
One Size Does Not Fit All: An Empirical Study of Containerized
Continuous Deployment Workflows

Yang Zhang
National University of Defense Technology, China

yangzhang15@nudt.edu.cn

Bogdan Vasilescu
Carnegie Mellon University, USA

vasilescu@cmu.edu

Huaimin Wang
National University of Defense Technology, China

hmwang@nudt.edu.cn

Vladimir Filkov
DECAL Lab, University of California, Davis, USA

filkov@cs.ucdavis.edu

ABSTRACT
Continuous deployment (CD) is a software development practice
aimed at automating delivery and deployment of a software product,
following any changes to its code. If properly implemented, CD to-
gether with other automation in the development process can bring
numerous benefits, including higher control and flexibility over
release schedules, lower risks, fewer defects, and easier on-boarding
of new developers. Here we focus on the (r)evolution in CD work-
flows caused by containerization, the virtualization technology that
enables packaging an application together with all its dependencies
and execution environment in a light-weight, self-contained unit,
of which Docker has become the de-facto industry standard. There
are many available choices for containerized CD workflows, some
more appropriate than others for a given project. Owing to cross-
listing of GitHub projects on Docker Hub, in this paper we report
on a mixed-methods study to shed light on developers’ experiences
and expectations with containerized CD workflows. Starting from a
survey, we explore the motivations, specific workflows, needs, and
barriers with containerized CD. We find two prominent workflows,
based on the automated builds feature on Docker Hub or continu-
ous integration services, with different trade-offs. We then propose
hypotheses and test them in a large-scale quantitative study.

CCS CONCEPTS
• Software and its engineering→ Software maintenance tools;

KEYWORDS
Continuous Deployment, Containerization, Docker, GitHub
ACM Reference Format:
Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and Vladimir Filkov. 2018.
One Size Does Not Fit All: An Empirical Study of Containerized Continuous
Deployment Workflows. In Proceedings of the 26th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3236024.3236033

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236033

1 INTRODUCTION
Continuous deployment (CD), also referred to as continuous de-
livery,1 is the fast-paced, automation-heavy software engineering
approach in which teams work in short iterations to produce soft-
ware that is deployable (production ready) at any time [31]. CD has
promised to deliver a revolution over the twice-yearly or so stan-
dard for software releasing, through greater control and flexibility
over feature releases, incremental deployment of value, lower risks,
fewer defects, easier on-boarding of new developers, less off-hours
work, and a considerable uptick in confidence [45]. It is not surpris-
ing then that the Perforce report [49] found that 65% of software
developers, managers, and executives have used CD. Moreover,
the “State of DevOps” survey [52], with 3,200 participants from
around the world, found CD positively impacts IT performance and
negatively impacts deployment pain.

On the other hand, industry reports and academic studies have
found that implementing the automation, i.e., pipelines (workflows),
needed to properly provide CD is challenging and takes a lot of
time and tuning, due to the many moving parts and the specific
needs of each project or organization [8, 31, 49, 56]. A prototypical
CD workflow involves a continuous integration (CI) service, like
Jenkins [60] and Travis [41], which is triggered by new changes
in the version control system to build, test, and deploy the pack-
aged application. Many separate and often redundant tools can
be pipelined to assemble a CD system for a project or organiza-
tion. How-to guides exist [2, 30], and turn-key solutions, mainly
commercial, are also available [34]. Previous studies have looked
at implementations of CD in individual organizations [45, 55, 63]
and one study has compared implementations in 15 different or-
ganizations [56]. It is commonly reported in those studies that the
benefits gained are many but that implementing CD takes time.
As more and more experience is being gained with different ways
to implement CD, it has become obvious that different solutions,
i.e., workflows, are possible, and that they may fit different needs.
Stated differently, choosing one available workflow vs another may
make a big difference to a specific project. Thus, maps of project
needs onto prototype CD workflows would be considered helpful.

