taken
less seriously: “People tend to overwhelm visitors with too many
(useless) badges, thus creating a contra effect and loosing the initial
purpose of having useful information.” Hence our final hypothesis:
H8. The number of badges correlates non-linearly with popularity.

3.3 Badge Popularity and Adoption
Of our 294,941npm packages, 46 % have at least one badge. Adoption
statistics per badge (Table 1 for the most popular) reveal that only
few badges are broadly adopted. Build status and version badges
are by far the most common, followed by dependency managers,
test coverage, and download statistics. A longitudinal analysis of
badge adoption (Fig. 1) shows that quality-assurance badges (Travis
CI primarily) were adopted early and quickly, but seemed to have
reached saturation (roughly every third new package adds a quality-
assurance badge). Other kinds of badges have been adopted later
and at lower rates; most seem to have reached saturation as well.

Badges tend to be adopted in groups and are not frequently
changed afterward. Of 136,865 packages with badges, 66 % adopted
multiple kinds, of which 82% did so within 24 hours. Combina-
tions of badges follow their overall popularity and typically involve
quality-assurance, information, and dependency-manager badges.
While there are often multiple badge-related commits when badges
are first adopted (including temporary removal), only 13 % of pack-
ages changed any badge more than 15 days after adopting their
first. Permanent badge removal is also rare (11 % of packages).

4 RQ2: EFFECTS OF BADGES
After providing an overview of badge adoption in practice and
collecting hypotheses about what their effects might be, we can

now test these hypotheses. In particular, we want to test to what
degree the presence of badges correlates with certain expected
qualities of the package, which we operationalize with measures
such as downloads or rate of external contributions with tests.

4.1 Data and Methods
Data analysis. To evaluate the badges’ signaling reliability we
proceed in three complementary steps per hypothesis.

Step 1: Correlation.We look for correlations between presence
of badges and differences in the quality they are signaling. This
analysis takes the outsider’s perspective of somebody looking at a
repository now, and explores whether badges are reliable signals for
certain qualities, independent of causal relationships, confounds,
or historic trends. In line with our hypotheses, we typically analyze
categories of badges together, as badges within a category can be
expected to represent similar signals. We use the non-parametric
WMW test to compare distributions and report Cliff’s delta.

Step 2: Additional information. Badges may correlate with various
qualities, but still be redundant or weaker predictors of those quali-
ties, compared to other signals. Here we explore whether badges
add information to explain the qualities beyond readily-available
signals, e.g., stars and issues shown on GitHub, downloads and
dependent packages shown on npm. To assess the information gain
with badges, we model the variability in the underlying quality
using hierarchical linear regression. Specifically, we compare the fit
of a base model, which includes only readily available signals and
control variables, and a full model, which adds badge predictors.
The difference, i.e., the added explanatory power attributable to
badges, suggests their association with deeper-level qualities.

We use different types of linear models depending on the re-
sponse variable (details with each result below), but always follow
the same procedure for model fit and diagnostics. First, we conserva-
tively remove outliers for predictors with exponential distributions,
i.e., those values exceeding k (1 + 2/n)median(x) + θ [43], where
θ is the exponential parameter [47], and k is computed such that
not more than 1% of values are labeled as outliers; among these are
high leverage points that disproportionally affect regression slopes,
affecting robustness. Second, we diagnose the models, checking
for multicollinearity (variance inflation factor, or VIF [2] below 3,
except between the interaction terms and their comprising factors,
which is expected), and checking if modeling assumptions hold (no
significant deviation from a normal distribution in QQ-plots, ran-
domly distributed residuals across the range). Finally, we consider
model coefficients important if they are statistically significant at
0.05 level, and we estimate their effect sizes from ANOVA analyses.

Step 3: Longitudinal analysis. Previous steps look at differences be-
tween packages that have badges now. A longitudinal analysis could
reveal whether packages with badges evolve differently than with-
out, and whether introducing a first badge (the intervention) has an
observable effect on the package’s quality as the package evolves.Here
we use a powerful time series analysis method—time series regres-
sion discontinuity design (RDD) [18]—to evaluate longitudinal effects
of displaying the first badge. With RDD, we estimate the magnitude
of a function’s discontinuity between its values at points just before
and just after an intervention. RDD is based on the assumption that
in the absence of an effect, the function’s trend after the intervention

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Asher Trockman, Shurui Zhou, Christian Kästner, Bogdan Vasilescu

would be continuous in the same way as prior to the intervention.
We consider the earliest display of a badge as the intervention, and
compare data about the signaled underlying qualities in 18 monthly
windows, 9 months on each side, centered around the adoption
month. Aligning the history on the intervention date, we can com-
pare 9-month trends before/after an intervention across many pack-
ages, looking for sudden jumps at the intervention and long-term
differences in trends. We use multiple regression to estimate the
trend in the response before the badge adoption (variable time in our
models, e.g., Table 2), and the changes in level (variable intervention)
and trend (variable time_after_intervention) after the badge adop-
tion, cf. [65]. By controlling for confounds in the multiple regression
(including presence of other badge classes), we evaluate whether the
change could be attributed to other factors than the intervention.

To account for projects that adopt multiple badges (§3.3), we
align on the first badge adoption but add controls for the adop-
tion of other badges if they occur within 15 days of the first badge
adoption. As usual, the controls allow us to isolate the effects of
individual badges. The intuition is that, given the resolution of our
analysis, interventions within 15 days can be considered as simul-
taneous. Later adoptions are not considered (existing only in 17,217
packages), but also do not systematically bias any specific month.
Repository mining and operationalization. Using the same
dataset (294,941 packages; §3.1), we collected, besides badge adop-
tion, data from three sources, both for a current snapshot for Steps 1
and 2 (July 2017) and longitudinally for Step 3 (monthly, January
2010—July 2017): (1) package metadata on npm using the npm API
(e.g., downloads, releases, dependencies), (2) GitHub project data
using the GitHub API and GHTorrent [26] (e.g., contributors,
issues, pull requests), and (3) the package’s git repository, cloned
locally (e.g., code size, badges, tests). Specifically, we collected the
following data. Representing readily-available signals of an npm
package, we collected download statistics (npm), the number of
stars and issues (GitHub), commit counts (git), and the size of the
README file in bytes (git). As further controls, we collected the
package’s age (npm), the size of the code base in bytes (git), the
number of dependencies per package (npm), and the number of
dependents, i.e., other packages depending on the package (npm).

