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Scientific software is essential to scientific innovation and in many ways it is distinct from other types of
software. Abandoned (or unmaintained), buggy, and hard to use software, a perception often associated with
scientific software can hinder scientific progress, yet, in contrast to other types of software, its longevity is
poorly understood. Existing data curation efforts are fragmented by science domain and/or are small in scale
and lack key attributes. We use large language models to classify public software repositories in World of
Code into distinct scientific domains and layers of the software stack, curating a large and diverse collection
of over 18,000 scientific software projects. Using this data, we estimate survival models to understand how
the domain, infrastructural layer, and other attributes of scientific software affect its longevity. We further
obtain a matched sample of non-scientific software repositories and investigate the differences. We find that
infrastructural layers, downstream dependencies, mentions of publications, and participants from government
are associated with a longer lifespan, while newer projects with participants from academia had shorter
lifespan. Against common expectations, scientific projects have a longer lifetime than matched non-scientific
open-source software projects. We expect our curated attribute-rich collection to support future research on
scientific software and provide insights that may help extend longevity of both scientific and other projects.
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1 Introduction
Computing is central to science, enabling next-generation simulations and data analyses that drive
innovations in fields like medicine, energy, climate science, and engineering [Cerf 2024]. These
advances all depend on an ever-growing ecosystem of open-source and community-driven scientific
software. In the past two decades, the scientific software community has largely moved away from
privately-developed software used by small teams, and towards open science and open data as
well as FAIRness (findability, accessibility, interoperability, and reusability) [Fouilloux et al. 2023;
Lamprecht et al. 2020; Ramachandran et al. 2021].

As this ecosystem has grown, however, so too have concerns about its sustainability, understood
broadly as its ability to endure [Becker et al. 2015], or to be maintained in a state where it continues
to provide value to the scientists using it (e.g., [Morris 2021; Trainer et al. 2014]). There are many
challenges to sustaining open-source software (OSS) [Chengalur-Smith et al. 2010; Coelho et al.
2017; Valiev et al. 2018], to which scientific OSS adds a unique set. These include insufficient
training in software development on the part of researcher-developers [Howison and Herbsleb
2011], interdisciplinary collaboration challenges [Sun et al. 2024], mismatched priorities of science
funders that tend not to value software work highly [Johanson et al. 2018], and a need for highly
specialized skills for ongoing maintenance to not only maintain compatibility, portability, etc., but
also scientific relevance [Rechert et al. 2021]. In short, progress has been promising but scaling
sustainable and trustworthy OSS software still hinders scientific advances.
However, while there is increasing recognition of the importance of scientific OSS and of the

challenges to sustaining this digital infrastructure, we lack a centralized view of this infrastructure
and its state of maintenance. We also lack empirical evidence on the key factors that influence the
health and sustainability of scientific OSS. Both are critically needed, e.g., to draw attention to
critical scientific OSS projects that are undermaintained and at risk of becoming abandoned, and to
help guide resource allocation.
To this end, in this paper, we report on a two-part empirical study (Figure 1). First, we present

a novel approach to identify scientific OSS repositories and classify them in terms of scientific
domain and software stack layer (from small-scale applications to infrastructure), resulting in a
dataset of 18,247 repositories. Second, we conduct survival analyses of these repositories, modeling
the factors associated with a higher risk of becoming abandoned and estimating how the risk of
becoming abandoned compares to a matched set of non-scientific OSS projects.
Our analysis reveals several key insights: Many scientific software repositories lack mentions

of publications or funding, and thus risk being overlooked. Mathematics-related projects exhibit
the longest average lifespan, whereas projects in computer science have the shortest. Scientific
infrastructure-layer projects demonstrate the greatest longevity, supported by community in-
volvement, more downstream users, and government participation. Projects with more upstream
dependencies and academic involvement tend to have shorter lifespans. And finally, scientific OSS
tends to survive longer than non-scientific counterparts.

In short, the contributions of our work are: (1) a validated AI-assisted methodology for detecting
scientific software repositories at scale, (2) a cross-cutting dataset of 18,247 scientific software
repositories spanning different scientific domains and technology stack layers, (3) quantitative
findings on scientific software longevity including survival curves and proportional hazards models,
and (4) a comparison between scientific OSS and generic OSS repositories.

2 Background
Before we present our research questions, we start with some background on the scientific software
ecosystem and the challenges to its sustainability, to set the stage.
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Fig. 1. A visual walkthrough of the methodology used in our paper.

2.1 The Scientific Software Ecosystem
Scientific software broadly refers to software that is used for scientific purposes (see [Kanewala
et al. 2014]), e.g., domain-specific simulations, numerical libraries, visualization tools, and workflow
managers [Sochat et al. 2022]. It plays a central role in the scientific enterprise and drives discoveries
that advance our well-being, prosperity, security, and understanding of the universe.
Scientific software development has had a long and storied history [Dyson 2012], but largely

independent from conventional software development [Faulk et al. 2009]. Early-days scientific
software was, as a rule, developed in private by small independent teams of domain scientists and
mathematicians without formal training in software engineering [Johanson et al. 2018]. In the past
decade and a half, a convergence of different factors has forced the scientific community to revisit
how it develops software; these include a crisis of lost productivity and credibility of results due to
poor software quality [Johanson et al. 2018], scientific challenges that cannot be solved without
integrated multidisciplinary solutions [Ober et al. 2017], and a shift toward greater openness in
science through the sharing of code and data [Ramachandran et al. 2021]. This has led to scientific
software becoming increasingly (1) community-driven (c.f., [Bonomi 2019; Charles et al. 2020]),
(2) open source [Hasselbring et al. 2020; Katz et al. 2018], and (3) produced both by researchers
who have a growing interest in software engineering best practices [Adorf et al. 2018; Dubey et al.
2020; Haider et al. 2021; Lee 2018; Queiroz et al. 2017] and a growing number of research software
engineering (RSE) professionals [Baxter et al. 2012; Brett et al. 2017; Cohen et al. 2020].

Today, scientific software is part of a predominately open-source software ecosystem (or SECO)
— also referred to by [Jansen et al. 2022] as the Worldwide Research Software Ecosystem (WRSE).
Here, we use the definition by [Manikas et al. 2013], which is that an ecosystem encompasses
“the interaction of a set of actors on top of a common technological platform that results in a
number of software solutions”. That is, we have a diverse range of actors (individual scientific
software developers, teams, and institutions) coordinating their work on common platforms (e.g.,
GitHub, Gitlab, and Bitbucket) to develop software solutions for scientific applications (e.g., multi-
physics simulation codes, high-performance computing libraries, and visualization tools) which
are assembled into complex software stacks by users (who are frequently developers themselves).
According to Hinsen’s conceptual model of scientific software stacks [Hinsen 2019], scientific

software developers may contribute packages at different layers: the topmost layer consists of
project-specific code, more likely written by individual scientists, and in an ad-hoc manner for a
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particular research project; one layer below are domain-specific tools, which can vary in their
level of maturity and user base; finally, below there is infrastructure created specifically for
scientific computing, which is expected to be mature and to serve multiple fields of research.
2.2 (Un)sustainability in the Scientific Software Ecosystem
As the scientific software community has matured, the shift towards a complex, interdependent,
and open-source SECO has also introduced new challenges, especially concerning software sus-
tainability. By sustainability, we follow the the Karlskrona Manifesto to mean the ability of a
socio-technical system (such as a software project) to endure, a concept which spans individual,
social, technical, economic, and environmental dimensions [Becker et al. 2015]. However, we focus
on the technical and economic dimensions of sustainability,1 as these align most directly with
another common view of sustainability in the software literature, i.e., “the ability to maintain the
software in a state where scientists can understand, replicate, and extend previously reported results
that depend on that software” [Trainer et al. 2014]. In this sense, the longevity of information,
systems, and infrastructure is a prerequisite for their adequate evolution with changing surrounding
conditions (technical) and maintaining capital and added value (economic), respectively.
As discussed above, the scientific software community has moved towards closer coordination