Here we focus on studying the (r)evolution in CD workflows
caused by containerization, the virtualization technology that en-
ables packaging an application together with all its dependencies
and execution environment in a light-weight, self-contained unit.

1Although technically continuous deployment encompasses continuous delivery, the
two terms tend to be used interchangeably in practice by developers. We don’t distin-
guish between the two here; we define the workflows precisely, below.

https://doi.org/10.1145/3236024.3236033
https://doi.org/10.1145/3236024.3236033

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yang Zhang et al.

Containerization has transformed CD workflows, promising ad-
ditional speedups and higher level of abstraction. Containers (or
images) encapsulating a packaged application ready for deploy-
ment can be specified declaratively, versioned together with the
rest of the infrastructure code, built automatically, and published
to some cloud-based registry for easy access by users and other
applications. Among containerization technologies, Docker contain-
ers have become the de-facto industry standard. Since inception in
2013, Docker containers have been downloaded 29B+ times2 and
their usage is spreading rapidly; e.g., the “Annual Container Adop-
tion” report [50] found that 79% of companies chose Docker as their
primary container technology. Thus, studying Docker container
usage is relevant to most of the containerization community.

In this paper we seek to aid in deciding how to appropriately
choose betweenDocker-enabled CDworkflows, by collating lessons
learned and offering data-driven evidence from different CD imple-
mentations in open source software (OSS) projects. We focus on
OSS projects on GitHub, the largest public code repository host, and
Docker Hub3, the most popular cloud-based registry for Docker
containers, which hosts over 2 million Docker image repositories
as of March 2018; 94% of these images are linked to a GitHub repos-
itory, enabling the data mining for our study.

As with any CD pipeline, developers have considerable freedom
to define custom Docker-enabled workflows, choosing, e.g., what CI
service to use, what to include in the images, and how to automate
their construction and publication. Starting from these two public
sources of data, GitHub and Docker Hub, in this paper we report
on a mixed-methods study to explore the following questions:
RQ1:What motivations, unmet needs, and barriers do developers face
with their Docker-enabled CD workflows? (see §3)
RQ2:What are the differential benefits among specific Docker-enabled
CD workflows? (see §4)

The first part of our study is a multi-stage 150+ developer survey,
the results of which revealed several common CD implementations
in projects publishing images to Docker Hub: while some projects
write their own scripts to deploy images, most use available tools
which fit together without extensive retooling with their existing
solutions, e.g., standard CI services like Jenkins, Travis, and CircleCI.
We found that two Docker image deployment workflows4 were
most prominent:
(1) a Docker Hub auto-builds Workflow (denoted DHW), where the
registry itself builds the image automatically whenever GitHub
source files change; and
(2) a CI-based Workflow (denoted CIW), where CI tools build images
during the build and test stage, then publish to Docker Hub.

Additionally, the survey answers also generated hypotheses re-
lated to specific CD workflow outcomes: release frequency, build
results, stability, and build latency, such as image build latency tends
to worsen over time, and CIW tends to have higher image release
frequency than DHW (see §3.4 and §3.6). To test these hypothe-
ses, in the second part of our study we performed data gathering
and statistical modeling. We collected data from 1,125 projects on

2https://www.docker.com/company, as of March 2018.
3https://hub.docker.com/
4These resemble the GitHub push and pull-based models: the CI workflow “pushes”
the Docker image, while the DH workflow “pulls” it.

Docker Hub, measuring build latency, release frequency, config
file sizes and changes, commit sizes, testing times, and discussion
lengths. The above four outcomes (release frequency, build results,
stability, and build latency) were regressed against an extensive set
of variables, fitted to the processed data, and well fitting models
were obtained. In summary, we found that:
• CIW is associated with higher image release frequency than
DHW. But over time, the release frequency of both workflows
tends to drop;

• Image build latency tends to increase over time. Interestingly,
CIW tends to have shorter build latency than DHW;

• Image build configuration stability tends to increase over time.
But CIW tends to have lower Dockerfile stability than DHW;

• CIW is associated with more image build errors than DHW;
• There are notable differences within CIWs, not just between the
DH and CI workflows.
Our survey questions, scripts, and data are online at https://

github.com/yangzhangs/cd_replication.