We operationalize the qualities in our hypotheses with the follow-
ing metrics for which we collect both current and historic values:
• Indicator of code quality (H1): We measure the (relative) size
of the test suite, by identifying files and directories that refer
to test code, reusing the detector maintained by the package
search service npms.io. We measure size in bytes, as it is robust
to different test frameworks and file formats.
• Indicator of contribution quality (H3): We measure how many
pull requests contain test code (GitHub), using the same mecha-
nism to identify test-related files.
• Indicator of users and popularity (H2, H6, H5, H8): We collect
download counts from npm.
• Indicator of fresh dependencies (H4): Inspired by recentwork [19],
we design a freshness score that performs a similar analysis to de-
pendency managers, based on how many dependencies declared
in a package have a newer version that existed on npm at the
time (git, npm). For each package, we compute the average fresh-
ness of all direct dependencies, i.e., the average distance between

the specified version and the most recent release. Assuming that
larger version changes require more effort to update, we assign
a distance of 1 for each change of a patch version, 5 per minor
version change, and 20 per major version change. An up-to-date
dependency has distance 0. Details of the metric, including how
version ranges are handled, are described in the appendix.
• Indicator of support (H7): We collect the average time between
when an issue is first posted and when it is closed, for all GitHub
issues closed in July 2017, as the package’s average issue latency.

Threats to validity. Imperfect measures. Our operationalized mea-
sures can only capture some aspect of the underlying quality indi-
cated in the survey. For example, large test suites are an indicator
of good testing practices, but neither the only nor the most reliable
indicator. However, while individual packages may vary in their
practices, the large size of the data sets we study implies a reduc-
tion to the mean in terms of individual behavior. Therefore, we
expect that by averaging over thousands of packages in our regres-
sion models, our (imperfect) measures will meaningfully reflect the
intensity and directionality of underlying relationships between
badges and project qualities.

To ensure internal validity, in our analysis Steps 2 and 3, we
remove outliers and explore different operationalizations, whenever
practical, to improve robustness. We further account for many
covariates, especially other readily available signals, but we may
miss other confounds easily observable by humans but hard to
assess automatically, e.g., the quality of the documentation beyond
our proxy of README file size. Consequently, one must be careful
when generalizing our results beyond the studied measures.

Badges vs. practices. Typically, we cannot distinguish effects of
practice adoption from effects of badge adoption; hence, our results
can only be interpreted as exploring the reliability of the signal that
a badge provides. Our analysis also does not consider the specific
value shown on the badge (e.g., current coverage). Still, we expect
that badges are usually adopted to signal good practices, a badge
highlighting that a practice is not followed (e.g., low coverage)might
have a negative effect. We control for this indirectly in many mod-
els, e.g., by controlling for popularity in our analysis of downloads
(§4.3), but a more detailed analysis is outside the scope of this paper.

Beyond correlations.None of our three analysis steps can establish
a causal relationship between badges and the studied qualities.
Still, note how our three steps investigate each hypothesis from
complementary perspectives: Step 1 checks for basic correlations,
Step 2 explores the role of covariates and whether badges provide
additional insights, and Step 3 looks at whether adopting badges
leads to observable differences over time. The careful multi-faceted
analysis, spearheaded by the sophisticated time-series regression
discontinuity design, can indicate that correlations are not spurious
and associate with some underlying phenomenon.

4.2 Signals of Updated Dependencies (H4, H5)
We explore our hypotheses grouped by response variable and start
with a discussion of dependency freshness, as it clearly illustrates
our 3-step analysis. We expect that dependency-manager badges
correlate with more up-to-date and secure dependencies (H4), op-
erationalized with our freshness metric (see Sec. 4.1), and expect at
most a marginal effect from information-related badges (H5).

An Empirical Study of Repository Badges in the npm Ecosystem ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Dependency freshness models.

Basic Model Full Model RDD
response: freshness = 0 response: freshness = 0 response: log(freshness)

17.3% deviance explained 17.4% deviance explained R2
m = 0.04, R2

c = 0.35

Coeffs (Err.) LR Chisq Coeffs (Err.) LR Chisq Coeffs (Err.) Sum sq.

(Interc.) 3.54 (0.03)∗∗∗ 3.50 (0.03)∗∗∗ 1.45 (0.09)∗∗∗
Dep. −1.78 (0.01)∗∗∗ 32077.8∗∗∗ −1.79 (0.01)∗∗∗ 32292.8∗∗∗ −0.04 (0.02) 3.01
RDep. 0.22 (0.01)∗∗∗ 610.3∗∗∗ 0.21 (0.01)∗∗∗ 560.6∗∗∗ −0.01 (0.02) 0.11
Stars −0.08 (0.00)∗∗∗ 301.4∗∗∗ −0.09 (0.00)∗∗∗ 311.2∗∗∗ 0.00 (0.01) 0.00
Contr. −0.24 (0.01)∗∗∗ 500.5∗∗∗ −0.25 (0.01)∗∗∗ 548.7∗∗∗ −0.04 (0.02)∗ 4.39∗
lastU −0.65 (0.01)∗∗∗ 12080.9∗∗∗ −0.64 (0.01)∗∗∗ 11537.9∗∗∗ 0.01 (0.02) 0.37
hasDM 0.24 (0.03)∗∗∗ 116.1∗∗∗ 0.45 (0.08)∗∗∗ 2.43
hasInf 0.11 (0.02)∗∗∗ 48.3∗∗∗ 0.04 (0.05) 0.45
hasDM:hasInf −0.05 (0.04) 1.9 −0.32 (0.10)∗∗
hasOther 0.01 (0.01)
time 0.03 (0.00)∗∗∗ 82.99∗∗∗
intervention −0.93 (0.03)∗∗∗ 1373.22∗∗∗
time_after_intervention 0.11 (0.00)∗∗∗ 455.56∗∗∗
time_after_intervention:hasDM −0.10 (0.01)∗∗∗ 230.36∗∗∗
time_after_intervention:hasInf −0.00 (0.01) 1.14
time_after_intervention:hasDM:hasInf 0.03 (0.01)∗∗ 10.62∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05;
Dep: dependencies; RDep: dependents; Contr.: contributors; lastU: time since last update;
hasDM: has dependency-manager badge; hasInf: has information badge; hasOther: adopts