and greater reuse of each other’s open-source software. That shift exposes projects to the usual
OSS sustainability problems plus science-specific pressures. In conventional OSS SECOs, packages
can become obsolete or inactive [Cogo et al. 2021; Miller, Jahanshahi, et al. 2025], breaking changes
can cause cascading effects on projects [Bogart et al. 2021], communities around software projects
can rise and fall [Valiev et al. 2018], projects can die due to lack of financial viability [Xavier et al.
2020], and poor governance can cause an ecosystem to splinter and fall apart [Gamalielsson et al.
2014]; the scientific software ecosystem is much the same in these respects. However, unlike the
creation or maintenance of OSS in and of itself, many scientific applications have to be regularly
ported to new and cutting-edge hardware (necessitating costly rework) [Rechert et al. 2021], when
packages are revealed to be untrustworthy and irreproducible it can jeopardize any research
based on them (possibly harming the careers of the users!) [Soergel 2014], and much of the
scientific software in existence was created by people whose job is to do science, not to write
software [Johanson et al. 2018]. These dynamics concern the public and funders who support and
nurture this ecosystem [Barker et al. 2022; Strasser et al. 2022]; without a holistic perspective, they
run the risk of funding duplicative projects, failing to grow communities around software to carry
it forward, or propping up poor quality software that collapses under its own technical debt. At
present, however, there is relatively little data on scientific software sustainability at an ecosystem
level, which impairs effective decision-making.

In recent years there have been a range of works on scientific software sustainability, including
experience reports and case studies [Sun et al. 2024], reports on developers’ practices and perceptions
of sustainability [Feitosa et al. 2023], and community-building strategies [Ram et al. 2018]. On
the repository mining front, studies have investigated different proxies for sustainability, such as
cross-project references [Sun et al. 2024] and complexity metrics [Willenbring et al. 2021]. These
studies, however, are relatively small scale and domain specific.

In contrast, we provide a baseline of data to support understanding and awareness of the broader
scientific OSS ecosystem. For that reason we focus our attention on longevity of projects and
correlates (e.g., community size, number of dependencies, etc.), as these are well-attested in the SECO
literature and allow us to compare scientific OSS to other kinds of OSS documented in prior work.
Given that the transferability of findings from the conventional OSS SECO literature to the scientific
software domain is uncertain, having this data allows us to make well-grounded comparisons.
1This is not to suggest that environmental, individual, and social dimensions of sustainability are of lesser concern.
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While this study focuses on STEM disciplines, scientific software is also essential in domain
such as social sciences, arts, and humanities. For example, fields such as linguistics, archaeology,
history, and political science rely on computational tools for text analysis, geospatial mapping, and
data mining [Arnold et al. 2024; Stoltz et al. 2024]. However, these disciplines often have different
funding models, collaboration structures, and sustainability challenges [Newfield 2025].

3 ResearchQuestions
Our study consists of two parts. First, we take a representative cross-section of the scientific OSS
ecosystem, which requires a new technique to identify and categorize the software projects, as no
such dataset exists. Second, we study the factors associated with increased longevity (or, conversely,
increased risk of abandonment) within our sample and across scientific and non-scientific OSS.
Next we formulate and motivate each of our research questions.

RQ1. How can we use LLMs to identify and classify scientific OSS projects?

What We Know. Ours is not the first study to assemble a corpus of scientific software projects.
Several efforts have been made to build small datasets of projects to study particular phenomena
such as security [Murphy et al. 2020], contributor roles [Milewicz et al. 2019], sustainability-related
practices and incentives [Howison, Deelman, et al. 2015], and tools for metadata extraction [Mao
et al. 2019]. Other studies have sought to build larger datasets by using publication metadata (e.g.,
citations; and metadata entries in publications, grant-funding-related archives, and institutional
catalogs) [Garijo et al. 2024; Kelley et al. 2021; Wattanakriengkrai et al. 2022]. The closest work to
ours in terms of scale and methodology is by Wattanakriengkrai et al. [2022], who scanned GitHub
for repositories with links to academic papers, turning up 20,278 links. Finally, there have been
several efforts in recent years to make scientific software more discoverable such as Papers with
Code which catalog and promote code repositories associated with publications.

What We Do Not Know. Prior works, while all valuable, (1) have focused on populations that
are very small, (2) target a specific domain, (3) do not break down projects according to layers, or
(4) rely on some kind of self-reporting such as registering with an online catalog or GitHub links
in publications. We hypothesize, however, that both publication and citation practices as well as
software development practices may differ across scientific domains and layers of the software
stack. This led us down a different path, which is to detect scientific software repositories online
based on their content. In particular, we investigate whether large language models (LLMs) could
assist with detecting and classifying these repositories.

RQ2. What factors impact the longevity of scientific OSS projects?

What We Know. It is argued that “the lifespan of scientific software tends to be either very long
or very short” [Sanders et al. 2008]. Exact numbers, however, are harder to come by; as Hinsen
[2019] has noted, the “uncertain survival probability” of any given project complicates the decision-
making for all actors in the ecosystem. The works most closely related to ours are a pilot study by
Hasselbring et al. [2020] and follow-up work by Eitzen [2020], who measured longevity of scientific
software projects found by searching for mentions of DOIs/citations in repositories and by URLs
in papers. Among their findings, [Hasselbring et al. 2020] report significant differences between
domains in terms of longevity; in particular, they report that the median lifespan for computational
science software repositories in their dataset is 15 days vs. 5 years for computer science repositories.

What We Do Not Know. As both Hasselbring et al. [2020] and Eitzen [2020] include one-off
repositories for scripts associated with papers in their samples, it is unclear how previous findings
would generalize to scientific software projects that are intended to be actively developed and
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maintained, and that may have a large dependent user base. While we recognize that there are
sustainability concerns involved in those one-off paper repositories (e.g., for reproducibility of
scientific results), arguably becoming under- or unmaintained does not pose as much of a threat to
the stability of the ecosystem as would, say, a core math library shutting down. Thus, we focus on
scientific OSS projects that are more likely intended to endure, and ask the following subquestions:

RQ2a. How long do scientific OSS projects survive, and how does this vary across different
domains and layers of the software stack?
RQ2b.What factors predict the longevity of scientific OSS projects?

Longevity is a prerequisite for the much more complex notion of sustainability. With occasional
exceptions of “feature-complete” projects [Valiev et al. 2018], software systems need continuous
maintenance to remain compatible with changing environments, fix bugs and security vulnerabili-
ties, add needed features, etc. In OSS, such maintenance cannot be taken for granted, as contributors
and maintainers are often volunteers, and typically free to disengage at any time. All these mainte-
nance updates, at the very least, require a project to be active (“alive”), as opposed to dormant or
abandoned.2 Thus, longevity is a critical indicator of health and success in both traditional [Valiev
et al. 2018; M. Zhou, Mockus, et al. 2016] and scientific open-source software [Jørgensen 2021].

