
Ecosystem-Level Determinants of Sustained Activity in
Open-Source Projects: A Case Study of the PyPI Ecosystem

Marat Valiev
Carnegie Mellon University

USA

Bogdan Vasilescu
Carnegie Mellon University

USA

James Herbsleb
Carnegie Mellon University

USA

ABSTRACT

Open-source projects do not exist in a vacuum. They benefit from

reusing other projects and themselves are being reused by oth-

ers, creating complex networks of interdependencies, i.e., software

ecosystems. Therefore, the sustainability of projects comprising

ecosystems may no longer by determined solely by factors internal

to the project, but rather by the ecosystem context as well.

In this paper we report on a mixed-methods study of ecosystem-

level factors affecting the sustainability of open-source Python

projects. Quantitatively, using historical data from 46,547 projects

in the PyPI ecosystem, we modeled the chances of project develop-

ment entering a period of dormancy (limited activity) as a function

of the projects’ position in their dependency networks, organiza-

tional support, and other factors. Qualitatively, we triangulated

the revealed effects and further expanded on our models through

interviews with project maintainers. Results show that the number

of project ties and the relative position in the dependency network

have significant impact on sustained project activity, with nuanced

effects early in a project’s life cycle and later on.

CCS CONCEPTS

· Software and its engineering → Open source model; Soft-

ware evolution; Risk management;

KEYWORDS

Software ecosystems, Open Source, Survival modeling

ACM Reference Format:

Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-Level

Determinants of Sustained Activity in Open-Source Projects: A Case Study

of the PyPI Ecosystem. In Proceedings of the 26th ACM Joint European Soft-

ware Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE ’18), November 4ś9, 2018, Lake Buena Vista, FL, USA.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3236024.3236062

1 INTRODUCTION

While only twenty years ago open-source software (OSS) was sim-

ply a curiosity that attracted the attention of a few academics and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236062

was not seriously considered in the software industry, OSS infras-

tructure today is ubiquitous,1 powering applications in virtually

every domain. Economists refer to OSS as łdigital dark matterž [34],

to signify both its invisibility and importance. They also report val-

uations of OSS in the billions of dollars per year [20, 34], in terms

of both direct reuse value and boosted productivity and efficiency.

Given the importance of OSS digital infrastructure to so much

of the economy, one might expect that it is adequately staffed and

maintained, i.e., sustainable. Yet, this is often not the case. As a re-

cent Ford Foundation report investigating the sustainability of OSS

łdigital infrastructurež [26] notes, most users of OSS infrastructure

take it for granted, and society at large is unaware of the risks. A

vivid example is OpenSSL, the OSS project critical to the secure

operation of the majority of websites, recently in the spotlight for

the łheartbleedž security bug [24]; at that time, Open SSL was se-

verely understaffed. Another notable example is leftpad [1], the

trivial 11-LOC JavaScript package that, when deleted by its author

from the npm2 registry, caused cascading disruption in thousands

of other projects that relied on it being accessible on npm.

Besides emphasizing the importance of OSS sustainability is-

sues, both examples illustrate a challenge with modern code reuse.

Indeed, with vast amounts of high-quality OSS code available for

reuse, one can declare dependencies on others’ code instead of

copying it into their own, taking advantage of the functionality

without assuming the burden of maintenance. This leads to the for-

mation of large code interdependency networks. However, this also

means that local sustainability issues around individual projects can

have widespread network effects. For example, breaking changesÐ

changes that are not backwards compatibleÐare a significant source

of instability, causing negative consequences for dependents down-

stream [5]. Another example is developer turnover. Contributors

to and maintainers of OSS are often overworked volunteers, who

can decide to stop contributing at any time [58, 74]. Consequently,

OSS projects risk knowledge loss [52, 57], quality degradation [27],

or even extinction [10], again with reverberations downstream.

These challenges are particularly visible in OSS package ecosys-

tems like npm, PyPI,3 and CRAN,4 where packages form complex

and often brittle dependency chains [21, 41]. With reuse so entic-

ing and so much OSS code available, how can one make informed

decisions about which packages to use? While OSS projects can be

long-lived (e.g., Linux, Apache, and Eclipse), relatively few reach

a mature state [7, 12] and many that are active for a period of

time are eventually abandoned [40], even once-popular ones [10].

Will a package still be maintained in a year? Which packages are

1Already in 2015, less than 3% of respondents to a Black Duck Survey reported they
do not use OSS in any way, https://bit.ly/2NgQNRH (slide 9).
2Node.js Package Manager, https://www.npmjs.com
3Python Package Index, https://pypi.python.org
4Comprehensive R Archive Network, https://cran.r-project.org

644

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3236024.3236062
https://doi.org/10.1145/3236024.3236062
https://bit.ly/2NgQNRH
https://www.npmjs.com
https://pypi.python.org
https://cran.r-project.org

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Marat Valiev, Bogdan Vasilescu, and James Herbsleb

sustainable and which are at risk? How does a package’s place in

the ecosystem influence its survival chances? How do developer

choices, ecosystem community norms, and social processes con-

tribute to sustainability or extinction? The empirical evidence for

the mechanisms and predictive factors of OSS project survival in

an ecosystem context is, at best, fragmented and incomplete.

In this paper we report on a mixed-methods study of the Python

PyPI ecosystem, that makes a step towards filling this gap. PyPI is

the official third-party registry for Python packages and one of the

most popular OSS ecosystems, with over 130,000 published pack-

ages as of March 2018. Specifically, we study the ecosystem-level

factors impacting the chances of a package becoming dormant, i.e.,

having very low or no development activity after some time. While

not all dormant projects are abandoned (e.g., some simply do not

require any additional maintenance because they are feature com-

plete [10]), being in an inactive state could signal sustainability risk.

For example, for an external observer, lack of project activity may

indicate abandonment and increased uncertainty about whether

potential issues or feature requests would be dealt with.

We interview maintainers of PyPI packages; integrate data from

PyPI and GitHub, mining repositories and their interdependen-

cies to assemble an ecosystem-level longitudinal data set; identify

which packages became dormant; and estimate Cox proportional

hazards survival regressions [15, 49] to model the factors affecting

a package’s chances of entering this dormant state.

We find that the number of connections and the relative position

in the dependency network are significant factors affecting the

chances of a project becoming dormant; the organizational support

a package receives, if any, has different effects depending on the

type of supporting organization; and the practice of producing

backwards compatible releases does not appear to influence project

dormancy under our definition.

In summary, we contribute (1) a dependency-network-based sur-

vival analysis of packages in the PyPI ecosystem; (2) a series of

interviews with project maintainers from this ecosystem to trian-

gulate and refine the discovered relationships; and (3) an in-depth

discussion of the effects revealed by the mixed-methods analysis.

2 DEVELOPMENT OF HYPOTHESES

As with natural systems, the sustainability of OSS projects (much

like the success of OSS projects [17]) is also clearly a multi-faceted

concept; e.g., projects may be considered sustainable from a code

maintainability perspective if they conform to modular and extensi-

ble architectures, from a community perspective if they successfully

attract and retain newcomers; and from an economic perspective

if they ensure low total cost of ownership and high added value.

Our perspective in this paper is that of OSS supply chains [4]: Given

the choice, should one depend on some OSS package? Will it be

actively maintained in a year or will it show no signs of life?

To develop our hypotheses, we start by reviewing the literature

on factors impacting the survival of OSS projects, defined here

as the state of being actively maintained. We distinguish between

project-level factors, of which having an appropriate supply of

contributor effort is arguably most important, and ecosystem-level

factors, induced by projects’ position in an ecosystem and their rela-

tionship with other projects up and downstream. The project-level

factors are relatively well studied, therefore we use the literature

review to identify relevant control variables in our regression mod-

els. The ecosystem-level factors constitute our main contribution.

For these we derive, and later test, explicit hypotheses.

Project-level Factors. In order to survive and thrive, OSS projects

typically require a steady supply of contributor effort, and projects

with more contributors tend to have higher survival rates [59]. But

not all contributions are created equal. The communities supporting

OSS projects are typically organized in layers, with different roles

being recognizable among participants [38, 51]. Usually, project

activity is driven by a few core contributors, who have commit (i.e.,

łwritež) access to the repository and do most of the work. Ascension

into the core group is a socio-technical process; earning commit-

ter status involves socializing with the core group [23, 30, 64] and

demonstrated commitment through repeated, high-quality contribu-

tions [18, 70]. The next layer, larger, comprises external contributors,

who submit occasional patches; on GitHub, these occasional contri-

butions are popular with the pull-based development model [32, 55].

Next, there is typically a layer of contributing users, who may partic-

ipate in discussions or report issues without contributing code [75].

Finally, the outermost layer consists of external users of the software,

who do not necessarily participate in any project activities.