additional badges within 15 days

Correlation. Among the analyzed packages that had any depen-
dencies, 37 % had all up-to-date dependencies (freshness = 0). Sup-
porting H4 and, surprisingly, contradicting H5, Fig. 2a reveals a
small, but statistically significant difference: packages with a de-
pendency-manager badge or an information badge tend to have
overall fresher dependencies than packages without. We also find
that dependency-manager badges are overproportionally adopted
by packages with more dependencies.
Additional information. To test if the presence of badges corre-
lates with deeper-level freshness indicators beyond other readily
available signals, we fit a hurdle regression: a logistic model of
the likelihood of freshness = 0 and a linear regression to model
levels of freshness for packages with outdated dependencies. This
hybrid modeling approach is necessary due to the bimodality of
the data (Fig. 2a). As described in §4.1, the base model attempts to
explain freshness given readily-available signals (stars, dependents,
dependencies, contributors) and a control for time since package
was last updated; the full model additionally models the presence
of dependency-manager badges and information badges and their
interaction, with controls for other badges adopted within 15 days.

We show the base and full logistic regression model (predicting
whether a package has any outdated dependencies) in Table 2. The
base model explains 17.3 % of the deviance; the full model explains
17.4 %. The difference is small but statistically significant (DeLong’s
test for correlated ROC curves p < 0.001). The number of dependen-
cies and the time since the last update explain the majority of the
deviance, but dependency-manager badges add explanatory power:
the odds of having fresh dependencies increase by 27% (e0.24) for
packages with dependency-manager badges (H4). Surprisingly, the
effect of information badges is comparable: a 17 % increase in odds
(H5). For the linear regression (predicting the severity of outdated
dependencies for packages with outdated dependencies), we see a
similar small but significant difference between base (22.4 %) and
full models (22.8 %), and similar behavior of the badge predictors.
Longitudinal analysis. We collect a sample of 3,604 packages
that had dependencies and satisfy the RDD requirements (9 months

activity before and after the adoption of their first dependency-
manager badge), and keep 1,761 that had at least one month with
freshness , 0 during the +/- 9 (to avoid data bimodality issues). A
trend is already visible from the longitudinal freshness data plot-
ted for those packages in Fig. 3a, but a corresponding RDD model
controlling for confounds (column RDD3 in Table 2) confirms that:
The adoption of (any) badges correlates to a strong improvement in
freshness (see the intervention term in the model), by about a factor
2.5 on average,4 after which freshness slightly decays again over
time (the interpretation derives from the sum of the coefficients for
time and time after intervention in the model, cf. RDD [65], which
expresses the slope of the post-intervention trend). As hypothesized,
the adoption of a dependency-manager badge is associated with a
longer-lasting effect on freshness than other badges (see the inter-
action time after intervention * hasDM in the model; ≃ 80% slower
decay). The interaction effect of information badges is negligible.
Discussion.Results from all three steps confirmH4 that dependency-
manager badges signal practices that lead to fresher dependencies.
However, the effect is not exclusive to dependency-manager badges;
we speculate that any maintenance task involving README up-
dates with more badges might involve other project cleanup. Still,
the effect of dependency-manager badges is both stronger and
longer lived, as signaling theorywould predict given the assessment-
signal nature of dependency-manager badges. The results are simi-
lar for a security score that counts known vulnerabilities, similar
to the Snyk and nsp services (not shown due to space restrictions).

4.3 Signals of Popularity (H2, H5, H6, H8)
We expect that adopting quality-assurance and popularity badges
correlates with increases in downloads (H2, H6), and at most a
marginal effect from information-related badges (H5).We follow the
same three steps, analyzing monthly download counts as response.
Correlation. Supporting our hypotheses, comparing downloads
for packages with and without badges shown in Figure 2b, we
can see that for all categories of badges, those packages with a
badge tend to skew toward more downloads than packages without.
The differences are generally small, but statistically significant. As
hypothesized, the effect for information badges is smaller than for
quality assurance and popularity badges.
Additional information. We fit nested negative binomial regres-
sion models to explain the information added by badges for explain-
ing downloads over readily-available signals and controls. Since
already popular packages might benefit from badges in a different
way than less popular ones, we also model a dummy variable is-
Popular, that indicates whether the package was among the 10%
most downloaded packages in the prior month (June 2017). In the
model with badges, we then explore interactions with the isPopular
dummy. Both models (see appendix) explain downloads well: The
basic model explains 66 % of the deviance (with expected behavior
of all main predictors), and the full model explains 86 %. The differ-
ence is statistically significant; all badge categories have significant
effects. Modeling interactions reveals that quality-assurance badges

3Note that all packages modeled in the RDD adopted some badge during the alignment
month, hence the control hasOther is subsumed by experimental design.
4e0.93 factor decrease in freshness score; note the log-transformed response, hence
the exponentiation here.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Asher Trockman, Shurui Zhou, Christian Kästner, Bogdan Vasilescu
F

re
sh

ne
ss

Dep. Mgmt. Info

10
0

10
1

10
2

10
3

(−0.10) (−0.12)

(a) Dependency freshness
D

ow
nl

oa
ds

QA Popularity Info

10
0

10
2

10
4

10
6

Badge: FALSE TRUE

(0.18) (0.25) (0.12)

(b) Popularity

Te
st

 F
ol

de
r

(B
yt

es
)

QA Info

10
0

10
2

10
4

10
6

(0.55) (0.30)

(c) Test suite size

%
 P

R
s

w
/ t

es
ts

Coverage

0
.2

.4
.6

.8
1

(0.03)

(d) PRswith tests

T
im

e
(h

ou
rs

)

Support

10
0

10
1

10
2

10
3

(0.14)

(e) Issue latency

Figure 2: Distributions of response variables w/o and w/ badges. Horizontal lines depict medians. Cliff’s delta below each plot.
hasInfo: FALSE

hasDepMgmt: TRUE

hasInfo: TRUE

hasDepMgmt: FALSE

−8 −6 −4 −2 0 2 4 6 8 −8 −6 −4 −2 0 2 4 6 8

101

102

Month index relative to badge

F
re

sh
ne

ss

(a) Monthly freshness scores, rel. to dependency-
manager (left) and information badges (right).