RQ3. How does the longevity of scientific OSS compare to the broader OSS ecosystem?

What We Know. As discussed in Section 2, there are (1) clear differences that distinguish scientific
software development from its conventional counterpart, but also that (2) as the scientific software
ecosystem has grown, it has had to contend with problems shared by many other OSS ecosystems.
WhatWe Do Not Know. The challenges that are unique to scientific OSS may change the dynamics
of the scientific software ecosystem in unpredictable ways, possibly threatening the sustainability
of scientific OSS even further. Given the importance of scientific open-source software for science,
it is important to better understand how it compares to other types of OSS to have a better chance
of identifying undermaintained projects in need of additional support. To our knowledge, there
are no studies to date that have empirically compared the OSS scientific software ecosystem to
any non-scientific counterparts. From a software engineering research perspective, being able to
compare and contrast scientific and non-scientific software at an ecosystem level would be very
helpful, as it builds on the wealth of OSS ecosystem research that is already available.

4 RQ1: Identifying and Classifying Scientific OSS Software
We start by presenting our novel approach to identify scientific OSS repositories based on their
contents and classify them in terms of domain and Hinsen’s software stack layers [Hinsen 2019].

4.1 Methods
The main goal of our approach is to build a large, multi-domain, multi-layer dataset of scientific
software with public code repositories that we will use to study scientific software longevity in
different contexts at scale. To this end, we developed and validated an automatable, content-centric
approach to identify and categorize scientific software among OSS repositories indexed by the
World of Code (WoC) research infrastructure [Ma et al. 2021]. Our method uses a large language
model (LLM) prompted with the contents of the README files of the repositories. READMEs
typically contain information on what a project does and how it works [Prana et al. 2019], and we
expect this information can identify scientific software even when no explicit links to publications
or acknowledgments of grants are present, which is an identification approach used in prior work.

2Although being “alive” is not sufficient for a project to be well-maintained, as the available maintenance effort may still fall
short of the demand for updates [Champion et al. 2021].
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At a high level, our process consists of two parts: (a) sampling OSS repositories using the WoC
infrastructure and (b) using an LLM to categorize them.
Sampling and Pre-processing: WoC contains metadata for nearly all public software projects,
including GitHub, GitLab, and BitBucket, as well as numerous smaller platforms and individual
forges. Among others, the WoC data are curated to identify and cross-link forks [Mockus, Spinellis,
et al. 2020] and different aliases corresponding to unique author IDs [Fry et al. 2020], and include
information on all versions of the code (including READMEs), commit activity timelines, and
time-stamped package dependencies, which are needed for our analysis. When we collected our
data, WoC was at version V, which was updated with new repositories found between March 1–30,
2023 and git objects retrieved by mid-May 2023; it included over 209 million repositories (including
forks), “deforked” to 131 million unique projects.

Sampling was necessary for two reasons. First, conceptually, it is well known that many public
repositories are not meant for software development, but rather contain code dumps, student home-
work assignments, and other types of artifacts for which questions of longevity and sustainability
are less relevant [Kalliamvakou et al. 2016; Munaiah et al. 2017]. Second, pragmatically, at the time
of our study it was simply infeasible to process all repository READMEs in WoC using an LLM.
Since there are no universally accepted criteria for identifying “real” software projects among

those with public repositories, we applied a set of commonly used size and activity-based heuristics
grounded in the literature [Carruthers et al. 2022]. For example, previous research found that
project maturity correlates with repository size [Liao et al. 2019] (larger repositories are more
likely to correspond to actual software development projects) and having some minimum amount
of activity [Ait et al. 2022; He et al. 2024] (code dumps tend to involve only a few commits over
a short period); there is also evidence that scientific software is often developed in collaborative
settings by multiple authors [Koehler Leman et al. 2020]. In the same spirit, our sampling strategy
considers the number of files in the repository (at least 10), the number of commits (more than
300), the number of commit authors (at least 3), the number of months with activity in the project
(more than 6 consecutive active months), the last commit date (after November 2018, to avoid less
relevant repositories that may have been abandoned long ago), and the programming language(s)
identified in the repository (to remove repositories without identifiable code).
Through this process, we filtered the 131 million deforked projects in WoC down to 430,469

projects that met our criteria. We then filtered projects with top-level file names that matched the
string “readme” (case insensitive), which captures the modern README.md convention commonly
used by GitHub, as well as many other older variations. This resulted in our filtered dataset of
350,308 README files (one per repository) used for LLM classification.
Note that it is possible that some scientific OSS projects did not meet our sampling criteria,

and thus did not get a chance to be considered. Similarly, it is possible that some repositories not
intended for active development and long-term maintenance remain in our sample despite our
relatively strict filters. Our goals here are not to be all encompassing (i.e., identify all scientific OSS)
nor perfectly precise (indeed, we expect both goals are futile), but rather to compile a sufficiently
large and diverse sample for our subsequent analyses. Importantly, our sampling criteria should
not affect the soundness of our subsequent analyses, since we use the same filtering criteria to
identify the matching non-scientific OSS repositories we compare against.
Identifying and Classifying The Scientific Software: We used prompt engineering on OpenAI’s
LLMs to determine whether the repositories in our sample can be considered scientific software, to
identify the likely layer they occupy in Hinsen’s [2019] scientific software stack (discussed above),
and the most likely scientific domain they are intended for. At the time of our data collection, GPT 4
was the top performing model available. However, the number of README files for classification
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(350,308) was still larger than we could feasibly process using GPT 4 (in terms of both speed and
cost per query). Therefore, we first performed a less precise but more efficient first pass through
GPT 3.5 to further narrow down our sample of candidate READMEs, and then made a second pass
over this smaller sample using GPT 4 for final classification with expectedly higher accuracy.

5961
2218

3080

6123

153

299

179643

Scientific
App Software

Research
Software

Science
Support Software

Fig. 2. Overlap between the three
scientific-software-related labels
assigned by GPT 3.5.

Concretely, for our first pass, we instructed GPT 3.5 to deter-
mine the repositories’ relevance to scientific research based on the
contents of their README. After five rounds of prompt engineer-
ing, we arrived at a prompt (see Supplementary Materials) asking
the LLM to answer six questions about each README, includ-
ing whether it describes scientific application software (defined as
“domain-specific science and engineering software” in our prompt),
science support software (i.e., “software used to support scientific
applications or research”), or research software (i.e., “software used
to generate, process or analyze results that you intend to appear in
a publication”); and whether it mentions a publication or research
funding related to the software. All three types describe software
used for scientific purposes, i.e., can be considered scientific soft-
ware [Kanewala et al. 2014]. Including the latter questions about
mentions of papers or funding in the prompt allows us to compare the content-based classification
(the most novel component of our approach) with the traditional classification based on explicit
links to publications or funding, which has been used in prior work (albeit not with LLMs).

10312 81066349
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Fig. 3. Overlap between the sci-
entific application software and
paper/funding mention labels as-
signed by GPT 3.5.