Core contributors, or maintainers, are paramount to the survival

of OSS projects. They are highly active and have the deepest knowl-

edge of the code base, making them the hardest to replace. Activity

in OSS projects typically follows the Pareto principle [31, 50, 73], by

which 20% of contributors are responsible for 80% of all activity; to

capture this phenomenon, different measures of risk of knowledge

loss due to developer turnover have been proposed [57, 69], includ-

ing the popular łtruck factorž [2, 14]. Other contributors and users

are also important: future maintainers are frequently groomed or

ascend from among external contributors [51]; external contribu-

tors also provide much needed testing and quality assurance (łgiven

enough eyeballs, all bugs are shallowž [56]); and without users the

software would quickly become obsolete.

When contributions come is also important. OSS projects, as with

projects generally, have a life cycle, from inception to abandonment.

The motivations for contributing to a project, the amount of effort

a project may need, and the chances of attracting contributors will

likely vary with the stage in the life cycle. The code growth curve of

OSS projects often follows the typical pattern of rapid growth slow-

ing and flattening as projects reach maturity and require less effort

for adding features, as shown, e.g., in GNOME [42] and Linux stable

releases [65]. Relatively few OSS projects reach maturity [7, 12]

and even once-popular projects can get abandoned, i.e., no longer

maintained [10, 40]. However, the factors associated with sustained

activity can be different in early-stage projects compared to later

on [60, 71]. For example, Comino et al. [12] found that fewer than

2% of a sample of SourceForge projects reached maturity, and that

early-stage projects risked abandonment due to restrictive licenses

and smaller communities. In contrast, Coelho and Valente [10]

found that common reasons why mature and once-popular OSS

projects are abandoned include losing out to a competitor, having

become obsolete, and lack of time and interest from contributors.

645

Ecosystem-Level Determinants of Sustained Activity in Open-Source. . . ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Ecosystem-level Factors. OSS ecosystems have been an active

research topic (for a review, see Franco-Bedoya et al. [28]) and dif-

ferent definitions exist [6, 36, 45, 47]. Here we follow Lungu’s broad

definition [46] of OSS ecosystems as collections of related software

projects that co-evolve in the same environment. Python pack-

ages published on PyPI fit this definition: they coexist in the PyPI

environment and, as we show below, they are often interdependent.

Within an OSS ecosystem, developers frequently contribute to

multiple projects [68], often at the same time [66]. In addition to

building social capital, bridging sub-communities also creates con-

nections between projects, which can impact project sustainability.

For example, Casalnuovo et al. [8] found that GitHub contributors

are more likely to join projects with which they have prior social

connections. Singh et al. [61] showed, using a longitudinal panel

of 2,378 SourceForge projects, that social network ties between de-

velopers impact OSS project survival. Finally, Wang [71] analyzed

2,220 SourceForge projects to model survival factors at various

project lifecycle stages. The author found that member social con-

nections with other projects and active engagement of contributors

present survival advantages at any stage, while permissive licenses

and large contributor bases help especially early on.

A significant missing puzzle piece in prior research on OSS sus-

tainability is the impact of a project’s position in dependency net-

works on survival or extinction, though the heartbleed and leftpad

incidents discussed above suggest this might be significant. Indeed,

ecosystem connections between projects extend well beyond the

social, with complex dependency networks being formed, i.e., one

project reusing functionality from another [1, 3, 21, 41].

We argue that the survival of an OSS project in an ecosystem, in

addition to all the factors reviewed above, depends also on the sur-

vival of its dependencies upstream (i.e., other packages the current

package depends on) and downstream (i.e., packages depending on

the current package). Specifically, while the benefits of depending

on others’ code in an ecosystemÐreusing functionality without as-

suming the responsibility of maintenanceÐare clear, we expect that

in general having more upstream dependencies may create more

points of failure, because of the costs associated with responding

to breaking (i.e., backward incompatible) changes. Indeed, while

different OSS ecosystem communities have different practices in

planning and deploying breaking changes [5], it is clear that in all

ecosystems developers must constantly make dependency manage-

ment decisions. We expect that:

H1. The number of upstream dependencies is related to a lower prob-

ability of project survival.

However, depending on an upstream package may also create an

incentive to step up to make changes that benefit you as a user or

to help more generally, because an ill maintained upstream project

could increase maintenance effort downstream. Therefore, the more

downstreams, the larger the pool of potential resources available

upstream if needed. This may help explain how the original issues

were resolved within hours for leftpad and days for OpenSSL:

H2. The number of downstream dependencies is related to a greater

probability of project survival.

In addition, in both incidents, a catalyst to the massive disruption

is also the fact that among immediately affected dependencies were

important network actors. For OpenSSL these were popular web

servers while leftpad was used by Babel, a core JavaScript package.

The number of direct dependents may not fully reflect a package’s

importance. Consequently, we posit:

H3. Structural properties indicatingmore indirect connectivity through

transitive dependencies are related to a greater probability of survival.

In contrast, there are upstream practices that can help mitigate

these downstream costs. As concrete evidence of expending effort

to support a community of users we consider backporting, which

may indicate more intense involvement with other projects in the

extended dependency network. Hence, we posit that:

H4. Backporting is related to a higher probability of project survival.

There is also a social organizational perspective to thriving in an

ecosystem. Besides differences in roles, OSS contributors are also di-

verse in terms of background, demographics [67], and employment;

they can be a mixture of volunteers, academics, and paid contribu-

tors [9, 76], with different motivations [22, 35, 43]. In particular, as

ecosystem dependency management costs may become significant

over time, we posit that whether a big organization (commercial,

non-profit, or even academic) supports an OSS project will affect the

project’s survival chances, as this level of investment (e.g., assigned

employees) is likely beyond that found among volunteers:

H5. Projects supported by large organizations have a higher probabil-

ity of survival.

3 METHODOLOGY

To test our hypotheses we designed a mixed-methods study follow-

ing a concurrent triangulation strategy, a common mixed-methods

design [25]. We collected both quantitative and qualitative data

concurrently and used findings from one source as cross-validation

for findings from the other. Quantitatively, we collected a panel

data set of Python PyPI packages and used survival analysis to

model the factors that explain projects becoming dormant. Qualita-

tively, we interviewed package maintainers to triangulate the model

results and refine the discovered effects. Because of a concurrent

rather than sequential triangulation strategy, we could revisit and

enhance the model to account for potential effects revealed by the

interviews, which is a particular strength of this design [16].

3.1 Data Set

We assembled a large panel data set5 of OSS packages part of the

PyPI (Python Package Index) ecosystem. A distinctive feature of our

data set is that it accurately represents the network of dependencies

between member packages (details below).

We chose Python as it is a popular general purpose language;

it is the second most popular on Github by number of pull re-

quests.6PyPI is the official registry of Python packages, forming an

ecosystem comprising over 130,000 packages (as of March 2018),

with declarative-style dependencies. Unlike other languages (e.g.,

Haskell), Python has only one package repository; as Figure 1, based

on our data (details below), shows, PyPI is increasingly popular.

Initial Filtering. Assembling our data set involved integrating

data from two sources: metadata from the PyPI registry and the

packages’ development history from their GitHub repositories.

5Available online at https://zenodo.org/record/1297925.
6https://octoverse.github.com/, retrieved February 2018

646

https://zenodo.org/record/1297925
https://octoverse.github.com/

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Marat Valiev, Bogdan Vasilescu, and James Herbsleb

0

500

1000

1500

2000

2005 2010 2015

N
u

m
b

e
r

o
f

n
e
w

 P
y
P

I
p

a
c
k
a

g
e

s

Figure 1: Number of new PyPI packages per month.

Linking the two required several steps. First, we obtained a list of

all PyPI packages using PyPI’s JSON API7 on January 21, 2018, for a

total of 125,699 packages, 116,687 of which had at least one release.

Next, for each package, we checked if its home page field in the PyPI

metadata matches any popular code hosting platforms (github.com,

bitbucket.org, gitlab.com). If this failed, we extended the lookup

to all other metadata fields. If no URL was found, we downloaded

the last package release and looked for mentions of code hosting

platform URLs across all package files, with the repository name, if

any, matching the package name on PyPI. This approach revealed

91,728 package repositories overall, 89% (or 81,802) of which were

hosted on GitHub; for simplicity, we subsequently only mined pack-

ages with GitHub repositories. These repositories were checked

for existence and uniqueness to filter out project foundries (i.e.,

repositories hosting hundreds of projects,8 since these all point to

the same PyPI package and the metadata would be impossible to

disentangle), leaving 71,903 code repositories (packages) total. We

further filtered out packages created before 2012, when GitHub

became popular, as the data pre-2012 is sparse, and packages with

less than a year of observable history, i.e., created after January

2017, since we could not confidently label them as dormant or still

maintained (see ğ3.2). Our final sample contains 46,547 packages.

DependencyNetwork. By łdependencyž, wemean a declared tech-

nical dependency on another PyPI package. That is, we do not count

required system libraries nor Python packages copied to the source

tree of a package. We also exclude optional extras and test depen-

dencies, as the vast majority of installations do not use them. Given

a package, we call łupstreamsž those packages used by this package,

i.e., packages that the focal package depends on; conversely, we call

łdownstreamsž those packages dependent on the focal one.