101

102

103

104

−8 −6 −4 −2 0 2 4 6 8

Month index relative to badge

D
ow

nl
oa

ds

(b) Monthly downloads, rela-
tive to first badge.

0.0

0.1

0.2

0.3

0.4

0.5

−8 −6 −4 −2 0 2 4 6 8

Month index relative to badge

Te
st

 s
ui

te
 s

iz
e

/ P
ro

je
ct

 s
iz

e

(c) Ratio test suite size / pack-
age size, rel. to QA badge.

0.0

0.1

0.2

0.3

0.4

0.5

−8 −6 −4 −2 0 2 4 6 8

Month index relative to badge

F
ra

ct
io

n
P

R
s

w
ith

 te
st

s

(d) Fraction PRs with tests,
relative to QA badge.

Figure 3: Trends in response variables before and after badge adoption.

have a stronger effect in already popular packages: holding other
variables constant at their mean values, popular packages with a
quality-assurance badge tend to have about 2.2 times more down-
loads than comparable packages without; the effect is marginal
for less popular packages. For popularity badges and information
badges, we see smaller effects on popular packages (1.2×more, and
0.78× fewer downloads respectively). Again, the models show that
badges explain additional aspects of popularity.

100000

150000

200000

250000

0 2 4 6 8 10 12

Number of distinct badges

D
ow

nl
oa

ds

isPopular True

Badge Overload EffectsSeparately, we also fit a negative
binomial regression to model the
effect of the number of badges dis-
played (and controls). The model
(see appendix) suggests a nonlinear
relationship in popular packages,
with a predicted inflection point at
5 badges, which supports H8: Pack-
ages with many badges tend to have
fewer downloads. The effect for less
popular packages is negligible.
Longitudinal analysis. We compile a set of 1,762 packages that
satisfy the RDD requirements and have monthly download counts
after March 2015 (a limitation of the npm API). Specifically, we
align on the adoption month of their first badge for categories
pertaining to our hypotheses. Of these, 1,414 packages adopted
a quality-assurance badge, 892 an information badge, and 366 a
popularity badge. Prior to modeling, we inflation-adjusted each
package’s monthly download counts to account for npm’s natural
growth over time, based on the average download growth of 10,000
randomly-sampled packages with at least 10 dependents each, that
existed the entire period.

A visual inspection of trends around the first badge adoption
(Fig. 3b) shows potential intervention effects; an RDD model con-
trolling for confounds (see appendix) suggests a small positive
trend prior to the intervention, a sizeable positive discontinuity in
download counts at badge adoption (33 % increase on average), and,
surprisingly, a small negative slope after the intervention. That is,
badge adoption correlates with a sudden popularity boost, but the
acceleration is not sustained over time. The post-intervention de-
cay for quality-assurance badges is slower than average (8.8 %)—in
other words, the positive intervention effect lasts longer.
Discussion. Together, our three analysis steps paint a mixed pic-
ture for our hypotheses: All badges correlate with more downloads
in general, and a longitudinal analysis shows also positive interven-
tion effects for quality-assurance and popularity badges (H2, H5,
H6), but the pace is not sustained over time. Still, not all packages
with badges show similar effects: Those with assessment-signal
badges (namely quality-assurance) tend to maintain the popularity
boost that correlates with badge adoption longer, as signaling the-
ory would predict. At the same time, too many badges may seem
counterproductive (H8).

4.4 Signals of Test Suite Quality (H1, H5)
We expect that the adoption of quality-assurance badges correlates
with increases in test-suite quality (H1), operationalized as the
size of the test suite, and again at most a marginal effect from
information badges (H5). We follow our common 3-step analysis.
Correlation. The distribution of test suite sizes across packages
is bimodal (Figure 2c), as we cannot detect any test code in 39.3 %
of the packages. Packages with quality-assurance badges almost
always had tests (93.5%). Among the packages with tests, those
packages with quality-assurance badges tend to skew toward larger

An Empirical Study of Repository Badges in the npm Ecosystem ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

test suites, with statistically significant differences, supporting our
hypothesis. Surprisingly, so do packages with information badges.
Additional information. Given the bimodal distribution of test
suite sizes, as for dependency freshness (Sec. 4.2), we fit a hurdle
regression (see appendix), modeling separately the likelihood of
having any tests (logistic regression) and the test-folder size for
packages with non-empty test suites (negative binomial regression).
In addition to the usual controls, we control for the package size
(larger packages are expected to have larger test suites).