2 BACKGROUND AND RELATEDWORK
Docker and Docker Hub. Docker (https://www.docker.com) is
an OSS project implementing operating system-level virtualization;
it builds on many technologies from operating systems research:
LXC [22] (Linux Containers), virtualization of the OS [7], etc. The
technology is primarily intended for developers to create and pub-
lish containers [39]. With containers, applications can share the
same operating system and, whenever possible, libraries and bina-
ries [6]. The content of the container is defined by declarations in
the Dockerfile [40] which specifies the Docker commands and
the order of their execution. Docker launches its containers from
Docker image, which is a series of data layers on top of a base im-
age [23]. When developers make changes to a container, instead of
directly writing the changes to the image of the container, Docker
adds an additional layer with the changes to the image [42]. Since
production environment replicas can be easily made in local com-
puters, developers can test their changes in a matter of seconds.
Also, changes to the containers can be made rapidly as only needed
sections are updated following a change. This makes Docker very
suitable for CI and CD implementations [1].

Existing studies related to Docker containers have typically fo-
cused on performance aspects [43], security vulnerabilities [20],
and basic usage [17]. In particular, Cito et al. [17] found that de-
ployment pipelines are, in most part, structured in multiple and
consecutive phases, but that, thus far, there has been little research
on Docker-enabled workflows in CD processes. A recent study has
pointed out that software engineering tasks can benefit from the
mining of container image repositories, like Docker Hub [65].

DockerHub is Docker’s cloud-based registry, containing 2,018,057
Docker images as of March 2018. Docker Hub provides GitHub in-
tegration as well as some featured tools, e.g., automated builds [29],
which allow developers to build their images automatically from
GitHub sources [7]. The build data and Dockerfile information on
Docker Hub is available for mining, if the repositories are public.

CD and Deployment Pipelines. Continuous Deployment (CD) is
a practice in which incremental software updates are tested, vetted,
and deployed to production environments [54]. CD leverages the

https://www.docker.com/company
https://hub.docker.com/
https://github.com/yangzhangs/cd_replication
https://github.com/yangzhangs/cd_replication
https://www.docker.com

An Empirical Study of Containerized CD Workflows ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

CI [41] process and extends it to include the immediate deployment
of software [18]. Humble et al. [32] reported on an early overview of
CD practices and introduced several guidelines. Vassallo et al. [63]
investigated CD practices at ING [62], focusing on their impact on
the development process and management of technical debt. Savor
et al. [56] reported on an empirical study conducted in two high-
profile Internet companies; they found that the adoption of CD
does not limit scalability in terms of productivity in an organization
even if the system grows in size and complexity. In summary, prior
work mostly focused on defining CD and describing particular
implementations in a small sample of organizations or projects.

The emergence of CD also increases the importance of deploy-
ment pipelines [36]. A deployment pipeline should include explicit
stages, e.g., building and packaging, to transfer code from a source
repository to the production environment [3]. In each stage, devel-
opers can choose different tools or services, which, in turn, will
produce different CD workflows. It is becoming increasingly clear
that one size does not fit all, with recent studies by Shahin et al. [58],
Zhao et al. [66], or Widder et al. [64] showing that the choice of
CI/CD tools and infrastructures is highly context dependent.

Despite the importance of containerization and Docker in in-
dustry, to the best of our knowledge, no existing research has in-
vestigated the barriers and needs developers face when using con-
tainerized CD workflow, or what trade-offs developers must make
when choosing different CD workflows. With this paper, we at-
tempt to address this literature gap, and provide insights into the
Docker-enabled CD workflows in the OSS community.