To extract dependencies, we mined the package metadata when-

ever possible, and used a sandbox installation as a fallback. PyPI

supports several packaging formats, two of which (.egg and .whl)

storemachine-readable dependencies. For other formats, e.g., source

archives, we executed a package installation in a sandbox environ-

ment with an instrumented version of the package installer, logging

the requested dependencies.

To capture network dynamics we extracted dependency infor-

mation from all releases of all PyPI packages. Then, we generated

historical snapshots of the network, using the latest non-testing,

non-backported release at each time. Testing releases were inferred

from version numbers, using semantic versioning assumptions (i.e.,

7https://wiki.python.org/moin/PyPIJSON
8E.g., https://github.com/micropython/micropython-lib, 220 projects

Table 1: Data set summary statistics (Dec 2017 snapshot)

Quantile Min Mean 0.5 0.7 0.8 0.9 0.95 0.97 0.99 Max

All projects

Commits 0 1.9 0 0 0 2 8 15 42 1144

Core team 0 0.07 0 0 0 0 0 1 2 97

Non_dev_issues 0 0.2 0 0 0 0 1 1 4 245

Upstreams 0 1.7 1 2 3 4 6 8 14 117

Downstreams 0 1.5 0 0.0 0 1 2 4 15 5487

Katz centrality 0 3e-4 4e-4 4e-4 4e-4 5e-4 5e-4 6e-4 1e-3 0.33

Social ties 0 1.0 0 0 0 0 1 3 12 240

University 0 0.01 0 0 0 0 0 0 0.14 1

Commercial 0 0.03 0 0 0 0 0 0.5 1 1

Non-dormant projects

Commits 0 11.6 4 8 14 27 48 66 125 1144

Core team 0 0.42 0 0 1 1 2 3 4 97

Non_dev_issues 0 0.9 0 0 1 2 4 6 14 245

Upstreams 0 2.2 0 2 4 6 9 12 20 100

Downstreams 0 5.3 0 0 0 2 5 12 67 5487

Katz centrality 0 5e-4 4e-4 4e-4 4e-4 5e-4 6e-4 1e-3 4e-3 0.33

Social ties 0 6.2 0 1 3 6 15 32 211 240

University 0 0.05 0 0 0 0 0.3751 1 1

Commercial 0 0.18 0 0 0.3331 1 1 1 1

not matching a pattern of dots and numbers only). Backporting

releases are defined as a release with lower version number than

the highest non-testing release (e.g., 1.10.0 is a backporting release

if 2.0 was released earlier). Note that we extracted dependencies

over the whole PyPI network, not just for packages with GitHub

repositories; this means our network structural measures are robust

to the initial filtering above.

3.2 Operationalizations of Concepts

In preparation for the quantitative survival analysis below (details in

ğ3.3), we introduce the following operationalizations of the different

project- and ecosystem-level factors discussed in ğ2 above.

Dormant projects. We consider project as dormant if it is no

longer being maintained, i.e., when it stops development (commit)

activity, in line with prior work [10, 61, 71]. This suggests a straight-

forward approach to detect dormant projects: look for a long period

of inactivity in the git history, and consider the timestamp of the

latest commit as the dormant date. However, this is not always ac-

curate: e.g., there are instances when a seemingly dormant project,

with an activity gap of one year or more, is łrevivedž by (a few)

commits to officially indicate that the project has been deprecated;

dormant projects may have also had little activity to begin with

(thus long gaps are not unusual), changed owner, or were not as

much abandoned as they were łcompletedž [10] (i.e., they continue

to deliver the intended value without active maintenance; 11% of

developers interviewed by Coelho and Valente [10] reported this).

To increase robustness to residual development activity (i.e.,

fewer false positives), we instead only label a project as dormant if

it had less than one commit per month on average in the 12 months

prior to its most recent commit. This fits well with our manual

inspections of small samples of the data (tens of packages), though

we do acknowledge this definition as a potential threat to validity.

647

https://wiki.python.org/moin/PyPIJSON
https://github.com/micropython/micropython-lib

Ecosystem-Level Determinants of Sustained Activity in Open-Source. . . ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Project-level Control Variables. As indicated in our literature

review, several factors are known to impact survival rates, and we

use the following variables to include these factors in our models:

Project age: the number of months since the first commit in the

repository. Note that the earliest Git commit is sometimes dated un-

reasonably early, e.g., because of a system time reset on a developer

machine (dead CMOS battery). A true first commit is one without

a parent in the Git history graph. We identified true first commits

and filtered out outlying commits dated before their timestamps.

Number of commits: obtained via the GitHub API and aggregated

per calendar month; consequently, since the first month may be

incomplete, we exclude it from further analysis.

Number of contributors: counted as the number of GitHub users

having authored commits within a given calendar month.

Size of the core team: the number of people responsible for 90%

of contributions in a given month. This threshold was selected

empirically as a typical łelbowž point in distribution of OSS activity,

much like in other OSS projects (e.g., Apache [50]).

Number of issues: obtained via the GitHub API, with pull requests

filtered out, aggregated per calendar month. We distinguish be-

tween developer-reported issues, likely occurring internally during

development, and non-developer-reported issues, likely reported

by external users, as the latter are more indicative of the size of the

user base; we call łdevelopersž those contributors who authored

prior commits and łnon-developersž the rest.

Number of non-developer issue reporters: the number of non-

developer GitHub users reporting issues in a given calendar month;

may help distinguish communities with higher user engagement

from those where few users do most issue reporting.

License type: extracted from PyPI package metadata; categorical

variable, indicating whether a project is distributed under a strong

copy-left license (GPL, Affero etc.), weak copy-left (LGPL, MPL,

OPL, etc.) or non-copy-left license (Apache, BSD etc.), cf. [71].

Social ties: the total number of PyPI packages that contributors

to the focal package also contributed to this month, as a proxy for

the amount of OSS embeddedness of the contributors. Projects with

more łseasonedž contributors may be more sustainable.

Variables for Ecosystem-level Hypotheses.

Number of upstreams (out-degree centrality): number of upstream

dependencies used by the project (H1).

Dormant upstreams: binary variable indicating whether any of

the upstream dependencies is itself dormant at the time (H1).

Number of downstreams (in-degree centrality): number of projects

directly dependent on the focal project (H2). Both here and in the

upstreams case, we do not differentiate between versions of a de-

pendency, so even dependencies on old and unsupported versions

of the package are counted. This is because more potential contrib-

utors dependent on this package and having a vested interest in its

sustainability may positively affect survival.

Katz centrality: as a proxy for the importance of a package’s

position in the network structure (H3). Katz centrality [39] for

node i is defined as: CKatz (i) = α
∑
j ∈J CKatz (j) + β, where J is

the set of adjacent nodes to i . Parameter β is an initial centrality

(usually 1), and α is a discriminating factor applied at each step to

down-weigh farther nodes (0.1 in this study). Developers further

downstream in the dependency chain may be less likely to step in if

needed than people from immediately dependent projects. We use

Katz centrality to capture this and down-weigh farther downstream

projects depending on their dependencies.

Backporting: binary variable indicating whether the project pro-

duced a backporting release in the last 12 months (H4).

Organizational account: binary variable indicating that the project

is hosted under an organizational (rather than personal) GitHub

account; organizations, even informal, may possess more resources

than an individual developer, affecting survival differently (H5).

University involvement: share of commits where the top-level

domain of the author’s email is a university domain.9 This is a

conservative operationalization, as the list may be incomplete and

not all academically affiliated contributors configure their Git clients

with their institutional emails. Predominantly academic projects

may be subject to specific survival risks, e.g., student graduation,

funding cycles, and shifting research interests (H5).

Organizational involvement: the share of commits from non-

university, non-public, non-personal email domains. Public email

providers (e.g., gmail.com) were excluded based on a public list.10

Personal domains are defined as those with only one known user

across the entire ecosystem data.Wemanually validated the top-100

domains (by number of emails) labeled organizational and found

no obvious mislabelling. Commercial companies or open-source

foundations, both of which are łorganizationalž, may act as a driving

force and supply resources, e.g., their employees’ time (H5).

3.3 Survival Analysis (Quantitative)

We use survival analysis to model the effects of the different fac-

tors above on packages becoming dormant. Survival analysis, also

known as event history analysis, is a branch of statistics that special-

izes in modeling of time to event data [49]. Typically only a single

event occurs for each subject; in our case, the event is the package

suspending its development activity. Survival analysis techniques

are designed to deal with so-called right-censored observations: the

time of the occurrence of the event of interest can only be recorded

reliably for members of the population that already experienced the

event; for others, all we know for certain is that the event hasn’t

happened yet; for some, it may never happen (hence the term right-

censorship). In software engineering, survival analysis has been

used to model, e.g., defect survival in Eclipse (time to bug fixes) [72]

and contributor survival in OSS projects [13, 44, 53].