The base logistic model is plausible for explaining whether a
package has any tests (4.4 % deviance explained). The full model
with quality-assurance and information badges fits the data signif-
icantly better (22.6 % deviance explained), most being attributed
to quality-assurance badges. The full negative binomial regression
model shows a small improvement for explaining test-suite size
(78.2 % to 78.4 %). In both cases (having any tests and size of test
suite), the models show a strong positive effect of quality-assurance
badges (H1): on average, the odds of having tests increase by a
factor 18 for packages with quality-assurance badges; among pack-
ages with tests, those with quality-assurance badges are expected
to have 18.3 % larger test suites, other variables held constant. Infor-
mation badges have a marginal effect on their own but interact with
quality-assurance badges, strengthening their effect slightly (H5).
Longitudinal analysis. To avoid technical problems with the bi-
modal distribution, we study only how first badge adoption cor-
relates with the growth of an existing test suite, not whether it
coincided with creating a test suite in the first place. To this end,
we assemble a longitudinal sample of 2,855 packages that adopted a
quality-assurance badge and had at least 9 months of history with
non-empty test suites, both before and after the adoption month.
An RDD model controlling for confounds (see appendix) reveals
what is barely visible in the plotted data (Fig. 3c): there is a small
but statistically significant positive shift in test-suite size at the in-
tervention, but almost no change in slope after the badge adoption.
Stated differently, introducing quality-assurance badges coincides
with an improvement in the test suite, but does not trigger a lasting
change to testing practices. Information badges are correlated with
a much smaller effect.
Discussion. As expected by the surveyed maintainers, all three
steps indicate that quality-assurance badges are a good signal for a
project having some tests, though they are a weaker signal for the
size of the test suite (H1). Since the adoption of quality-assurance
badges is correlated with an intervention effect on test suite size, we
conclude that they may act as gamification mechanisms. Again, we
see a marginal change at the intervention for information badges;
the former can likely be explained through some overall perception
of well-managed projects (H5).

4.5 Signals of Better Contributions (H3)
We expect that adopting quality assurance, and especially cover-
age badges, correlates with better pull requests (H3), which we
operationalize as the likelihood of pull requests containing tests.
Correlation. A direct comparison (Fig. 2d) shows that, support-
ing our hypothesis, packages with quality-assurance badges tend
to have slightly higher fractions of pull requests with tests. Note

that coverage badges are adopted almost exclusively together with
continuous integration badges (97 %), but not vice versa (23 %).
Additional information.We compile a set of 3,344 packages hav-
ing more than 50 pull requests. Of these, 2,693 have at least one
badge (944 coverage badge, 2289 other quality-assurance badge) and
651 have no badges. We then fit a nested logistic regression (with
our standard controls; 12.9 % deviance explained in base model,
14.2 % in full; see appendix) to model the fraction of pull requests
per package containing tests. We find that non-coverage quality-
assurance badges generally have a positive effect, increasing the
chance of tests in a pull request by 24.1 % (all other factors held
constant); coverage and other quality assurance badges interact,
amplifying each other’s effects by an additional 16.8 % if a coverage
badge and a continuous-integration badge are adopted together.
Longitudinal analysis.We analyze a sample of 324 packages with
9 months of history on each side of the coverage badge adoption
month using our standard RDD approach. Visually (Fig. 3d), the pre
and post-badge periods are clearly distinguishable, with the post-
badge period showing more pull requests with tests. The model
(see appendix) confirms an increase in the monthly fraction of pull
requests containing tests after adopting quality-assurance badges
(on average 23 %), and a slow decay afterward that is further slowed
(5.7 %) if coverage badges are adopted additionally.
Discussion. All three steps support H3: Packages with quality-
assurance badges receive better pull request contributions; coverage
badges tend to amplify this effect, even increasing the duration of
the intervention effect, which supports our hypothesis that they are
gamification mechanisms, inspiring contributors to include tests in
order to not decrease the displayed coverage percentage.

4.6 Signals of Support (H7)
We expect that the adoption of support badges correlates with better
support (H7), operationalized as the average time to close issues
on GitHub.

Unfortunately, there are relatively few packages that have adopted
support badges (see Tab. 1). We limited our analysis to 826 packages
with at least 100 issues overall, and having at least one issue created
after July 1, 2017 and closed before Aug. 20; 397 of these packages
have support badges. In contrast to our hypothesis, we observe
that projects with a support badge have, on average, 20 % longer
closing times than those without; however, we also observe that
projects with support badges receive twice the number of issues
on average. When controlling for confounds, including the number
of issues (base model 21.2 %, full model 21.3 %), we find a similar
effect: Projects with support badges have a 30.2 % higher latency on
average. Removing packages that do not fulfill the RDD constraints
leaves only 76 packages. Controlling for the same confounds, the
RDD model only suggests that issue latency decreases with time,
but does not show an effect of support badges.

Overall, our findings for hypothesis H7 are negative and oppo-
site to our expectations. The results in Steps 1 and 2 are statistically
significant, but all steps suffer from small data sets. We have no ex-
planation for this effect beyond conjecturing that external support
platforms (Gitter and Slack) handle support requests in a way
that is not captured by our operationalization with GitHub issues.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Asher Trockman, Shurui Zhou, Christian Kästner, Bogdan Vasilescu

5 DISCUSSION AND CONCLUSION
We studied repository badges, a new phenomenon in social coding
environments like GitHub, with previously unknown effects.
Research questions.We answered two research questions. First,
exploring the most common types of badges and their intended
signals (RQ1), we found a diversity of badges and signals (Table 1):
some are merely static displays of (existing) information, others
aggregate information that is otherwise much harder to observe,
e.g., reflecting build status, up-to-dateness of dependencies, and
test coverage. As predicted by signaling theory (§2), our survey
revealed that package maintainers displaying badges have clear sig-
naling intentions doing so, and many contributors interpret badges
when evaluating packages. Second, exploring the fit of the signals
to underlying qualities hypothesized by our survey participants
(RQ2), we found that packages with badges tend to skew towards
having more of the quality they signal, with stronger effects for
the non-trivial quality-assurance and dependency-manager badges.
Moreover, the presence of badges consistently adds explanatory
power, albeit little, to readily-available signals. Time-series analysis
further revealed that the introduction of quality-assurance badges
tends to correlate with positive intervention effects: The underly-
ing qualities they signal tend to improve immediately, especially
improved dependency freshness and more tests in pull requests.
Gamification effects. Our results also revealed gamification ef-
fects (§2): Clear examples are the quality assurance badges display-
ing test coverage percentages (§4.5), which we found to correlate
with developers increasing the size and, arguably, quality of their
test suites. Dependency-management badges (§4.2) could also be
seen as a gamification mechanism: by making the up-to-dateness
of dependencies noticeable, they create an incentive for developers
to make the most out of their dependency-management tools by
staying up to date. One can imagine other badges with gamification
value, e.g., around bug fixing, being used in the future to encourage
desirable practices. However, we advocate caution in implement-
ing gamification and acknowledge the risk of creating the wrong
incentives, e.g., writing tests only to maximize coverage.
The power of assessment signals. As discussed in §2, signal-
ing theory makes an interesting distinction between conventional
signals and assessment signals, where the latter require that the sig-
naler actually possesses the signaled quality. Although a few survey
participants suggested intended signals for information badges and
support badges (§3.2), the theory predicts that, without an associ-
ated cost or analysis, they are less reliable signals. Our results seem
to confirm that quality assurance, dependency manager, and pop-
ularity badges (mostly assessment signals) provide more reliable
signals than information badges (mostly conventional signals). For
example, the effect on freshness is stronger and longer lasting for
the assessment signal. Interestingly, information badges often do
signal something, even outside their domain of cost (in fact, in data
exploration we often also found other small effects of other badges
on various qualities). We speculate that badges are often adopted
during a general maintenance phase in which also test suites or
dependencies are improved, but we expect that only assessment
signals correlate with lasting change (§4.2).