As the definitions of the three types of software have high the-
oretical overlap, this step unsurprisingly yielded many READMEs
tagged with multiple type labels (Figure 2), e.g., 43% of the 14,455
repositories labeled as scientific application software were also
tagged as science support software. Interestingly, while there is
also considerable overlap between the scientific application soft-
ware group and READMEs labeled as mentioning a publication
or research funding (Figure 3), our approach also identified many
candidate scientific repositories without such explicit traces, that
may not be discoverable using traditional approaches (we discuss
the accuracy of our approach in the Evaluation section below).
Since the scientific application software group had the highest over-
lap with the other two types and was of a more manageable size,
we used these repositories for our second pass. In addition, we also included the remaining non-
overlapping repositories with mentions of publications or research funding, for a total of 24,767
repositories (READMEs) out of 342,656 successfully classified files.3
In the second step, we prompted GPT 4 (see Supplementary Materials) to classify each of the

24,767 repositories into one of Hinsen’s [2019] seven scientific software stack layers, ranging
from non-scientific infrastructure (layer 1) to non-research software (layer 7). We expected most
software would fit into one of three science-related categories (i.e., layer 2: “scientific infrastructure,”
layer 3: “scientific domain-specific code,” and layer 4: “publication-specific code”) because of
our first filtering pass. However, we kept all seven layers in the prompt as we expected some
level of inaccuracy from the first pass. Additionally, as part of the same prompt, we asked the
model to associate the repositories with one of 13 predefined STEM fields: Astronomy, Biology,
Chemistry, Computer Science, Data Science, Earth Sciences, Engineering, Mathematics, Medicine,

37,654 prompts failed for various reasons, including server error, entity mismatch, rate limit failures, etc.
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Neuroscience, Physics, Quantum Computing, and Statistics. While software is also vital beyond
traditional scientific disciplines, e.g., in the social sciences and humanities, sustainability challenges
in those contexts differ [Tucker 2022], so we restrict the scope of our work to STEM fields to keep
the analysis tractable. As above, we provided the contents of each README (truncated if needed to
fit the LLM’s context window) as part of the prompt.
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Fig. 4. Distribution of the scientific repositories in our
sample, by domain and scientific software stack layer.

Following this final labeling step, we dis-
carded repositories not classified into one of
the 13 STEMfields and three stack layers, arriv-
ing at our final SciCat dataset of 18,247 repos-
itories (Figure 4). As can be observed from the
figure, the dataset spans all stack layers and
STEM fields, with repositories categorized as
Computer Science being the most numerous.
For example, these include security analysis
tools for smart contracts like mythril, ren-
dering tools like tungsten used by graphics
researchers, and programming languages for
high-performance computing like taichi; see
dataset in replication package for more exam-
ples. Note, only one of the named examples mentions a publication in the README.

4.2 Evaluation
To assess the accuracy of our classification, we used two strategies: (1) manual validation by trained
human raters on a sample of the data and (2) cross-validation against existing datasets.
Stratified Sample Validation:We started with a pilot evaluation of the three LLM-generated labels
(field, layer, and paper/funding mentions) for a stratified sample of 60 projects. Two human raters
classified the same 60 projects on all three dimensions, and engaged in discussions to reconcile
differences in their assessments. After resolving disagreements and re-labeling the same projects,
the inter-rater reliability (IRR) for the categorization of STEM fields reached 0.733 and for software
layers it reached 0.745, indicating “substantial agreement” [Fleiss et al. 1981; Landis et al. 1977].
Most disagreements arose from projects in the machine learning domain, which can be applied
across various fields. We also computed the IRR between human raters (after consensus) and the
results generated by the LLM: these were 0.714 for field and 0.720 for layer, respectively.
Following the pilot, we expanded the manual validation process to a stratified sample of 468

projects in total, i.e., 12 repositories per field (across 13 fields) and per layer (across 3 layers),
randomly sampled within each stratum. The three raters divided the remaining unlabeled projects
between them and completed this categorization separately. In the end the IRR between human
raters and the LLM was 0.650 for field and 0.624 for layer, both reflecting substantial agreement.
For the classification of whether a project mentioned papers or funding, the IRR between the raters
and the LLM was 0.467, indicating moderate agreement.
To further illustrate the agreement metrics, Table 1, Table 2 and Table 3 present the F1 score,

precision, and recall for classification by field, layer, and mentions of papers or funding, respectively.
For mentions of papers or funding, when the response is “Yes”, the model achieved a high recall
of 0.94 and an F1 score of 0.86, demonstrating strong performance in identifying true positives.
However, for the “No” response, the recall and F1 decreased, reflecting a tendency to miss instances
where papers or funding were not mentioned. Upon manual review of these instances, we found
that the classifier tended to assign credit for the presence of any paper, whereas human raters
evaluated whether the papers or citations were directly relevant to the code repository. When they
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Table 1. Classification metrics by field

Category Precision Recall F1 Score
Astronomy 0.80 0.90 0.85
Biology 0.79 0.79 0.79
Chemistry 0.77 0.96 0.86
Computer Science 0.86 0.40 0.55
Data Science 0.50 0.53 0.52
Earth Science 0.76 0.87 0.81
Engineering 0.50 1.00 0.67
Mathematics 0.86 0.81 0.83
Medicine 0.68 0.82 0.74
Neuroscience 0.78 0.88 0.82
Physics 0.72 0.76 0.74
Quantum Computing 0.83 0.97 0.90
Statistics 0.76 0.81 0.79
Macro Avg 0.64 0.70 0.66
Weighted Avg 0.74 0.74 0.72

Table 2. Classification metrics by layer

Category Precision Recall F1 Score
Publication-specific code 0.81 0.92 0.86
Scientific domain-specific code 0.83 0.62 0.71
Scientific infrastructure 0.60 0.82 0.69
Macro Avg 0.56 0.59 0.57
Weighted Avg 0.76 0.75 0.74

Table 3. Classification metrics for paper/funding men-
tions

Response Precision Recall F1 Score
Yes 0.79 0.94 0.86
No 0.79 0.48 0.60

were not, human raters correctly selected “No” as the answer. Overall, these findings highlight the
reliability of the classification system but indicate the need for improved prompt engineering and
contextual understanding in LLMs to better align with human judgment.
Cross Validation with External Datasets: We also cross-referenced the repositories in SciCat
against several existing scientific software datasets from the literature to calculate recall. Note
that because SciCat is not intended to be complete and due to the different sampling criteria and
different goals of the various existing datasets, recall is not directly computable. For example, Papers
with Code contains many replication packages, thus we expect that SciCat’s recall values with
respect to it would be low even if SciCat was complete, since our sampling criteria are designed
to exclude code dumps as much as possible, which many of the replication packages are. Still, we
attempt these comparisons to better contextualize our work, by first applying the same filtering
criteria we used to identify SciCat candidate repositories before calculating recall values:

• Journal of Open Source Software (JOSS): JOSS is a peer-reviewed open access scientific journal
that focuses on the publication and dissemination of open-source software from any research
discipline [Katz et al. 2018]. After scraping 2,200 repositories from the JOSS website [Katz
et al. 2018] and applying our size- and activity-based filters, we were left with 446 unique
projects. Of these, 314 are part of our SciCat dataset (70%). A closer examination of the
missing ones revealed that many (95) were filtered out during the first classification phase
(which involved sampling), with the remaining not classified into one of our predefined fields
and stack layers during the second classification phase.