Cox Proportional-Hazards Model. Different survival analysis

techniques exist. The most common regression modeling frame-

work for survival analysis is the Cox proportional-hazardsmodel [15],

which allows to estimate the effect of any one independent variable

on the outcome, while holding other covariates fixed. This allows us

to precisely isolate the effects of any given factor on survival.

In a general case, one may be interested in modeling state transi-

tions in some system. Say we have a number of observation of some

system, entering (e.g., birth) and leaving (e.g., death) a state of inter-

est. For each alive subject, we thus have a survival time T on record.

The probability of reaching a given survival time t will be defined by

the survival function S(t) = P(T > t). The probability of leaving the

state at time t will be given by hazard rate h(t) =
P (T <t+∆t |T ≥t)

∆t .

9As per a public list https://github.com/Hipo/university-domains-list
10https://gist.github.com/tbrianjones/5992856/

648

https://github.com/Hipo/university-domains-list
https://gist.github.com/tbrianjones/5992856/

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Marat Valiev, Bogdan Vasilescu, and James Herbsleb

+
+
+
+
+
+
++

0.00

0.25

0.50

0.75

1.00

0 12 24 36 48 60

Time in months

S
u

rv
iv

a
l
p

ro
b

a
b

ili
ty

Figure 2: Overall probability of survival across our sample.

Given enough data, one can build a non-parametric regression to

estimate all these functions.

Our goal, however, is to estimate the effect of some independent

variables X on the hazard rate: h(t ,X) = θ (t)f (X). The problem in

this case is that the baseline hazard rate θ (t) is non-parametric

and thus does not have a functional equivalent. Cox’s propor-

tional hazard model allows to estimate coefficients of the regression

h(t ,X) = θ (t) exp(βTX) using partial likelihood, without any as-

sumptions about the baseline hazard rate [37, 49].

A nice property of this model is that one can directly interpret

the coefficients β . For example, if βi = 2, then every unit increase

in Xi will increase the probability of survival by exp(2) = 7.4 times.

Modeling Considerations. Recall that our data set is longitudinal,

organized in monthly windows. Measures derived from OSS data

(e.g., number of commits) tend to be quite noisy, with high variation

from one observation (e.g., month) to the next. To increase the

robustness of our models to potentially high window-to-window

variance, we first smoothed out all numerical variables using a

six-months sliding window, where each value was replaced by the

average of the previous six.11 Then, we split project data into six-

month periods, taking only the last observation from each period.

As expected (ğ2), we also observed during initial exploration of

our data that many packages become dormant early; see Figure 2,

which shows the probability of survival (i.e., non-dormant) over

time, across all PyPI packages in our sample. To model how the

different factors contribute to explaining the variability in package

survival rates differently early-stage compared to later on, we split

the data set into two parts: early-stage shutdowns (i.e., stopping or

nearly stopping development in the first six months, which matches

well our sliding-window smoothing approach) and the rest.

The early-stage shutdowns, by definition given our smoothing,

only contribute one observation each, while the other packages

contribute more. Therefore, we model this group using logistic re-

gression (glm in R), with the response variable being the likelihood

of a project becoming dormant. For the remaining packages, the

data contains monthly observations. A package’s dormant vari-

able is True in the last month, if we labeled the package as having

stopped activity (see above), and False otherwise; surviving pack-

ages have, therefore, dormant = False in all windows. To model

these, we estimate a Cox proportional-hazards model (coxph in R).

11Or fewer, in the first five months of observation.

In both cases, we follow a similar procedure for model fit and

diagnostics. First, for predictors with highly skewed distributions,

we conservatively removed the top 1% of values as high-leverage

outliers, in line with statistical best practice [54]; high-leverage

points would disproportionally affect regression slopes and reduce

the model’s robustness. Second, we log-transformed variables with

skewed distributions, as needed, to reduce heteroscedasticity [29];

this helps stabilize the variance and can improve model fit. Third,

we test for multicollinearity between the explanatory variables

using the variance inflation factor (VIF), and remove variables, if

any, with VIF scores above the recommended maximum of 5 [11].

We also performed graphical diagnostics: deviance residual plots

for the logistic regression and Schoenfeld residuals [33] for the

Cox model (which test the assumption of constant hazard ratios

over time); none displayed any obvious signs of violations. In the

Cox model, to account for the non-independence of repeated ob-

servations per package, we explored different options, all of which

produced qualitatively similar results: transforming the data into

count process format [62]; or using a cluster term for package.

When interpreting the models, we consider coefficients impor-

tant if they are statistically significant at 0.05 level or lower, and

we estimate their effect sizes from ANOVA type-2 analyses (col-

umn łLR Chisqž in Table 2). For the logistic model we also report

McFadden’s pseudo R2 measure of goodness of fit.

3.4 Maintainer Interviews (Qualitative)

To triangulate and enhance our modeling results we conducted 10

semistructured interviews with package maintainers. Recruitment

was done by soliciting via email, using addresses collected from

GitHub profiles or personal websites. We used stratified sampling

to identify potential interviewees: 3 packages with extreme feature

values (large size), 2 projects that recently became inactive, 4 ran-

domly selected to stratify the sample by project size, and 1 highly

productive individual contributing to many projects of different

sizes. For each project, the most active person in the last two years

was solicited via email. We sent 32 emails, received 12 responses,

and conducted 10 interviews; we reached theoretical saturation,

meaning roughly that subsequent data all fit within the categories

derived from the previous interviews, around the sixth interview.

The interview protocol was centered around the model features,

asking about the predictive power of these features, their expected

effect, and comments on the effects discovered by the model. In-

terviews also included several open ended questions about the

definition of sustainability in OSS, project context, and missing

factors that should be incorporated into the model.

Interviews were recorded, transcribed, translated (two cases),

and coded. For three interviews, interview recordings were partially

or completely corrupted due to technical glitches. Transcripts for

these interviews were restored from partial recordings and notes,

confirming accuracy with participants when necessary.

A lightweight qualitative coding was made by one author and

discussed with the others. Codes were designed to match model

features, their possible explanations, and threats to validity.

649

Ecosystem-Level Determinants of Sustained Activity in Open-Source. . . ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 2: Regression models for early-stage survival and later-stage survival.

Early-stage survival Later-stage survival

response: dormant = TRUE response: dormant = TRUE

Pseudo R2
= 43.6% R2

= 17% R2
= 17.2%

Coeffs (Err.) LR Chisq Coeffs (Err.) LR Chisq Coeffs (Err.) LR Chisq

(Intercept) 3.96 (0.05)∗∗∗

Log number of commits 3.24 (0.02)∗∗∗ 7675.27∗∗∗ 1.77 (0.01)∗∗∗ 3317.06∗∗∗ 1.84 (0.01)∗∗∗ 3326.17∗∗∗

Log number of contributors 0.00 (0.08)∗∗∗ 8276.50∗∗∗ 0.19 (0.05)∗∗∗ 1374.33∗∗∗ 0.19 (0.05)∗∗∗ 1372.20∗∗∗

Log number of non-developer issues 1.91 (0.07)∗∗∗ 79.22∗∗∗ 0.55 (0.04)∗∗∗ 222.92∗∗∗ 1.07 (0.11) 222.93∗∗∗

Social ties 1.12 (0.03)∗∗∗ 16.42∗∗∗ 1.09 (0.02)∗∗∗ 17.58∗∗∗ 1.09 (0.02)∗∗∗ 18.30∗∗∗

Number of downstream projects 1.60 (0.04)∗∗∗ 178.37∗∗∗ 0.89 (0.02)∗∗∗ 68.05∗∗∗ 0.89 (0.02)∗∗∗ 68.08∗∗∗

Number of upstream dependencies 1.25 (0.01)∗∗∗ 380.27∗∗∗ 0.95 (0.01)∗∗∗ 68.25∗∗∗ 0.95 (0.01)∗∗∗ 19.05∗∗∗

Some upstreams are dormant 0.69 (0.05)∗∗∗ 50.39∗∗∗ 1.11 (0.03)∗∗∗ 13.23∗∗∗ 1.11 (0.03)∗∗∗ 13.00∗∗∗

Katz centrality 1.12 (0.02)∗∗∗ 35.29∗∗∗ 1.27 (0.02)∗∗∗ 221.55∗∗∗ 1.26 (0.02)∗∗∗ 171.36∗∗∗

High university involvement (>10%) 1.08 (0.06) 1.32 0.75 (0.05)∗∗∗ 30.88∗∗∗ 0.76 (0.05)∗∗∗ 30.35∗∗∗

High commercial involvement (>10%) 1.51 (0.04)∗∗∗ 125.22∗∗∗ 1.15 (0.03)∗∗∗ 24.51∗∗∗ 1.15 (0.03)∗∗∗ 23.47∗∗∗

Had a backporting release in the last 12 months 0.61 (0.12)∗∗∗ 16.63∗∗∗ 0.97 (0.07) 0.21 0.97 (0.07) 0.17

Strong copy-left license (vs none) 0.62 (0.06)∗∗∗ 78.42∗∗∗ 0.83 (0.04)∗∗∗ 35.83∗∗∗ 0.84 (0.04)∗∗∗ 34.54∗∗∗

Weak copy-left license (vs none) 0.69 (0.10)∗∗∗ 0.75 (0.07)∗∗∗ 0.75 (0.07)∗∗∗

Non-copy-left license (vs none) 0.82 (0.04)∗∗∗ 0.98 (0.03) 0.98 (0.03)

Hosted under organizational account on GitHub 0.55 (0.04)∗∗∗ 259.95∗∗∗ 0.77 (0.03)∗∗∗ 84.62∗∗∗ 0.78 (0.03)∗∗∗ 79.91∗∗∗

Number of upstream dependencies, squared 1.00 (0.00) 0.08

Log num. commits × log num. issues 0.81 (0.03)∗∗∗ 43.60∗∗∗

Log num. issues × log num. contributors 0.91 (0.11) 0.75

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

4 RESULTS AND DISCUSSION

We present an integrated discussion of quantitative and qualitative

results, combining the survival analysis with interview insights.