The results encourage more badges to be designed as assessment
signals. For example, several badges that currently only state inten-
tions, such as or , could be redesigned
to report analysis result for the underlying quality, such as past con-
formance to coding standards or responsiveness to support requests.
Such badges may encourage stronger conformance and even ac-
crue gamification benefits. Interestingly, Slack offers multiple kinds
of badges, including one inviting users to join () and one
that shows the number of currently active and registered users
(). In practice though, most package maintainers with
a Slack badge adopt the former (conventional signal) rather than
the latter (assessment signal). Our results indicate that maintainers,
when they have the choice and are serious about signaling their
dedication, should adopt the assessment-signal badge.
Badges vs practices.We emphasize that in most cases effects as-
sociated with non-trivial badges are inextricably linked to effects
associated with the badges’ corresponding tools or practices. For
many kinds of badges, the badge is the only (easily) externally
observable indicator of the tool’s use (e.g., ,

). While effects associated with adopting continuous
integration [31, 60, 65], static analysis [7, 64], and dependency-
management tools [41] on software development practices have
been studied by prior work, our approach is unique in that we focus
on the signaling dimension added by repository badges to these
and other tools, previously overlooked in the software engineering
signaling literature (e.g., [20, 38, 48, 55, 56]). Further delineating
effects associated with badges from effects associated with the
tools themselves goes beyond the scope of this work, but some
preliminary experiments with the continuous integration service
Travis, which is detectable independently of its badge through a
travis.yml configuration file in the repository, suggest that while
the observed effects of adopting the tool are similar to the effects at
the badge adoption time, badges seem to have a small amplifying ef-
fect. Pending further validation, this is encouraging for researchers,
in that badges might be a reliable indicator for longitudinal studies
of practices that are hard to detect otherwise, because there are no
clear traces of the practice in the repository, beyond the badge.
Implications for practitioners. Our results provide guidance on
which qualities are usually signaled with badges and which signals
tend to be more reliable. Therefore, package maintainers can make
more deliberate choices about badges (e.g., limiting conventional
signals), service developers can design badges more carefully (e.g.,
providing an assessment signal based on some analysis of past
conformance), and package users and contributors can decide which
badges to use as indicators of underlying practices and as starting
points to investigate deeper qualities. Overall: .
Acknowledgements. Many thanks to respondents to our survey!
Trockman was supported through Carnegie Mellon’s Research Ex-
periences for Undergraduates in Software Engineering. Kästner
and Zhou have been supported in part by the NSF (awards 1318808,
1552944, and 1717022) and AFRL and DARPA (FA8750-16-2-0042).
Vasilescu has been supported in part by the NSF (award 1717415).

A ADDITIONAL MATERIAL
Plots, models, and exact survey questions are available online at
https://github.com/CMUSTRUDEL/npm-badges.

https://github.com/CMUSTRUDEL/npm-badges

An Empirical Study of Repository Badges in the npm Ecosystem ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. 2017. Why Do Developers Use Trivial Packages? An Empirical Case
Study on npm. In Proc. Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE). ACM.

[2] Paul D Allison. 1999. Multiple regression: A primer. Pine Forge Press.
[3] Bilal Amir and Paul Ralph. 2014. Proposing a theory of gamification effectiveness.

In Companion Proc. Int’l Conf. Software Engineering (ICSE). ACM, 626–627.
[4] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. 2013.

Steering user behavior with badges. In Proc. Int’l Conf. World Wide Web (WWW).
ACM, 95–106.

[5] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. 2015. How the Apache community upgrades dependencies:
An evolutionary study. Empirical Software Engineering 20, 5 (2015), 1275–1317.

[6] Andrew Begel, Jan Bosch, and Margaret-Anne Storey. 2013. Social networking
meets software development: Perspectives from GitHub, MSDN, Stack Exchange,
and TopCoder. IEEE Software 30, 1 (2013), 52–66.

[7] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.
Analyzing the state of static analysis: A large-scale evaluation in open source soft-
ware. In Proc. Int’l Conf. Software Analysis, Evolution and Reengineering (SANER),
Vol. 1. IEEE, 470–481.

[8] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swami-
nathan. 2006. Mining email social networks. In Proc. Working Conf. Mining
Software Repositories (MSR). ACM, 137–143.

[9] Christian Bird, Alex Gourley, Prem Devanbu, Anand Swaminathan, and Greta
Hsu. 2007. Open borders? Immigration in open source projects. In Proc. Working
Conf. Mining Software Repositories (MSR). IEEE, 6.

[10] Kelly Blincoe, Jyoti Sheoran, Sean Goggins, Eva Petakovic, and Daniela Damian.
2016. Understanding the popular users: Following, affiliation influence and
leadership on GitHub. Information and Software Technology 70 (2016), 30–39.

[11] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016.
How to break an API: Cost negotiation and community values in three software
ecosystems. In Proc. Int’l Symp. Foundations of Software Engineering (FSE). ACM,
109–120.