3 DEVELOPER SURVEY
Our study starts with a qualitative exploration of developers’ ex-
periences and expectations using Docker containers as part of CD
workflows (RQ1), for which we conducted a survey. Our goals were:
(1) to gain understanding of how people use containerized CD, fo-
cusing on what motivations, barriers, and unmet needs developers
face with their Docker-enabled CD workflows; and (2) to generate
hypotheses to be tested in a follow-up quantitative study.

3.1 Survey Methods
Survey design and participants. Since little is published about
containerized CD, we designed the survey broadly, around use cases
and pain points, and ran a pilot to refine the protocol. Questions
were inspired mainly by SE literature on trade-offs in CI [27] and
online discussions about CD and Docker containers.5 Specifically,
the survey included multiple choice and open-ended questions, or-
ganized in four parts: (1) motivations for doing CD; (2) current CD
tools and workflows; (3) unmet needs; and (4) barriers and pain
points. We piloted the survey before full deployment. To obtain
developer contact information, we first mined all projects with
Docker images hosted on Docker Hub, that had source code reposi-
tories on GitHub.6 Using the GitHub API, we then identified those
projects’ owners and their contacts, sampled 1,000, and sent them
email invitations with a link to the online form. We only surveyed
project owners as we felt they would be most familiar with the
overall development of the project.

5From the Docker forum, https://forums.docker.com
6Following “Source Repository” links on Docker Store pages, https://store.docker.com

Respondents and analysis.Within 10 days, we received 168 re-
sponses, for a response rate of 16.8%, consistent with other software
engineering online surveys [51]. Respondents indicated that their
experience in OSS was 8.6 years on average (median: 7; range 1—30),
while their CI/CD experience was 4.3 years on average (median:
3; range 1—20). Additionally, 32 participants replied to our email
invitations to show their interest in this research and to provide
valuable suggestions and feedback. Since no question was manda-
tory, the number of responses per question may vary; we report
actual numbers below. For open-ended questions, we used open
coding [21] in two phases. During a first round, we carefully read
the content of each answer and marked its keywords or statements.
Later, during a second round, we iteratively aggregated the descrip-
tions and summarized the categories. One author was involved in
coding, all authors in discussion and refinements.

3.2 Motivations for doing CD
We start by gauging developer’s motivations for doing CD in gen-
eral (open ended, 140 answers), to evaluate how much our popula-
tion shares CD insights derived in other contexts. We uncovered a
spectrum of motivations for doing CD (Table 1). Next, we contextu-
alize these uncovered motivation categories with prior work, and
illustrate each with representative quotes.
[M1] CD helps us deploy automatically instead of doing it
manually. We expected that automation is a major concern for
developers, and the survey answers confirmed that. E.g., R79 re-
marked “because the project will be built automatically, no need for
me to build the image and push it to the server”. This is consistent
with Neely et al. [45], who pointed out that it is important to elimi-
nate all manual steps from a build in order to extend CI with release
and deployment automation.
[M2] CD gives us smoother and easier deployments. As per
Fowler [25], CI was presented as a way to avoid painful integra-
tions. CD goes one step further to automate a software release, as
it makes sure the software is production-ready, which provides de-
velopers with easier deployments. E.g., R71 responded, “Continuous
integration to accelerate the development and continuous deployment
to simplify the passes to production reducing the complexity”.
[M3] CD allows us keep our production reliable. Benefield [4]
reported that the deployment infrastructure, coupled with intensive
automated testing and fast rollback mechanisms, improves release
reliability and quality. With CD, the deployment process and scripts
are tested repeatedly before deployment to production, which keeps
the productionmore reliable. E.g., R26 remarked, [CD is] “convenient
and more reliable, less error prone as a manual deployment”.
[M4] CD makes releasing faster. Chen [8] reported that CD al-
lows delivering new software releases to customers more quickly.
By leveraging assistance provided with CD, project teams can re-
lease once a week on average, or more frequently if desired. Some
of our respondents confirmed this; e.g., R120 said, [CD lets them]
“ship as early as possible”.
[M5] CD lets us catch errors earlier to minimize failures. By
interviewing developers, Hilton et al. [27] found that the biggest
perceived benefit of CI is early bug detection. So we would expect
that CD also helps catch errors earlier to prevent the deployment
of broken code. Our survey responses confirmed this. E.g., R51 said,

https://forums.docker.com
https://store.docker.com

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yang Zhang et al.