• National Laboratory Repositories: Analysis of open repositories from national laboratory
GitHub organizations [Nangia et al. 2017] resulted in 155 projects meeting our initial filtering
criteria (out of 1,910), 80 of which are in SciCat (47%). As with JOSS, most (71) of the 75
missing national lab projects were filtered out during the first classification stage. Of these
71, further inspection revealed that 59 were categorized as scientific support software or
research software only (we did not sample from these; recall Figure 2), and 12 were not
marked with any of our three possible flags or with paper/funding mentions (likewise, we
did not sample from these). Separately, we inspected a random sample of the national-lab
repositories that did not meet our initial sampling criteria, and found many examples we
would consider scientific software according to our definition, which suggests that our filters
could be further relaxed.

• Research Software Directory: The Research Software Directory [Spaaks et al. 2018] is a content
management system for research software containing 411 projects, 184 of which are linked
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to repositories. After applying our filtering criteria, only 19 repositories matched. Of these,
14 are in SciCat (74%), while 4 were filtered out during the first classification step.

• Papers with Code: From the dataset of 227,820 machine-learning projects by Papers with Code,
only 8,547 met our size and activity criteria. Of these, 4,965 are in SciCat (58%). As before,
most of the missing ones (3,286 projects) were filtered out during the first classification and
sampling stage. Inspecting these more closely, we discovered that most (about 73%) were
marked as scientific support software or research software without other type labels. Among
the remaining missing ones, we saw many examples of websites, aggregators, courses, and
course projects, which do not fit our definition of scientific software.

• NSF Soft-Search: Brown et al. [2023] identified research projects likely to have produced
software while funded by federal grants. Out of 1,520 entries in the dataset, 88 met our initial
criteria, of which 64 were included in our final dataset (73%). Among the missing projects, 15
were not labeled as scientific application software during the first classification round and 9
were labeled with layers and fields outside of our scope in the second phase.

In summary, cross-validation revealed varying degrees of overlap between SciCat and external
datasets, with coverage rates ranging from 47% to 73%. These results demonstrate the diversity of
the SciCat dataset, while highlighting the inherent challenges in constructing a comprehensive
and fully representative collection of scientific software repositories. The two main opportunities
for future work to increase coverage are relaxing the initial sampling criteria and scaling up the
LLM-based processing of README files, whereas we had to resort to sampling.

In general, SciCat can accurately capture relevant projects within the scientific software domain.
In addition, more than 40% of the projects in our dataset do not mention any publication or
funding source in their README (and thus may be hard to identify otherwise).

4.3 Limitations
SciCat is incomplete because our sampling criteria for candidate repositories from World of Code
(WoC), while derived from established repository mining practices and literature, are relatively
strict. It also likely misses some scientific repositories hosted individually, since WoC primarily
aggregates data from platforms like GitHub and GitLab. Both limit the generalizability of our
findings to a subset of the broader scientific software landscape. Finally, SciCat is to some extent
inaccurate (although our evaluation results above show that accuracy is high) because of the LLM’s
imperfect ability to label the README files. However, all these limitations can be considered
accidental, i.e., we expect that they can be reduced substantially as LLMs improve, and with more
computational resources to process more repositories in and outside WoC. More generally, the use
of LLMs introduces various known and yet unknown risks. We, therefore, heavily rely on manual
validation of LLM-based classification via stratified sampling.

At the same time, a noteworthy essential limitation of SciCat is that its construction relies on
repository README files. While, as we show above, this is a good choice when READMEs are
present and well written, across public repositories in WoC README files are also often incomplete,
vague, or poorly maintained, which can lead to misclassification or the exclusion of important
projects. This design choice may result in underrepresentation, especially for projects that do not
follow standard documentation practices or offer insufficient details about their scientific focus in
their README. Therefore, we expect that a promising direction for future research is to combine a
repository content-based approach like ours with an approach based on mining software mentions
in research papers [Howison and Bullard 2016].
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Fig. 5. Kaplan-Meier survival curves by field (left) and layer (right).

5 RQ2: Modeling the Longevity of Scientific OSS Projects
Next we study the longevity of scientific software repositories in SciCat, understood as the time
span from the project’s earliest to its latest commit. Concretely, we label projects as inactive
(abandoned) if they had no commits in the last six months prior to the end of our data
collection,4 and record the date of the last commit as the abandonment date. The commit data are
right censored, i.e., projects still active less than six months prior to the end of our observation
period may have become abandoned shortly thereafter, or may have remained active to this day
(there is more uncertainty about the “abandonment event” at the right end of the observation
period). Therefore, we use survival analysis to model the variation in the time to the abandonment
event, a standard technique for modeling right-censored time-to-event data [Moore et al. 2016].
To compare typical rates of survival across subpopulations, we compute the restricted mean

survival time (RMST), which is the mean of the survival time up to some time horizon, i.e., the area
under the curve up to a certain point) [Royston et al. 2013; Uno et al. 2014]. This is considered a
useful summary measure for comparing different survival curves over a given time period. Note
that having a time horizon limits the impact of long tails (outliers) on the result; for the purpose of
our study, we consider a 15 year window.

5.1 RQ2a: Variation Across Fields and Layers

Methods: We start with an exploratory survival analysis of SciCat projects broken down by field
and stack layer, in response to RQ2a. We use the non-parametric Kaplan-Meier (KM) estimator, a
robust way to estimate survival functions from time-to-event data. We will test hypotheses about
which factors are associated with variation in these survival probabilities in RQ2b below.
Results: The Kaplan-Meier survival plots in Figure 5 offer insights into the longevity of scientific
software projects across different domains and layers within the software stack. The plot on the
right shows survival by layer and compares publication-specific code, domain-specific code, and
infrastructure layers. The sharp decline in survival probability for publication-specific code in
the early years highlights its vulnerability to obsolescence, likely due to its niche use and limited
applicability. Scientific domain-specific code fares slightly better but still follows a rapid decline,
reflecting that while it may have broader usage than publication-specific code, it is still prone to
technological shifts or evolving standards. In contrast, scientific infrastructure, likely meant to
serve more general and long-term needs, does indeed demonstrate a slower, more gradual decline,

4We include robustness checks for different operationalizations in our Supplementary Materials. The coefficient estimates
vary slightly, as expected, but their direction is consistent.
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indicating better longevity. This suggests that broad-purpose infrastructure projects tend to persist
longer as a result of their foundational role in supporting multiple scientific domains.

The left plot highlights a wide range of survival probabilities depending on the field. Fields such as
Astronomy, Biology, and Chemistry exhibit relatively steady declines over time, perhaps reflecting
their established nature and slower pace of technological change. Fields like Computer Science
and Quantum Computing experience sharper drops in survival probability, likely due to the rapid
advancements and high turnover. Medicine and Neuroscience show better longevity, maintaining
higher survival probabilities for longer periods, possibly due to the ongoing need for research and
development there. These survival patterns highlight the variable lifespan of projects in different
domains and layers, indicating the complexity of factors that contribute to project longevity.

Over a 15 year period, the average restricted survival time of scientific OSS projects in our study
is 6.44 years. Survival rates in our data varies by field, with mathematics representing the longest
average survival (7.91 years) and computer science the shortest (5.74 years). The application
layer has significantly shorter survival times than domain-specific (3.94 years vs. 6.52 years),
with infrastructure having the greatest average longevity (7.44 years).