[12] John Businge, Alexander Serebrenik, and Mark GJ van den Brand. 2015. Eclipse
API usage: the good and the bad. Software Quality Journal 23, 1 (2015), 107–141.

[13] Andrea Capiluppi, Alexander Serebrenik, and Leif Singer. 2013. Assessing tech-
nical candidates on the social web. IEEE Software 30, 1 (2013), 45–51.

[14] Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and Vladimir Filkov.
2015. Developer onboarding in GitHub: the role of prior social links and language
experience. In Proc. Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE). ACM, 817–828.

[15] Huseyin Cavusoglu, Zhuolun Li, and Ke-Wei Huang. 2015. Can gamification mo-
tivate voluntary contributions? The case of Stack Overflow Q&A community. In
Companion Proc. Conf. Computer Supported Cooperative Work & Social Computing
(CSCW). ACM, 171–174.

[16] Jailton Coelho andMarco Tulio Valente. 2017. WhyModern Open Source Projects
Fail. In Proc. Europ. Software Engineering Conf./Foundations of Software Engineer-
ing (ESEC/FSE). ACM.

[17] Brian L Connelly, S Trevis Certo, R Duane Ireland, and Christopher R Reutzel.
2011. Signaling theory: A review and assessment. Journal of Management 37, 1
(2011), 39–67.

[18] Thomas D Cook, Donald Thomas Campbell, and Arles Day. 1979. Quasi-
experimentation: Design & analysis issues for field settings. Vol. 351. Houghton
Mifflin Boston.

[19] Joël Cox, Eric Bouwers, Marko van Eekelen, and Joost Visser. 2015. Measuring De-
pendency Freshness in Software Systems. In Proc. Int’l Conf. Software Engineering,
Volume 2. IEEE Press, 109–118.

[20] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proc. Conf. Computer Supported Cooperative Work (CSCW). ACM, 1277–1286.

[21] Laura Dabbish, Colleen Stuart, Jason Tsay, and James Herbsleb. 2013. Leveraging
transparency. IEEE Software 30, 1 (2013), 37–43.

[22] Alexandre Decan, Tom Mens, and Maëlick Claes. 2017. An empirical comparison
of dependency issues in OSS packaging ecosystems. In Proc. Int’l Conf. Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2–12.

[23] Sebastian Deterding, Miguel Sicart, Lennart Nacke, Kenton O’Hara, and Dan
Dixon. 2011. Gamification. using game-design elements in non-gaming contexts.
In Proc. Conf. Human Factors in Computing Systems (CHI), Extended Abstracts.
ACM, 2425–2428.

[24] Judith Donath. 2007. Signals in social supernets. Journal of Computer-Mediated
Communication 13, 1 (2007), 231–251.

[25] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. 2017. Some from
here, some from there: cross-project code reuse in GitHub. In Proc. Working Conf.
Mining Software Repositories (MSR). IEEE, 291–301.

[26] Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and Andy Zaidman.
2014. Lean GHTorrent: GitHub data on demand. In Proc. Working Conf. Mining

Software Repositories (MSR). ACM, 384–387.
[27] Scott Grant and Buddy Betts. 2013. Encouraging user behaviour with achieve-

ments: an empirical study. In Proc. Working Conf. Mining Software Repositories
(MSR). IEEE, 65–68.

[28] Tim Guilford and Marian Stamp Dawkins. 1991. Receiver psychology and the
evolution of animal signals. Animal Behaviour 42, 1 (1991), 1–14.

[29] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, and Arie
VanDeursen. 2013. Communication in open source software developmentmailing
lists. In Proc. Working Conf. Mining Software Repositories (MSR). IEEE, 277–286.

[30] Joseph Hejderup. 2015. In dependencies we trust: How vulnerable are dependencies
in software modules? Master’s thesis. TU Delft, The Netherlands.

[31] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, Costs, and Benefits of Continuous Integration in Open-source
Projects. In Proc. Int’l Conf. Automated Software Engineering (ASE). ACM, 426–
437.

[32] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer. 2017. Clas-
sifying developers into core and peripheral: An empirical study on count and
network metrics. In Proc. Int’l Conf. Software Engineering (ICSE). IEEE Press,
164–174.

[33] Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer, and Daniel M
German. 2015. Open source-style collaborative development practices in com-
mercial projects using GitHub. In Proc. Int’l Conf. Software Engineering (ICSE).
IEEE, 574–585.

[34] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2017. Do developers update their library dependencies? Empirical Software
Engineering (2017), 1–34.

[35] Michael J Lee, Bruce Ferwerda, Junghong Choi, Jungpil Hahn, Jae Yun Moon,
and Jinwoo Kim. 2013. GitHub developers use rockstars to overcome overflow
of news. In Proc. Conf. Human Factors in Computing Systems (CHI), Extended
Abstracts. ACM, 133–138.

[36] M Lynne Markus and Brook Manville Carole E Agres. 2000. What makes a virtual
organization work? MIT Sloan Management Review 42, 1 (2000), 13.

[37] Jennifer Marlow and Laura Dabbish. 2013. Activity traces and signals in software
developer recruitment and hiring. In Proc. ACMConference on Computer Supported
Cooperative Work (CSCW). ACM, 145–156.

[38] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. 2013. Impression formation
in online peer production: activity traces and personal profiles in GitHub. In Proc.
Conf. Computer Supported Cooperative Work (CSCW). ACM, 117–128.

[39] Cade Metz. 2015. How GitHub Conquered Google, Mi-
crosoft, and Everyone Else. https://www.wired.com/2015/03/
github-conquered-google-microsoft-everyone-else/. (2015).

[40] Vishal Midha and Prashant Palvia. 2012. Factors affecting the success of Open
Source Software. Journal of Systems and Software 85, 4 (2012), 895–905.

[41] Samim Mirhoseini and Chris Parnin. 2017. Can Automated Pull Requests Encour-
age Software Developers to Upgrade Out-of-Date Dependencies?. In Proc. Int’l
Conf. Automated Software Engineering (ASE). to appear.