Table 1: Developers’ motivation for doing CD. N=140.
Motivation Total Perc.∗

Helps us deploy automatically instead of doing it manually 60 42.9%
Gives us smoother and easier deployments 27 19.3%
Allows us to keep our production reliable 22 15.7%
Makes releasing faster 14 10.0%
Lets us catch errors earlier to minimize failures 11 7.9%
Can enforce a deterministic workflow 11 7.9%
Lets us spend less time on maintenance and configuration 9 6.4%
Enhances the testing and validity checking 8 5.7%
Allows us to share our work and get continuous feedback 4 2.9%
∗One answer may contain multiple codes; percentages need not add up to 100.

[CD helps them] “find the problem as soon as possible. Avoid building
break that other developer won’t be affected”.
[M6] CD can enforce a deterministic workflow. Schermann et
al. [57] found that deployment workflows, i.e., structuring the re-
lease process into multiple and consecutive phases, is widespread.
Their study reported that 68% of the survey respondents use the
same CDworkflow for dealing with issues as for every other change.
And 74% of respondents agreed that they would release more fre-
quently than they actually do by following a specific workflow.
E.g., R115 said, [CD gave them] “deterministic workflow” and R18
said, [they want to use CD] “because it can highly import the release
phase. Change in one place will take an effort on other systems”.
[M7] CD lets us spend less time on maintenance and config-
uration. Developers perceive that not treating configuration like
code leads to a significant number of production issues [47]. Devel-
opers used to spend 20% of their time setting up and fixing their test
environments. CD can automatically set up the environments [8],
which allows developers to spend their effort and time on more
valuable activities. As R64 said, [they use CD because they want]
“to optimize time, focusing on developing the actual application”.
[M8] CD enhances the testing and validity checking.Mantyla
et al. [38] analyzed the effects of moving from traditional to rapid
releases on Firefox’s system testing. Their study revealed that CD
allows less time for testing activities but enables fast and thorough
investigation of software features. Not surprisingly, this was a
common theme among our survey respondents. E.g., R78 noted
that [CD] “helps with testing, less hassle”.
[M9]CDallows us to share ourwork and get continuous feed-
back. Krusche et al. [35] reported that with CD, customers can
evaluate the enhancements and provide feedback immediately and
in a continuous way, which improves communication between the
company and its customers. Continuous feedback lets developers
spend time developing the right things rather than correcting mis-
takes in functionality [46]. In our survey, R167 answered that, “It
helps me share my work with other contributors easily”, and R156
pointed out that [under CD, they can get] “fast, reliable feedback”.

Developers report doing CD to reduce work, cost, and time spent
onmaintenance and configuration. They also report that CD helps
them guarantee quality, consistency, reliability, and enhances
their development process.

3.3 Tools and workflows
We asked developers which Docker workflows they subscribe to in
their current CDworkflow. Most report either the Docker Hub auto-
builds (DH; 44.1%) or the CI-based (CI; 34.5%) workflows (Figure 1):

Sources &

Dockerfile

Build images with sources Run tests on images

Docker HubCI servers GitHub

Deploy

(push images)

Developers

Code

CD automated pipeline

Docker Hub automated builds (auto-builds)

auto-test

Figure 1: Overview of Docker-enabled CD workflows.

machine:

 services:

 - docker
dependencies:

 override:

 - docker info

 - docker build --rm=false -t circleci/elasticsearch.
test:

 override:

 - docker run -d -p 9200:9200 circleci/elasticsearch; sleep 10
 - curl --retry 10 --retry-delay 5 -v http://localhost:9200
deployment:

 hub:

 branch: master
 commands:

 - docker login -e $DOCKER_EMAIL -u $DOCKER_USER -p $DOCKER_PASS
 - docker push circleci/elasticsearch

Figure 2: An example of Docker settings in CircleCI.