5.2 RQ2b: Longevity or Survival Analysis:

Methods: We run a Cox proportional-hazards multiple regression analysis [Kleinbaum et al. 2012]
of SciCat projects, which allows us to simultaneously model the relative importance of different
factors in explaining the variation in the risk of projects becoming abandoned, according to our
six-month inactivity definition. The semiparametric nature of the Cox model [1972] also allows
us to explore the relative impact of various factors on project longevity without making strict
assumptions about the time-to-event distribution. This type of regression for survival analysis is
standard in numerous domains, including software engineering [Valiev et al. 2018; M. Zhou and
Mockus 2011, 2012; M. Zhou, Mockus, et al. 2016].

In our model we include a number of control variables corresponding to known factors associated
with project longevity in the traditional OSS literature, plus several independent variables following
our discussion in Section 2.2 of factors that may impact the longevity of scientific software differently
compared to traditional OSS. Table 4 lists all the control and independent variables we measured,
together with the rationale for their inclusion and our hypotheses, where possible, for their effects.
All these variables were calculated using WoC data.

The controls include measures of software size, project team size, and community size, as
well as measures indicative of the project’s position in the global software supply chain based on
its upstream and downstream dependencies. The independent variables include the three we
inferred in Section 4, field, layer, and havingmentions of publications or research funding,
which allows us to formalize the exploratory analysis in RQ1 (field and layer) and contextualize
our results in the scarce existing literature (mentions paper or funding). We also test for differences
between programming languages, as their usage tends to differ substantially between scientific
fields. Moreover, we test for effects associated with academic and government participation.
Collaboration between academic and non-academic participants can enrich an open source project,
fostering continuous innovation and the transfer of cutting-edge knowledge [Colazo et al. 2010;
Fitzgerald 2006; R. A. Ghosh 2005; Lakhani et al. 2003; Mockus, Fielding, et al. 2002]; at the same
time, it can be challenging for scientists and engineers to collaborate [Sun et al. 2024], and there
may be greater-than-average turnover induced by the academic involvement because of rotating
graduate students and postdocs [Valiev et al. 2018]. Government participation may come with
increased stability and access to resources [Reddy et al. 2002], which could translate to improved
software longevity and impact [Ribeiro et al. 2020; Schweik et al. 2012; Sharma et al. 2007; Weiss
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Table 4. Control (top half) and independent (bottom half) variables measured for our Cox regression.

Variable Description Rationale / Hypotheses

Num. Core
Authors

Count of authors with
commit counts above the 80th
percentile

While projects may have many peripheral contributors, the core team,
which tends to have the most influence over a project’s future, can be
very small [Coelho et al. 2017; Joblin et al. 2017].

Num. Commits Count of commits Captures project size and historical activity. Larger projects with more
development momentum tend to survive longer [Alves et al. 2018].

Community
Size

Count of repository forks Similarly to Num. Authors, indicates attention to the project and
maintenance effort available [S. Zhou et al. 2019].

Earliest
Commit Year

Year of earliest commit Controls for possible environmental changes in the OSS ecosystem
over time [Alves et al. 2018].

Num. Defined
Packages

Count of packages defined
(e.g., package statements in
Java) in the repository

Software intended for reuse is more likely to be packaged for
distribution [Decan et al. 2019] and intended reusability should
increase longevity.

Upstream
Package Ratio

Fraction of packages used
(e.g., as import statements in
Java) that are defined in
“upstream” repositories

This is a proxy measure for the amount of external upstream
dependencies.a Projects with more upstream dependencies face more
breaking changes [Bogart et al. 2021], package abandonment [Miller,
Kästner, et al. 2023], and other risks. They also tend to accumulate
more technical debt, leading to maintenance burdens that increase the
risk of abandonment [Cogo et al. 2021; Dey et al. 2019].

Num.
Downstream
Projects

Count of “downstream”
projects that import packages
defined in the repository

More downstream dependents indicate a larger user base and possible
lock-in effects, which may motivate maintainers to keep the project
active [Dey et al. 2019; Valiev et al. 2018].

Language Dominant language in the
repository, based on filename
extensions

Much scientific software is developed in languages like Python and R.
Different language ecosystems tend to have different culture and
norms [Bogart et al. 2021].

Layer Inferred software stack layer
(Section 4)

Software that plays an infrastructural role for science is expected to be
longer-lived [Hinsen 2019].

Field Inferred STEM field
(Section 4)

[Hasselbring et al. 2020] report significant differences in longevity
between research software in different fields, among software with
explicit links to publications.

Mentions
Paper or
Funding

True if the README was
labeled as mentioning
papers/funding (Section 4)

The combination of financial support and academic recognition should
help attract new contributors and funding opportunities [Howison,
Deelman, et al. 2015; Koehler Leman et al. 2020; Strasser et al. 2022].

Has Academic
Participants

True if any core authors had a
.edu-domain email

Captures obvious academic involvement, which can impact software
longevity in many ways [Koehler Leman et al. 2020; Valiev et al. 2018].

Has
Government
Participants

True if any core authors had a
.gov-domain email

Captures obvious government involvement, such as US National Labs.
Such involvement may indicate professional (research) software
engineers [Koehler Leman et al. 2020; Schwartz et al. 2024].

aGiven the multilingual nature of WoC, these cannot be counted directly.

2005]; there are many examples of long-lasting government-funded projects lasting years or even
decades [Bozeman 2000; Nelson 1993].
As with all statistical models, we want to establish a relationship between the response and

predictors, as statistical models do not demonstrate causal relationships. One of the first steps
in statistical modeling is to avoid highly correlated predictors, as they increase the errors of the
coefficient estimates and often lead to hard-to-interpret results. To this end, we computed pairwise
rank correlation coefficients between all our variables and eliminated number of authors, where
correlation with core authors was above 0.65. As multiple comparisons inflate the risk of false
discovery, we applied the conservative Bonferroni correction [Sedgwick 2012].
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Fig. 6. The Cox proportional hazard regression model for scientific software. Out of 18,244 projects, 11,631
had their last commit more than six months before the data was collected.

Results: Next, we present the findings of our Cox proportional-hazards regression analysis explor-
ing the relationship between the survival times of scientific software repositories in our SciCat
dataset and the predictor variables we discussed above. Figure 6 visualizes the estimated hazard
rates (HR) (exponentiated Cox model coefficients). It is crucial to note that in the Cox proportional-
hazards model, HR above one indicates an increased likelihood of project cessation, not survival.
Looking first at our control variables, we observe effects largely consistent with prior work.

Larger team size (number of core authors), project size (number of commits), and community

size all indicate lower risk of project dormancy (�� = 0.8, 0.7, 0.96, respectively; for example,
increasing the log of the core author count by 1 decreases the hazard rate by 20%), consistent
with the understanding that strong and active community participation enhances OSS projects’
longevity. The number of packages defined in the project and the number of downstream

dependents also increase longevity (�� = 0.57 and 0.78), indicating that more reusable projects
serving critical roles in the broader ecosystem tend to be maintained for longer periods.

Note that the percentage of projects with at least one downstream dependent varies with layer
in the expected fashion: 11%, 26%, and 37% for publication-specific, domain-specific, and scientific
infrastructure, respectively. That is, as we transition from specific publication code to more foun-
dational scientific infrastructure, projects are more likely to have downstream dependencies, as
expected for infrastructure. Also note that not all infrastructure components have downstream
dependencies. For example, runtime environments, workflows, and other tools categorized as infras-
tructure may not always provide clear indications of their use in downstream projects. It is notable,
that the infrastructure projects are longer-lived even after adjusting for downstream dependents.
While the 95% confidence interval for the upstream project ratio does not overlap with 1,

the effect (HR of 1.12) is no longer statistically significant after the Bonferroni correction. If,
however, we consider that the correction is very conservative and the previous consistent findings
in the literature, an increase in upstream project ratio is likely associated with an increase in
abandonment risk. Thus, the network of upstream dependencies, when large relative to the focal
project’s own modules, is associated with shorter project lifespan.
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Surprisingly, we note a strong effect associated with the earliest commit year: the more recently
the project started, the higher the risk of abandonment (𝐻𝑅 = 1.86), indicating perhaps a drastic
change in open source culture over the years.