Table 2 presents the regression results. The first two models, logistic

regression for projects becoming dormant in the early-stage (first

six months), and Cox proportional-hazards for those becoming dor-

mant later on, comprise the factors we reviewed or hypothesized in

ğ2. The third model extends the Cox proportional-hazards model, to

test for potential interaction effects emerging during our qualitative

analysis. Logistic regression coefficients are odds ratios. Cox model

coefficients are hazard ratios; a hazard ratio above 1 indicates a

covariate that is positively associated with the event probability,

and thus negatively associated with the length of survival.

4.1 Survival Models and Interview Insights

Project-level Effects. The number of commits is associated

with higher chances to become dormant in the next time period

in both groups (early- and late-stage), i.e., packages with higher

commit activity are more likely to become dormant, other variables

held constant. Interviewees pointed out that commit squashing

(merging large contributions into a single commit), which would

reduce the number of commits, may help explain this effect: ma-

ture projects may use this practice more often, but are less likely

to become dormant; at the same time, a contributor with direct

commit access can contribute many small commits, which often

happens in smaller projects, which are more likely to become dor-

mant. Three interviewees indicated using recency of commits as

the main indicator of sustainability. Future work should consider

counting commit message lines instead (squashed commits tend to

contain all original messages), and replacing the absolute number

with commit dynamics, such as stability of monthly contributions.

Two participants also suggested adjusting the number of commits to

the project size, since bigger projects may need more maintenance.

The number of contributors has a negative effect on chances

of becoming dormant in both groups, i.e., packages with more con-

tributors are less likely to become dormant. Six interviewees agreed

unconditionally that having more contributors improves sustain-

ability. Explanations included, in decreasing order of popularity:

larger recruitment pool for the core team, better code reviews, and

an indication of healthy onboarding practices. An important addi-

tion to the number of committers as a sustainability metric, pointed

out by three interviewees (all are maintainers of big projects) is that

it does not capture non-code contributions. For example, people

contributing code reviews, issue triaging, and even evangelism and

securing funding are essential for project sustainability.

The size of the core team is collinear with the number of con-

tributors in our models, hence not included. Our interviewees also

perceive it similarly. It was unanimously viewed as a positive factor

by maintainers of big projects. All explanations of the effect either

directly referred to the łbus factorž or closely resembled its defi-

nition. For small projects, this metric was either equivalent to the

total number of contributors and still considered positive, or did

not apply because the project was considered feature-complete.

Thenumber of issue reporterswas not included in ourmodels

due to multicollinearity. For our interviewees, this was perceived

as another way to measure user base.

The number of issueswas expected to be a positive indicator of

user engagement. However, it was estimated as a risk factor in the

first six months (i.e., the early-stage model), while still decreasing

650

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Marat Valiev, Bogdan Vasilescu, and James Herbsleb

the chances of becoming dormant in the later-stage survival model.

In the interviews, the discussion revealed several layers of inter-

pretation for this metric. First, reported issues were unanimously

considered to be a positive sign of an active user community. Two

small project maintainers also noted that no issues in a small project

could be an indicator of a project without quality issues rather than

low usage. Four participants suggested looking into issue handling

and discussions. Average response time, number of responses, and

number of closed issues were proposed as indicators of activeness

for the project team.

Another interpretation for issues, coming from three maintain-

ers of big projects, suggested that issue triaging, although helpful

for end users, takes resources and sometimes slows down develop-

ment activities. Some projects were known to stop responding to

issues completely to conserve developers’ effort.12 Based on this

discussion, in the third model we introduce an interaction between

the number of commits and number of contributors. The interaction

effect was significant, rendering number of issues as a positive fac-

tor in projects with high volume of commits. Controlling for this

interaction, the number of reported issues itself is not significant.

H1. Upstreams. Upstream dependencies were expected to in-

crease the chances of projects becoming dormant. The modeling

effects are nuanced. In the first six months, a higher number of

upstreams correlates with higher chances of dormancy, as hypoth-

esized, although the presence of a dormant upstream reduces this

risk. Later on, a higher number of upstreams correlates with lower

chances of dormancy, but the presence of a dormant upstream

increases this risk.

The interviews with utility library project maintainers offer a

potential explanation. Such projects are considered dormant per our

definition, while in fact they are feature complete. Reusing feature

complete libraries can boost development of a new project, hence

the reduced dormancy risk in the first six months. In the long-term,

however, projects may start to incur higher costs of maintaining

compatibility with dormant upstreams, hence the increased risk.

At the same time, having more upstreams overall in the long

term enables more reuse, compensating for increased dormancy

risks. Still, interviewees were cautious, stressing that it is better

to limit upstream dependencies in the long-term to those that are

really necessary, as there is a trade-off between development effort

(lower with more reuse) and potential compatibility issues later

on. The mention of łas few as possible within reasonž suggested a

non-linear effect, which we added to the third model as a quadratic

term of the number of upstreams; however, this term did not have a

statistically significant effect. We further illustrate this trade-off.

On the one hand, the positive effect of dependency adoption

comes from saving resources on implementation. A striking ex-

ample comes from an interview with a project maintainer who

was able to reuse a domain-specific library from a similar project.

The maintainer claimed that most projects in this domain die in an

attempt to implement this very expensive piece of functionality, so

adoption of this dependency was essential for the project success.

On the other hand, the compatibility issues come from the Python

package installer (pip) not having a version resolver. For example,

if package A requires B version 1.0 and C version 1.0, and B 1.0

12E.g., the npm CLI team: https://twitter.com/maybekatz/status/953402549293350913

requires C 2.0, after installing package A a user might end up with

an incompatible setup B 1.0 and C 1.0. The Python community

developed tools to build isolated, non-contradicting sets of depen-

dent packages (e.g., virtualenv and pipenv), but even compatibility

within these environments requires effort from package developers.

All interviewees seem well aware of this trade-off and reported

using different heuristics to find the right balance. Several main-

tainers, especially of larger packages, indicated that they have to

spend substantial effort to stay compatible with a wide range of

environments by supporting outdated versions of upstream pack-

ages. In case of smaller upstreams, it is often considered a lesser evil

to either reimplement a dependency or copy a compatible version

under the package source tree.

In summary, an indication of compatibility with potential up-

streams is the biggest factor in dependency adoption, but overall

the evidence for or against H1 is inconclusive.

H2. Downstreams. Downstream dependencies were expected

to have a positive effect on project sustainability. Our models in-

dicate that indeed they have a positive effect in the long term,

but not in the first six months. Building a community of down-

stream projects takes time. The most likely scenario for a project

to have downstream dependencies early in their lifecycle is to be

chipped off from a bigger project into a small utility library, used

by other projects of the same maintainer. Such projects are usually

limited in scope, do not require further maintenance, and thus will

be considered dormant. In the later stage, however, this metric is

dominated by łnaturalž downstream dependencies, working as a

positive survival factor in the later-stage survival models.

Across all interviews, downstream dependencies were charac-

terized as a mostly positive factor, with the main trade-off between

extra maintenance effort and resources brought by the dependent

projects. Main benefits brought by downstream projects were de-

scribed as code contributions (three participants), free testers (two),

secure funding (two participants from academic projects). Two par-

ticipants considered the number of dependent projects a proxy for

user base, and two maintainers of feature-complete projects stated

that it is not important at all.

The negative side of downstream dependencies was described as

extra effort to maintain compatibility and triage issues. Only one

participant stated that contributions from downstream projects are

not worth this effort. These explanations, together with modeling

results, mostly support H2.