(1)DHWorkflow (DHW): Using automated builds [29] (auto-builds),
Docker Hub can automatically build images from GitHub source
files and push them to the corresponding Docker Hub repository.
When setting up auto-builds, developers create a list of branches
and tags they want to include in the Docker images. When they
push code to a source code branch for one of those listed image tags,
the push uses a webhook to trigger a new build, which produces a
Docker image. The built image is then pushed to Docker Hub.
(2) CI Workflow (CIW): Developers automatically build images
from source code using docker commands inside their CI builds; the
built image is then pushed to Docker Hub. The CI tools themselves
mostly integrate Docker services which, in turn, allow developers
to use docker commands to build and deploy images. Figure 2 shows
an example of a circle.yml file that specifies the standard Elas-
ticSearch Docker image and deploys it to Docker Hub in CircleCI.
CircleCI pre-installs the Docker Engine in the Linux build images,
as specified in circle.yml. Then developers can use the “docker
build” and “docker push” commands to build and deploy images.

We also asked respondents who use CIW which specific tools
they use. The top-3 most frequently used CI tools are Travis CI
(65.5% of respondents), Jenkins (24.1%), and CircleCI (17.2%).7 We
also found that, unexpectedly, 29.3% of respondents used two or
more CI tools simultaneously. The reasons mentioned were generic,
with the most common being that each CI tool has its respective
jobs or target projects that it is good for. E.g., R39 said, “You have
to use the part of CI tools that works best for you. ... So it is really
about which combination allows the best management”. Future work
should examine the interplay between these seemingly equivalent
and competing tools using qualitative methods.

In addition, 21.4% of respondents use other workflows. We asked
them what their CD workflow consists of, and coded their answers

7In GitHub report [53]: the Top-3 CI tools are Travis CI, CircleCI, and Jenkins.

An Empirical Study of Containerized CD Workflows ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 2: Other workflows. N=36.
Other workflow Total Perc.

Deploy by using other services or software tools 12 33.3%
Use custom scripts 9 25.0%
Use both the DH and CI workflows 8 22.2%
Automatically test with CI but manually build and deploy 7 19.4%

into 4 groups, summarized in Table 2:
[O1] Deploy by using other services or software tools. For ex-
ample, R17 told us their CD workflow is “a redhat open shift service
which is running based on kubernetes”;
[O2] Use custom scripts. For example, R48 said their CD work-
flow comprised “shell scripts written by me”;
[O3] Use both the DH and CI workflows. E.g., R74 answered, “I
have a base image that is auto-built from a different repo by docker-
cloud, and the main image which is built by CircleCI after a green
build, and pushed to docker hub”;
[O4] Automatically test with CI but manually build and de-
ploy. E.g., R53 told us their CD workflow is “Push changes→Pull
request→Travis confirm config it’s ok→Manual builds in Docker Hub
after QA in my current company”.

There is large uniformity in Docker-enabled CD workflows, with
two prevalent workflows: Docker Hub auto-builds (pull-based)
and continuous integration (push-based).