Moving on to our main predictors, the model is consistent with the observation from Section 4
that scientific infrastructure projects have the lowest abandonment hazard among the three layers
(𝐻𝑅 = 0.55), followed by domain-specific code (𝐻𝑅 = 0.66). The coefficient for scientific domains

represent that field’s contrast with Astronomy (the baseline level, chosen alphabetically). Scientific
fields such as Computer Science, Data Science, Engineering, and Medicine have HR above one,
indicating shorter lifespans than comparable projects in Astronomy. While Mathematics had the
largest marginal survival rate in the exploratory analysis above in Section 4, when adjusting for
other covariates it is trending worse than Astronomy (HR of 1.16 or about 16% more likely to
be abandoned than a comparable Astronomy project), albeit not statistically significantly after
the Bonferroni correction. Our analysis, post adjustment, also did not find statistically significant
differences between Astronomy and Biology, Chemistry, Earth Science, Neuroscience, Quantum
Computing, and Statistics. No differences among programming languages could be observed
except for R (which had HR of 0.91) that was no longer significant after adjustment.
Projects mentioning funding or scientific publications show longer lifespans (𝐻𝑅 = 0.9)

than comparable projects without such mentions. Government participation reduces the hazard
rate (𝐻𝑅 = 0.86), which implies that government involvement brings stability and long-term
viability to a project. Interestingly, academic participation is linked to a slight increase in hazard
(𝐻𝑅 = 1.08), possibly due to the often short-term or cyclical nature of academic commitments.

Like other OSS, scientific software with fewer upstream and more downstream dependencies,
larger communities, andmore core contributors tend to live longer. Government participation and
absence of academic participation, indications of funding, and mentions of scientific publications
also tend to increase longevity. The lower levels of the stack, as expected, survive longer.

6 RQ3: Comparing Longevity of Scientific Software with the Broader OSS Ecosystem
For our final analysis we compare the longevity of the scientific software repositories in SciCat to
a matched group of non-scientific OSS repositories.
Methods: To estimate if the non-scientific software has different survival times, we need to conduct a
“natural experiment”. If we select a random sample of non-scientific software, we will be comparing
not longevity but precursors of longevity, such as activity. The goal for the sample selection process
is, therefore, to be noninformative or ignorable [Little et al. 1987] by which we mean that the
resulting sample and population are compositionally similar on the set of covariates that explain
treatment effect (survival time) variability [Stuart et al. 2011; Tipton 2013].

For scientific software, we select all projects and we match the distribution of scientific projects
to that of non-scientific using the following stratified sampling procedure: We divided our scientific
sample based on three variables, namely number of commits, number of authors, and earliest
commit date. These three give us a gauge for activity, community size, and time, respectively.
We divided the number of commits into four bins, the first bin being projects with less than 750
commits, the second bin with commits between 750 and 1,800, the third bin between 1,800 and 5,000,
and the last bin projects with more than 5,000 commits. We did the same for number of authors with
first bin less than 10 authors, second bin 10 to 25 authors, third bin 25 to 60 and last bin more than
60 authors. The logic for choosing these thresholds was based on our data distribution, so that each
bin has roughly half the count of the previous bin. That is, the first bin in each category corresponds
roughly to 54% of the data, the second bin to 27%, third to 13% and fourth to 6%. Finally, we divided
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Fig. 7. The proportional hazard regression model for scientific and matched non-scientific software. Out of
54,710 projects, 41,069 had last committed more than six months before the data was collected.

our data based on their earliest commit date into three bins: projects before 2016, between 2016
and 2018, and the third bin with anything after 2019. These thresholds were chosen so that the bins
have roughly the same number of projects. With the explained criteria, we created 48 bins (4*4*3)
and for each bin, we randomly sampled twice the number of scientific projects from non-scientific
projects in OSS using WoC’s MongoDB projects database. That is, if, for example, there were 500
projects in a bin with 750-1800 commits, 25-60 authors and after 2019, we randomly sampled 1,000
nonscientific projects with these exact criteria for number of commits, authors, and earliest commit
time. Having 18,247 scientific projects, we sampled 36,494 non-scientific projects and created a
total sample of 54,741 scientific projects and comparable non-scientific projects.
We then estimated a survival model with the specification from RQ2b, excluding the domain

and layer variables which are not available for non-scientific repositories, and adding a categorical
indicator for scientific software to distinguish between the two groups.
Results: Figure 7 visualizes the estimated hazard rates for various factors and their statistical
significance. Given the larger sample and a different set of predictors, the estimated coefficients, as
expected, differ slightly from the model used in RQ2. Specifically, the model can better discriminate
among programming languages with Java projects having shorter and R projects having longer
lifetimes. Eliminating science-specific factors from the model makes the number of packages defined
in the project no longer statistically significant. The direction of the effects stays the same and
their interpretation was provided previously. The key result of this analysis, though, is given by
the population comparison indicator (Is Scientific Software), which is has negative �� = 0.92 (or
about a 8% lower abandonment risk), indicating longer survival times.

Scientific OSS projects survive longer than counterparts of the same size from the same era.

7 Threats to Validity
We discussed limitations of our dataset above in Section 4.3. Here we discuss additional threats to
the validity of our analyses in Sections 5 and 6.
Construct Validity: Themost notable threat comes from our operationalization of project abandon-
ment which which may overlook “feature-complete” projects that no longer need frequent updates
but remain valuable and functional. It is also possible that OSS maintainers return to projects after
long breaks [Calefato et al. 2022], which implies that some of the projects we label as abandoned
may resume activity eventually. To assess this threat, we experimented with different thresholds of
abandonment, up to 24 consecutive months of inactivity (see Supplementary Materials), with no
qualitative change in our findings; that is, breaks are unlikely to invalidate our results.
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Internal Validity: First, to ensure the soundness of our regression analysis, we started by modeling
a wide range of variables to minimize potential biases from confounding factors, and then reduced
that number by excluding highly correlated predictors to improve accuracy of the estimates and to
simplify interpretation. We also corrected data errors, such as times in the future, and checked for
outliers or unusual patterns of residuals to minimize undue influence of single observations on the
overall model. In addition, we used transformations where appropriate to reduce the influence of
outliers or to improve interpretability of the results.

Second, since the substantially higher longevity of scientific projects in our sample compared to
non-scientific ones is a surprising result, we conducted an additional robustness check, analyzing
GitHub star counts as a measure of popularity and attractiveness to contributors [Borges et al. 2018;
Fang et al. 2022]; one can expect that more popular projects are less likely to become abandoned.
Since we did not explicitly match projects on stars (RQ3), there is a risk that our estimated longevity
differences between scientific and non-scientific projects can be attributed to differences in star
counts. Therefore, we attempted to control for stars in our regression, but our community size
predictor (number of forks) had almost 90% correlation with star count. In conclusion, we exclude
this possible alternative explanation for our result.