H3. Structural properties. Relative position in the dependency

network was only relevant for four projects in the interview pool

having transitive downstream dependencies, and even for those

the dependency network was not directly observable. Due to these

constraints the role of the relative position in the dependency net-

work was mostly discussed from a theoretical perspective rather

than personal experience.

In most cases, transitive downstreams were interpreted in the

same way as direct ones, as a user base. Two participants stated

that projects higher in the dependency chain need to put more

resources into sustainability because of their special position. One

of them motivated this with an example of łextremely painfulž

debugging of a second-level upstream dependency (i.e., an upstream

of an upstream). For two maintainers of feature-complete projects

651

https://twitter.com/maybekatz/status/953402549293350913

Ecosystem-Level Determinants of Sustained Activity in Open-Source. . . ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

the relative position in the dependency network did not matter.

Limitations of the interview sample prevent us from building a

more robust qualitative interpretation of this metric.

However, in all three models higher Katz centrality correlates

with increased chances of projects becoming dormant. This ef-

fect could be possibly explained by a higher reuse rate of feature

complete libraries. It could also be attributed to an increased main-

tenance effort required in projects higher in the dependency chain,

as indicated by interviewees. Overall, based on the modeling and

interview results, we could not confirm H3.

H4. Backporting. Backportingwas used as an indicator of project

practices aimed at reducing the maintenance cost of dependent

projects [5]. It was estimated to substantially reduce chances of

becoming dormant in the first six months, where practical impor-

tance of backporting releases is questionable. The model estimate,

suggesting increased likelihood of survival, could be explained by

projects occasionally mislabeling releases; however, the fact that

these projects produce multiple releases in the first six months is

serving as an indicator of sustainability. In subsequent later-stage

survival models this feature did not have a significant effect. We

could not confirm H4.

H5. Organizational Support. University involvement has a

special role in the Python community. Many signature Python

projects are related to traditionally academic domains: Data Sci-

ence, Machine Learning, Artificial Intelligence, Natural Language

Processing, etc. Our expectation was that university projects have

extra risks, such as students leaving after graduation, end of fund-

ing cycles, etc. However, modeling results indicated that university

involvement is not a significant dormancy risk factor in the first

six months, but in later-stage survival models it reduces the chance

of becoming dormant by approximately 25%.

In our interview sample, four participants were university affil-

iates. Overall, all four indicated that their OSS work is currently

funded through a university through a grant or contract, and their

contributions are related to their position in academia. Two of them

started their projects as students, one joined an existing project,

and the last project was created as a practical tool to support exist-

ing research. Two interviewees transitioned into faculty positions

during their projects, and thus had an extended perspective on

the evolution of an academic project. They commented on three

survival challenges in the lifecycle of a university project: surviving

the student graduation cycle, surviving the academic funding cycle,

and growing outside academia. Two out of four university affiliates

we interviewed assumed that the diversity of institutions involved

might also be used as an indicator of sustainability, where projects

with multiple institutions involved are expected to be truly owned

by the research community, in contrast to local research projects.

It was also suggested that the university involvement effect might

vary depending on the area of science.

The explanation above and the modeling results partially sup-

port H5. However, increased sustainability of university projects

might be specific to the Python ecosystem due to its high share

of łacademicž projects and should be further tested in different

ecosystems by future work.

Commercial involvement was expected to have a positive ef-

fect on sustainability (lower risk of dormancy), but the models

suggest otherwise; the feature also elicited somewhat controver-

sial interview explanations. A shared opinion about commercial

involvement among interviewees was that companies bring re-

sources to the project, but this support is not sustainable long term.

Common concerns include misalignment of companies’ priories

with the project goals and sustainability issues caused by companies

withdrawing from a project.

The overall extent of commercial involvement in PyPI seems

small. Contrasting the results of the 2016 Future of Open Source

Survey, which states that ł1 in 3 companies have a full-time resource

dedicated to open-source projectsž and ł67% of companies actively

encourage developers to engage in and contribute to open-source

projectsž,13 only two participants knew about cases of companies

paying developers to contribute to OSS projects of their choice. One

participant also indicated that their project benefits from commer-

cial contributions, but ł... those engineers will have a finite time

with us. So we can’t put them on the critical pathž. This explanation,

coupled with modeling results, is at odds with H5.

Another aspect to commercial contributions is licensing. One

participant stated that commercial companies are sensitive to li-

censing terms. In particular, many product companies will not be

able to work with GPL products, though service companies might.

Adding license restrictiveness as a control variable in ourmod-

els, we find that presence of a license, whether strong-, weak- or

non-copy-left, is a positive survival indicator. Although one in-

terview participant indicated that strong copy-left licenses, such

as GPL, restrict project adoption, the model indicates that strong-

and weak copy-left licenses have higher positive impact on project

chances of survival than non-copy-left licenses or no license.

Hosting under an organizational account on GitHub has a

substantial positive effect. Otherwise equal, such projects are 22%

less likely to be become dormant, which partially supports H5.

4.2 Other Indicators of Sustainability

During the interviews other indicators of sustainability emerged.

For example, competition was listed as a major driving force behind

one project. Users in this domain can easily switch between projects,

so this project had to implement new features added by competing

projects. Such competition increases the required maintenance

effort to stay up to date with the user needs.

Across many interviews, participants indicated that maturity

of project practices plays an important role in an evaluation of

the project’s sustainability from the end user perspective. Prior

work by Trockman et al. [63] also found that developers rely on

observable signals when making decisions about which project to

use or contribute to. The factors mentioned during our interviews

were related to software quality, backward compatibility, devel-

oper onboarding, and support for end users. The indicators of such

practices include implemented autotests, CI and test runner config-

urations, documentation, number of pull requests, GitHub stars,

project website, etc. Three participants mentioned the number of

downloads as an indicator of an active user community, although

noisy (łeven one order of magnitude doesn’t tell you very muchž).

13https://www.blackducksoftware.com/2016-future-of-open-source, slide 26

652

https://www.blackducksoftware.com/2016-future-of-open-source

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Marat Valiev, Bogdan Vasilescu, and James Herbsleb

4.3 Implications

Our study provides a quantitative way (supported by qualitative in-

sights) to identify and predict which OSS projects may become dor-

mant and therefore pose a risk to developers choosing dependencies.

Our survival models show that in addition to known project-level

factors impacting sustainability, such as the number of contributors

and the number of users, a project’s chances of becoming dormant

(having limited activity) is influenced by a series of ecosystem-level

factors, such as its position in the ecosystem dependency network.

These results have several implications.

First, these results may be actionable for OSS researchers and

platform designers. The ecosystem-level variables we found to cor-

relate with a project’s risk of becoming dormant, despite being

aggregations of publicly accessible data, are not readily observable

on platforms like GitHub. One of the defining features of GitHub

is transparency [19]; developers rely on signals [63] displayed on

GitHub repository and user pages (e.g., counts of stars and follow-

ers, repository badges) to form impressions about each other and

their work [48]. Our approach shows how new signals to display

these otherwise unobservable ecosystem-level qualities, such as a

project’s position in the ecosystem interdependency network or its

level of organizational support, could be developed.

In turn, displaying these signals may help developers identify

sustainable projects and projects at risk, steer developers and or-

ganizations towards contributing to central projects most in need

of support, and overall help nudge the ecosystem towards more

efficient allocation of contributor effort. Recall the Open SSL and

leftpad examples discussed in the introduction. In these and other

similar cases, arguably the centrality of these projects for the health

of the rest of the ecosystem was not as clear before their respective

prominent incidents as it has become after the fact. Newly devel-

oped signals, such as the ones our approach can inform, could have

been used to reduce the information asymmetry. Therefore, it is

not surprising that recently both GitHub and PyPI have started

displaying information on dependents and dependencies for some

OSS packages hosted or published there. We expect other signals

will become available in the future.

Our results may also be actionable for OSS practitioners. If future

research confirms that there is a causal relationship, not just the

correlation we demonstrated in our work, between the variables

we identified and a project’s risk of becoming inactive, that may

provide means for suggesting how to extend the life of projects that

become inactive without being feature complete.

Still, we emphasize that the response variable in this study (dor-

mancy, or low development activity) is not always indicative of

project abandonment, and it therefore requires careful interpreta-

tion and should be adjusted to project context. While all abandoned

projects are dormant, not all dormant projects are abandoned. For

example, utility libraries with a well defined scope do not require

furthermaintenance and thuswill also be rendered as dormant, even

though they are not abandoned. One interviewee used SMTPlib to il-

lustrate the issue. This library implements a standard unchanged for

30 years and does not require maintenance. This claim is supported

by prior research on reasons for OSS project failure, indicating that

11% of seemingly abandoned projects are just considered feature

complete by their authors [10]. This suggests that when interpret-

ing sustainability indicators, one should adjust at least to project

class and size. E.g., existing dependent projects early in the lifecycle

might indicate a chipoff from another project, feature complete

from birth, which is not a negative sustainability indicator. Likely,

a dormant upstream project might not be an issue if it is feature

complete, but can be a problem if it requires constant maintenance.