[42] Audris Mockus, Roy T Fielding, and James D Herbsleb. 2002. Two case studies of
open source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology (TOSEM) 11, 3 (2002), 309–346.

[43] Jagdish K Patel, CH Kapadia, and Donald Bruce Owen. 1976. Handbook of
statistical distributions. M. Dekker.

[44] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2014. Semantic Version-
ing versus Breaking Changes: A Study of the Maven Repository. In Proc. Int’l
Working Conf. Source Code Analysis and Manipulation (SCAM). IEEE Computer
Society, 215–224.

[45] Eric S Raymond. 2001. The Cathedral & the Bazaar: Musings on linux and open
source by an accidental revolutionary. O’Reilly Media, Inc.

[46] RightScale. 2016. State of the Cloud Report: DevOps
Trends. http://www.rightscale.com/blog/cloud-industry-insights/
new-devops-trends-2016-state-cloud-survey. (2016).

[47] Peter J Rousseeuw and Christophe Croux. 1993. Alternatives to the median
absolute deviation. J. Amer. Statist. Assoc. 88, 424 (1993), 1273–1283.

[48] N Sadat Shami, Kate Ehrlich, Geri Gay, and Jeffrey T Hancock. 2009. Making
sense of strangers’ expertise from signals in digital artifacts. In Proc. Conf. Human
Factors in Computing Systems (CHI). ACM, 69–78.

[49] Jyoti Sheoran, Kelly Blincoe, Eirini Kalliamvakou, Daniela Damian, and Jordan
Ell. 2014. Understanding watchers on GitHub. In Proc. Working Conf. Mining
Software Repositories (MSR). ACM, 336–339.

[50] Leif Singer, Fernando Figueira Filho, and Margaret-Anne Storey. 2014. Software
engineering at the speed of light: How developers stay current using Twitter. In
Proc. Int’l Conf. Software Engineering (ICSE). ACM, 211–221.

[51] Michael Spence. 1973. Job market signaling. The Quarterly Journal of Economics
87, 3 (1973), 355–374.

[52] Michael Spence. 2002. Signaling in retrospect and the informational structure of
markets. The American Economic Review 92, 3 (2002), 434–459.

[53] Megan Squire. 2015. “Should We Move to Stack Overflow?” Measuring the Utility
of Social Media for Developer Support. In Proc. Int’l Conf. Software Engineering
(ICSE), Vol. 2. IEEE, 219–228.

https://www.wired.com/2015/03/github-conquered-google-microsoft-everyone-else/
https://www.wired.com/2015/03/github-conquered-google-microsoft-everyone-else/
http://www.rightscale.com/blog/cloud-industry-insights/new-devops-trends-2016-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/new-devops-trends-2016-state-cloud-survey

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Asher Trockman, Shurui Zhou, Christian Kästner, Bogdan Vasilescu

[54] Margaret-Anne Storey, Leif Singer, Brendan Cleary, Fernando Figueira Filho, and
Alexey Zagalsky. 2014. The (r)evolution of social media in software engineering.
In Proc. Workshop on the Future of Software Engineering. ACM, 100–116.

[55] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and tech-
nical factors for evaluating contribution in GitHub. In Proc. Int’l Conf. Software
Engineering (ICSE). ACM, 356–366.

[56] Jason Tsay, Laura Dabbish, and James D Herbsleb. 2013. Social media in trans-
parent work environments. In Proc. International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE). IEEE, 65–72.

[57] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. 2015. Perceptions
of diversity on GitHub: A user survey. In Proc. Int’l Workshop Cooperative and
Human Aspects of Software Engineering (CHASE). IEEE, 50–56.

[58] Bogdan Vasilescu, Alexander Serebrenik, Prem Devanbu, and Vladimir Filkov.
2014. How social Q&A sites are changing knowledge sharing in open source
software communities. In Proc. Conf. Computer Supported Cooperative Work &
Social Computing (CSCW). ACM, 342–354.

[59] Bogdan Vasilescu, Alexander Serebrenik, and Vladimir Filkov. 2015. A Data Set
for Social Diversity Studies of GitHub Teams. In Proc. Working Conf. Mining
Software Repositories (MSR). IEEE, 514–517.

[60] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and Productivity Outcomes Relating to Continuous Integra-
tion in GitHub. In Proc. Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE) (ESEC/FSE). IEEE, 805–816.

[61] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A look at the
dynamics of the JavaScript package ecosystem. In Proc. Working Conf. Mining
Software Repositories (MSR). IEEE, 351–361.

[62] Kazuhiro Yamashita, Yasutaka Kamei, Shane McIntosh, Ahmed E Hassan, and
Naoyasu Ubayashi. 2016. Magnet or sticky? Measuring project characteristics
from the perspective of developer attraction and retention. Journal of Information
Processing 24, 2 (2016), 339–348.

[63] Amotz Zahavi. 1975. Mate selection—a selection for a handicap. Journal of
Theoretical Biology 53, 1 (1975), 205–214.

[64] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Mas-
similiano Di Penta. 2017. How open source projects use static code analysis
tools in continuous integration pipelines. In Proc. Working Conf. Mining Software
Repositories (MSR). IEEE, 334–344.

[65] Yangyang Zhao, Yuming Zhou, Alexander Serebrenik, Vladimir Filkov, and Bog-
dan Vasilescu. 2016. The Impact of Continuous Integration on Other Software
Development Practices: A Large-Scale Empirical Study. In Proc. Int’l Conf. Auto-
mated Software Engineering (ASE). IEEE.

	Abstract
	1 Introduction
	2 Theoretical Framework
	3 Badges on npm
	3.1 Research Methods
	3.2 Survey Insights and Hypotheses
	3.3 Badge Popularity and Adoption

	4 Effects of Badges
	4.1 Data and Methods
	4.2 Signals of Dependency Management
	4.3 Signals of Popularity
	4.4 Signals of Test Suite Quality
	4.5 Signals of Better Contributions
	4.6 Signals of Support

	5 Discussion and Conclusion
	A Additional Material
	References