However, other alternative explanations may still exist as our study is observational. For example,
even though when sampling to select comparable non-scientific projects, projects were matched
based on size, activity, and contributors, there may be other predictors of longevity we did not
model or match between samples, such as project goals and maintenance practices, the lifecycle of
research projects, and changing research priorities. More research is needed to investigate these.
External Validity: While this study spans multiple scientific domains, it may not fully represent
all areas of research, particularly interdisciplinary fields that use non-standard terminologies. Niche
scientific communities with distinct documentation practices may also be underrepresented, as
would fields outside of the 13 we considered, affecting the generalizability of our conclusions. Thus,
we advise caution when extending them to other software ecosystems. However, this limitation
does not diminish the relevance of the findings within the intended scope.

Finally, our study primarily focuses on open-source scientific software with a substantial history
of activity, which may overlook important sustainability patterns in less active repositories, such
as feature-complete or archival projects. We also cannot make claims about proprietary scientific
software, which operates under different incentive structures, emphasizing profitability and internal
funding, rather than community-driven sustainability. As a result, the longevity patterns observed
in this study may not fully translate to proprietary or industry-developed software. While findings
should not be extrapolated to proprietary or archival softwarewithout caution, they provide valuable
insights into longevity within scientific software ecosystems with community participation.

8 Discussion and Implications
Here we highlight implications of our work for research, scientific software, and policymakers.
Enhanced Empirical Access To Scientific OSS: As a major contribution of our study, we showed
that a carefully-prompted LLM can identify scientific open-source software based on the contents
of the repository README file even when no explicit mentions of research publications or funding
are present. Our approach can both identify many known examples of scientific software, and
also discover many new ones. This adds a new tool to a space where better traceability has long
been a concern [Howison and Bullard 2016], where contemporary efforts to improve traceability
exist (using explicit signals such as mentions of the software in publications and of publications
in software) [Istrate et al. 2022; Wattanakriengkrai et al. 2022], and where there are still many
open questions of interest to practitioners, funders, policy makers, and researchers. We view our
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LLM-based approach as complementary. We recommend more future work evaluations of when
and how an LLM-based approach like ours, which may be less precise but have higher recall than
ones based on explicit links, could be combined with the latter to maximize accuracy.
There are many open questions about scientific software that our publicly-available SciCat

dataset could help answer at scale. Researchers could use our dataset to investigate unexplored
dimensions of scientific software sustainability, such as the impact of governance models, contrib-
utor networks, the evolution of funding sources, and the relationship between sustainability and
scientific impact[Barabasi 2024]. Meanwhile, we believe our quantiative study lays the ground-
work for future qualitative ones that could be based on a theory-relevant sampling of the curated
list of projects and/or to further develop the generalizability and applicability of these findings
across fields. Of particular interest could be the social sciences and humanities, where software
sustainability challenges differ due to funding constraints, project-based development, and the
dependence on individual researchers for maintenance [Tucker 2022].

In the process of validating and cross-referencing our collection with multiple external sources
we found a number of drawbacks to both manually and automatically curated resources. While
extracting references to publications can be easily automated, a large portion of scientific software
does not include such references. Furthermore, a reference to a publication, even if it is provided,
often may not be related to the software itself and may not be an indication that a repository
contains scientific software. Manually curated scientific software collections include projects that
are of educational nature, like tutorials or documentation. Furthermore, we found most of the
projects in such manually curated collections to be inactive.
Supporting Scientific OSS Development: Our analysis of SciCat projects revealed substantial
differences in longevity between scientific OSS at different layers of the software stack, with projects
labeled scientific infrastructure (i.e., those expected to be better maintained) being indeed the longest
lasting. It also revealed a positive association between traditional OSS success factors (such as
community involvement and having a large and active user base) and longevity. We interpret this as
good news, in the sense that the same mechanisms that contribute to the success of non-scientific
open-source software also seem to impact scientific OSS in predictable ways, despite the different
challenges that scientific OSS are subject to. This adds some evidence to suggest that investing in
scientific software can yield long-term benefits for funding agencies, and that programs such as
the US National Science Foundation’s Pathways to Enable Open-Source Ecosystems (POSE) are
worthwhile, as they support often-overlooked but critical factors such as community participation.

On a practical note, our survival model confirmed that reusability of scientific software is
associated with greater longevity – both the software labeled infrastructure and that with many
downstream dependent projects tend to be maintained longer. This suggests that scientific software
developers should aim to design and package their tools in a way that facilitates reuse by other
projects, increasing their utility to broader audiences and, in turn, prolonging their lifespan.
The longevity was strongly associated with downstream dependencies, much more so than

with upstream projects. It demonstrates that carefully measuring usage in downstream projects is
important, yet nontrivial task (in contrast to the identification of upstream packages). We relied on
unique capabilities of the WoC research infrastructure [Ma et al. 2021] to obtain these measures.
Our analysis revealed two surprising findings. First, government participation was linked to

increased longevity, while academic involvement was linked to reduced longevity, highlighting
the need for further research on sustaining scientific software in these different contexts. Second,
projects that mentioned publications or funding in their README tended to last longer.

One possible explanation is visibility: software clearly identifiable as scientific may attract more
contributors on platforms like GitHub, where purpose influences engagement [Huang et al. 2021].
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Such projects may also be more likely to draw attention from funders and other scientists, increasing
their chances of being cited or mentioned in scholarly work.
We recommend future research compare the success of highly visible scientific software (e.g.,

those in known datasets or frequently cited) with less prominent but equally important infrastruc-
ture projects [Nesbitt et al. 2024].
Scientific OSS Is Less Likely To Become Abandoned Than One Might Think: Our most un-
expected finding is that scientific software in SciCat tends to be longer-lived than a matched
sample of non-scientific OSS projects. This suggests that while concerns about scientific software
abandonment are valid in some cases, they may be overstated when applied broadly.
Although this result holds across different definitions of abandonment and robustness checks

(see above), we urge caution in generalizing it beyond our sample, which leans toward larger,
collaboratively developed projects rather than smaller or individually developed ones. More research
is needed to understand whether scientific software outside SciCat behaves differently.

Still, our findings raise the question of whether scientific software benefits from unique external
factors, like academic incentives and funding, that are short-term and unpredictable but largely
absent in non-scientific OSS. Ironically, this suggests non-scientific projects might benefit from
adopting certain practices common in the scientific realm: tying development to research or business
outcomes, promoting use in publications or white papers, and seeking external funding may all
help improve sustainability.

9 Conclusion
In our study, we produced and analyzed a large ∼18K) and diverse (13 scientific domains) dataset
of collaboratively developed OSS scientific software projects as a vehicle for studying scientific
software sustainability; we used LLMs with curated prompts to automatically classify project
READMEs, checking our results through both manual validation and comparisons with prior
datasets and online collections. We analyzed scientific software longevity across this population
and compared scientific projects with general open-source ones. We find that scientific software
tends to be longer-lived, and factors like fewer upstream and more downstream dependencies,
larger communities, government involvement, and the absence of academic participation were
linked to increased longevity.
This curated collection helps to further research scientific software and results in findings that

can inform science policy related to software development. Although our study offers some insight
into the longevity of open scientific software, more work is needed. Future enhancements to our
collection could enable researchers to assess the role of funding and institutional support, to include
the humanities and social sciences, and support the study of less active projects.

10 Data Availability
All data and materials used in this study are publicly available in the replication package.5
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