In practice, it means that the presented survival model does not

fully apply to feature complete projects and one should consider

qualitative methods instead.

Future research should try to further distinguish feature com-

plete projects from abandoned ones. Suggested ways to determine

if a dormant project is complete rather than abandoned may in-

clude looking at: maintainers’ activity outside the project, non-

development activity (mailing lists, issue trackers, and community

forum discussions), and dynamics of the project user base; some

anecdotal evidence also suggests that projects abandoned by their

maintainers continue to be used by existing adopters, but are rarely

adopted by new projects, in contrast to feature complete projects,

which continue to be adopted as dependencies in new projects.

5 CONCLUSIONS

Prior work revealed a number of project characteristics related to

the sustainability of open-source projects. In this mixed-methods

study, we have extended those results to include ecosystem factors.

We theorized about expected effects and used survival analysis on

a large set of PyPI projects hosted on GitHub, modeling risk of

dormancy early in their life cycle and later on. We then triangu-

lated the models through interviews with project maintainers, and

modeled interaction effects informed by the qualitative analysis.

Our work shows the real impact ecosystem context has in how

software is developed, and suggests that it brings new risks as well

as clear benefits. As open-source projects are increasingly incorpo-

rated into software supply chains, organizations need to improve

their ability to evaluate the risks they are taking on and learn strate-

gies for mitigating them. It is also becoming clear, for example in our

results about the effects of corporate participation, that it can have

a destabilizing effect as well as simply providing more resources.

In addition to becoming more informed consumers of open-source

software, commercial firms should carefully consider the impact

that inconsistent participation can have on the ecosystem.

Due to the size of our dataset, not all new features suggested

by the interviewees were practical to test. Remaining, untested

effects, left open for future work, include: issue response time, issue

discussions, quality of commit messages, quality of documentation,

automated tests, and use of CI. Future research should generalize

and contrast our results on different ecosystems, better account for

feature complete projects, and test the remaining features suggested

by interviewees. For now, we note all these issues as potential

threats to validity.

ACKNOWLEDGEMENTS

The authors kindly acknowledge support from NSF awards 1633083

and 1546393, an award from the Alfred P. Sloan Foundation, and

support from the Google Open Source Program Office.

653

Ecosystem-Level Determinants of Sustained Activity in Open-Source. . . ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. 2017. Why do developers use trivial packages? An empirical case study
on npm. In Proc. Joint Meeting on Foundations of Software Engineering (ESEC/FSE).
ACM, 385ś395.

[2] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente. 2016.
A novel approach for estimating truck factors. In Proc. International Conference
on Program Comprehension (ICPC). IEEE, 1ś10.

[3] Kelly Blincoe, Francis Harrison, and Daniela Damian. 2015. Ecosystems in GitHub
and a method for ecosystem identification using reference coupling. In Proc.
International Conference on Mining Software Repositories (MSR). IEEE, 202ś207.

[4] Bradley C Boehmke and Benjamin T Hazen. 2017. The future of supply chain
information systems: The open source ecosystem. Global Journal of Flexible
Systems Management 18, 2 (2017), 163ś168.

[5] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016.
How to break an API: cost negotiation and community values in three soft-
ware ecosystems. In Proc. International Symposium on Foundations of Software
Engineering (FSE). ACM, 109ś120.

[6] Jan Bosch. 2009. From software product lines to software ecosystems. In Proc.
International Software Product Line Conference (SPLC). 111ś119.

[7] Andrea Capiluppi, Patricia Lago, and Maurizio Morisio. 2003. Characteristics of
open source projects. In Proc. European Conference on Software Maintenance and
Reengineering (CSMR). IEEE, 317ś327.

[8] Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and Vladimir Filkov.
2015. Developer onboarding in GitHub: the role of prior social links and lan-
guage experience. In Proc. Joint Meeting on Foundations of Software Engineering
(ESEC/FSE). ACM, 817ś828.

[9] Malgorzata Ciesielska and Ann Westenholz. 2016. Dilemmas within commer-
cial involvement in open source software. Journal of Organizational Change
Management 29, 3 (2016), 344ś360.

[10] Jailton Coelho and Marco Tulio Valente. 2017. Why modern open source projects
fail. In Proc. Joint Meeting on Foundations of Software Engineering (ESEC/FSE).
ACM, 186ś196.

[11] Jacob Cohen, Patricia Cohen, Stephen G West, and Leona S Aiken. 2013. Applied
multiple regression/correlation analysis for the behavioral sciences. Routledge.

[12] Stefano Comino, Fabio M Manenti, and Maria Laura Parisi. 2007. From planning
to mature: On the success of open source projects. Research Policy 36, 10 (2007),
1575ś1586.

[13] Eleni Constantinou and Tom Mens. 2017. An empirical comparison of developer
retention in the RubyGems and npm software ecosystems. Innovations in Systems
and Software Engineering 13, 2-3 (2017), 101ś115.

[14] Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2015. Assessing
the bus factor of Git repositories. In Proc. International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 499ś503.

[15] David Roxbee Cox and David Oakes. 1984. Analysis of survival data. Vol. 21. CRC
Press.

[16] John W Creswell and David J Creswell. 2017. Research design: Qualitative, quan-
titative, and mixed methods approaches (third ed.). Sage publications. 203ś224
pages.

[17] Kevin Crowston, James Howison, and Hala Annabi. 2006. Information systems
success in free and open source software development: Theory and measures.
Software Process: Improvement and Practice 11, 2 (2006), 123ś148.

[18] Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins. 2012.
Free/Libre open-source software development: What we know and what we do
not know. ACM Computing Surveys (CSUR) 44, 2 (2012), 7.

[19] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proc. ACM 2012 Conference on Computer Supported Cooperative Work (CSCW).
ACM, 1277ś1286.

[20] Carlo Daffara. 2012. Estimating the economic contribution of open source soft-
ware to the European economy. In The First Openforum Academy Conference
Proceedings.

[21] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2018. An empirical compar-
ison of dependency network evolution in seven software packaging ecosystems.
Empirical Software Engineering (2018).

[22] Bert J Dempsey, Debra Weiss, Paul Jones, and Jane Greenberg. 2002. Who is an
open source software developer? Commun. ACM 45, 2 (2002), 67ś72.

[23] Nicolas Ducheneaut. 2005. Socialization in an open source software community:
A socio-technical analysis. Computer Supported Cooperative Work (CSCW) 14, 4
(2005), 323ś368.

[24] Zakir Durumeric, James Kasten, David Adrian, J Alex Halderman, Michael Bailey,
Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, et al.
2014. The matter of heartbleed. In Proc. 2014 Conference on Internet Measurement
Conference. ACM, 475ś488.

[25] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
2008. Selecting empirical methods for software engineering research. In Guide
to advanced empirical software engineering. Springer, 285ś311.

[26] Nadia Eghbal. 2016. Roads and Bridges: The Unseen Labor Behind Our Digital
Infrastructure. Ford Foundation.

[27] Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C Murphy, and Jean-Rémy
Falleri. 2015. Impact of developer turnover on quality in open-source software.
In Proc. Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM,
829ś841.

[28] Oscar Franco-Bedoya, David Ameller, Dolors Costal, and Xavier Franch. 2017.
Open source software ecosystems: A Systematic mapping. Information and
Software Technology 91 (2017), 160ś185.

[29] Andrew Gelman and Jennifer Hill. 2006. Data analysis using regression and
multilevel/hierarchical models. Cambridge university press.

[30] Mohammad Gharehyazie, Daryl Posnett, Bogdan Vasilescu, and Vladimir Filkov.
2015. Developer initiation and social interactions in OSS: A case study of the
Apache Software Foundation. Empirical Software Engineering 20, 5 (2015), 1318ś
1353.

[31] Mathieu Goeminne and Tom Mens. 2011. Evidence for the Pareto principle in
Open Source Software Activity. In Proc. International Workshop on Model-Driven
Software Migration (MDSM). 74.

[32] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory
study of the pull-based software development model. In Proc. International Con-
ference on Software Engineering (ICSE). ACM, 345ś355.

[33] Patricia M Grambsch and Terry M Therneau. 1994. Proportional hazards tests
and diagnostics based on weighted residuals. Biometrika 81, 3 (1994), 515ś526.

[34] Shane Greenstein and Frank Nagle. 2014. Digital dark matter and the economic
contribution of Apache. Research Policy 43, 4 (2014), 623ś631.

[35] Guido Hertel, Sven Niedner, and Stefanie Herrmann. 2003. Motivation of software
developers in Open Source projects: an Internet-based survey of contributors to
the Linux kernel. Research policy 32, 7 (2003), 1159ś1177.

[36] Slinger Jansen, Anthony Finkelstein, and Sjaak Brinkkemper. 2009. A sense of
community: A research agenda for software ecosystems. In Proc. International
Conference on Software Engineering (ICSE) - Companion. IEEE, 187ś190.

[37] Stephen P Jenkins. 2005. Survival analysis. Unpublished manuscript, Institute for
Social and Economic Research, University of Essex, Colchester, UK (2005).

[38] Corey Jergensen, Anita Sarma, and Patrick Wagstrom. 2011. The onion patch:
migration in open source ecosystems. In Proc. Joint Meeting on Foundations of
Software Engineering (ESEC/FSE). ACM, 70ś80.

[39] Leo Katz. 1953. A new status index derived from sociometric analysis. Psychome-
trika 18, 1 (1953), 39ś43.

[40] Jymit Khondhu, Andrea Capiluppi, and Klaas-Jan Stol. 2013. Is it all lost? A study
of inactive open source projects. In Proc. IFIP International Conference on Open
Source Systems. Springer, 61ś79.

[41] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Structure
and evolution of package dependency networks. In Proc. International Conference
on Mining Software Repositories (MSR). IEEE, 102ś112.

[42] Stefan Koch and Georg Schneider. 2002. Effort, co-operation and co-ordination
in an open source software project: GNOME. Information Systems Journal 12, 1
(2002), 27ś42.

[43] Karim R. Lakhani and Robert G. Wolf. 2005. Why Hackers Do What They Do:
Understanding Motivation and Effort in Free/Open Source Software Projects.

[44] Bin Lin, Gregorio Robles, and Alexander Serebrenik. 2017. Developer turnover in
global, industrial Open Source projects: Insights from applying survival analysis.
In Proc. International Conference on Global Software Engineering (ICGSE). IEEE,
66ś75.

[45] Mircea Lungu, Romain Robbes, and Michele Lanza. 2010. Recovering inter-
project dependencies in software ecosystems. In Proc. International Conference
on Automated Software Engineering (ASE). ACM, 309ś312.

[46] Mircea F Lungu. 2009. Reverse engineering software ecosystems. Ph.D. Dissertation.
Università della Svizzera italiana.

[47] Konstantinos Manikas and Klaus Marius Hansen. 2013. Software ecosystemsś
A systematic literature review. Journal of Systems and Software 86, 5 (2013),
1294ś1306.

[48] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. 2013. Impression formation
in online peer production: activity traces and personal profiles in GitHub. In
Proc. 2013 Conference on Computer Supported Cooperative Work (CSCW). ACM,
117ś128.

[49] Rupert G Miller Jr. 2011. Survival analysis. Vol. 66. John Wiley & Sons.
[50] Audris Mockus, Roy T Fielding, and James D Herbsleb. 2002. Two case studies of

open source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology (TOSEM) 11, 3 (2002), 309ś346.

[51] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida,
and Yunwen Ye. 2002. Evolution patterns of open-source software systems and
communities. In Proc. International Workshop on Principles of Software Evolution
(IWPSE). ACM, 76ś85.

[52] Mathieu Nassif and Martin P Robillard. 2017. Revisiting Turnover-Induced
Knowledge Loss in Software Projects. In Proc. International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 261ś272.

[53] Felipe Ortega and Daniel Izquierdo-Cortazar. 2009. Survival analysis in open de-
velopment projects. In Proc. ICSEWorkshop on Emerging Trends in Free/Libre/Open
Source Software Research and Development. IEEE, 7ś12.

654

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Marat Valiev, Bogdan Vasilescu, and James Herbsleb

[54] Jagdish K Patel, CH Kapadia, Donald Bruce Owen, and JK Patel. 1976. Handbook
of statistical distributions. Technical Report. M. Dekker New York.

[55] Raphael Pham, Leif Singer, Olga Liskin, Fernando Figueira Filho, and Kurt Schnei-
der. 2013. Creating a shared understanding of testing culture on a social coding
site. In Proc. International Conference on Software Engineering (ICSE). IEEE, 112ś
121.

[56] Eric Raymond. 1999. The cathedral and the bazaar. Knowledge, Technology &
Policy 12, 3 (1999), 23ś49.

[57] Peter C Rigby, Yue Cai Zhu, Samuel M Donadelli, and Audris Mockus. 2016.
Quantifying and mitigating turnover-induced knowledge loss: case studies of
Chrome and a project at Avaya. In Proc. International Conference on Software
Engineering (ICSE). ACM, 1006ś1016.

[58] Gregorio Robles and Jesus M Gonzalez-Barahona. 2006. Contributor turnover
in libre software projects. In Proc. IFIP International Conference on Open Source
Systems. Springer, 273ś286.

[59] Ioannis Samoladas, Lefteris Angelis, and Ioannis Stamelos. 2010. Survival analysis
on the duration of open source projects. Information and Software Technology 52,
9 (2010), 902ś922.

[60] Charles Schweik, Bob English, Qimti Paienjton, and Sandy Haire. 2010. Success
and abandonment in open source commons: Selected findings from an empirical
study of sourceforge.net projects. In Proc. Workshop on Building Sustainable Open
Source Communities (OSCOMM).

[61] Param Vir Singh, Yong Tan, and Vijay Mookerjee. 2011. Network effects: The
influence of structural capital on open source project success. MIS Quarterly
(2011), 813ś829.

[62] Terry Therneau, Cindy Crowson, and Elizabeth Atkinson. 2017. Using time
dependent covariates and time dependent coefficients in the Cox model. Survival
Vignettes (2017).

[63] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. 2018.
Adding sparkle to social coding: an empirical study of repository badges in the
npm ecosystem. In Proc. International Conference on Software Engineering (ICSE).
ACM, 511ś522.

[64] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s talk about it: evaluat-
ing contributions through discussion in GitHub. In Proc. International Symposium
on Foundations of Software Engineering (FSE). ACM, 144ś154.

[65] Qiang Tu et al. 2000. Evolution in open source software: A case study. In Proc.
International Conference on Software Maintenance and Evolution (ICSME). IEEE,

131ś142.
[66] Bogdan Vasilescu, Kelly Blincoe, Qi Xuan, Casey Casalnuovo, Daniela Damian,

Premkumar Devanbu, and Vladimir Filkov. 2016. The sky is not the limit: mul-
titasking across GitHub projects. In Proc. International Conference on Software
Engineering (ICSE). IEEE, 994ś1005.

[67] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. 2015. Percep-
tions of diversity on GitHub: A user survey. In Proc. International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE). IEEE, 50ś56.

[68] Bogdan Vasilescu, Alexander Serebrenik, Mathieu Goeminne, and Tom Mens.
2014. On the variation and specialisation of workloadÐa case study of the Gnome
ecosystem community. Empirical Software Engineering 19, 4 (2014), 955ś1008.

[69] Bogdan Vasilescu, Alexander Serebrenik, and Mark GJ van den Brand. 2013. The
Babel of software development: Linguistic diversity in Open Source. In Proc.
International Conference on Social Informatics (SocInfo). Springer, 391ś404.

[70] Georg Von Krogh, Sebastian Spaeth, and Karim R Lakhani. 2003. Community,
joining, and specialization in open source software innovation: a case study.
Research Policy 32, 7 (2003), 1217ś1241.

[71] Jing Wang. 2012. Survival factors for Free Open Source Software projects: A
multi-stage perspective. European Management Journal 30, 4 (2012), 352ś371.

[72] Michael Wedel, Uwe Jensen, and Peter Göhner. 2008. Mining software code repos-
itories and bug databases using survival analysis models. In Proc. International
Symposium on Empirical Software Engineering and Measurement (ESEM). ACM,
282ś284.

[73] Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, Ahmed E Hassan, and
Naoyasu Ubayashi. 2015. Revisiting the applicability of the pareto principle to
core development teams in open source software projects. In Proc. International
Workshop on Principles of Software Evolution (IWPSE). ACM, 46ś55.

[74] Yiqing Yu, Alexander Benlian, and Thomas Hess. 2012. An empirical study of
volunteer members’ perceived turnover in open source software projects. In Proc.
Hawaii International Conference on System Science (HICSS). IEEE, 3396ś3405.

[75] Minghui Zhou and Audris Mockus. 2012. What make long term contributors:
Willingness and opportunity in OSS community. In Proc. International Conference
on Software Engineering (ICSE). IEEE, 518ś528.

[76] Minghui Zhou, Audris Mockus, Xiujuan Ma, Lu Zhang, and Hong Mei. 2016.
Inflow and retention in OSS communities with commercial involvement: A case
study of three hybrid projects. ACM Transactions on Software Engineering and
Methodology (TOSEM) 25, 2 (2016), 13.

655

	Abstract
	1 Introduction
	2 Development of Hypotheses
	3 Methodology
	3.1 Data Set
	3.2 Operationalizations of Concepts
	3.3 Survival Analysis (Quantitative)
	3.4 Maintainer Interviews (Qualitative)

	4 Results and Discussion
	4.1 Survival Models and Interview Insights
	4.2 Other Indicators of Sustainability
	4.3 Implications

	5 Conclusions
	References