3.4 Unmet needs
We asked developers about unmet needs and pain points with their
current CD workflows (open ended, 83 valid responses), and found
that 89.9% of respondents are satisfied with their current workflow.
We coded the remaining answers as listed in Table 3:
[N1] Quicker build speed and higher throughput. Like R4 told
us, in their CD workflow “one dockerfile takes more than 2 hours
to build and timeouts”. The CD processing speed will affect the
software release and developers’ work efficiency. As more tests
are written and more artifacts are added, the image build latency
is likely to increase. 21.3% of respondents experienced increasing
processing latency in their CD workflows over time, and 17.7%
would change their workflow because of the increasing latency.
[N2] Easier to learn and config. While Docker Hub and CI tools
offer a great deal of flexibility in how they can be used, this flexibility
still requires a large amount of configuration even for a simple
workflow. Like R109 told us, “sometimes, circleCI config and setup
is pain. Docs sometimes doesn’t help”. Also, complex configuration
would affect the developers collaboration, like R130 said, “It may
spent some time to teach your partner use the CD pipeline”.
[N3] Better build testing support. R27 told us, in their CD work-
flow, “Build testing is quite a pain. I had playing docker to build
OpenCV + NodeJS + Cairo which break while building the image. The
build process can take up to 20mins. If it’s break, I need to try other
configuration and rebuild again”. As we known, CI tools provide
good test integration, thus the build testing needs to be enhanced
for projects that use DH workflow. Like R62 said, “Probably I need a
Jenkins or Travis container in the chain to produce more code control
using some unit testing”.
[N4] Better multi-platform build support. Like R19 suggested,
“For applications, it’s more important to provide multi-platform build”.

Table 3: Developers’ unmet needs. N=83.
Needs Total Perc.

Quicker build speed and higher throughput 18 21.7%
Easier to learn and config 14 16.9%
Better build testing support 12 14.5%
Better multi-platform build support 11 13.3%
More features and tools integrated 11 13.3%
More flexibility and control 7 8.4%
Better support for getting info about failures and logs 6 7.2%
Better security and access controls 6 7.2%

Multi-platform build support is to meet the specific needs of dif-
ferent software development. Like R79 said, “Docker hub support
only x86_64 platform only. I hope that ARM support, like raspberry
pi, will be added in the future. ...”.
[N5] More features and tools integrated. Some respondents
would like their CI/CD system to integrate with more features
and tools. Like R81 said, “Docker cache still not supported without
big hacks on most CI suites (e.g. Travis)”.
[N6] More flexibility and control. Like R147 told us, “at some
point (we) will want to use a pipeline with more control and flexibility”.
In some CD workflows, there is still lack of flexibility of builds, i.e.,
the Dockerfile optimization. Like R94 said, “Its mainly a Docker-
related drawback: I would love to be able to build Dockerfiles that
have multiple images as base blocks (e.g. FROM Java8, Redis). In our
workflow we always end-up copying dockerfiles from other sources
and merging them in one.”.
[N7] Better support for getting info about failures and logs.
When CD fails, developers need to identify why their CD failed.
Better logging and storing test artifacts would make it easier to
examine failures. But the current CD platforms are still lack of
better support. Like R143 said, “DockerHub doesn’t give a whole lot
of detail vs. some other solutions (CodeShip, etc)”. R60 told us their
need is “getting info about failures and debugging of broken build”.
[N8] Better security and access controls. Since CD workflows
have access to the entire source code of a project, security and
access controls are vitally important. Shu et al. [59] reported that
more than 80% of Docker Hub images have at least one high severity
level vulnerability. Like R111 told us, their pain point about CD is
the “lack of automatic security upgrades”.

Developers would like their CD workflows to be both speedy
and simple to setup and maintain. This can cause some tension,
since adding configurability tends to increase complexity and
simplification may reduce flexibility.

Based on the previous discussion, we expect that unavoidable
complexity increases over time in CD workflows would slow down
the developers’ workflows. We hypothesize:

H1. Image release frequency tends to decrease over time.
In addition, a lack of better testing and debugging support would

cause developers to write more test scripts or add more complexity
to their build configurations, making their image build processes
burdensome. So we hypothesize:

H2. Image build latency tends to increase over time.
With more experience doing CD should also come more stability

of the Docker image configurations (i.e., the Dockerfile). After the
initial configuration, developers may need fewer additional changes
or improvements to their Dockerfiles over time. We hypothesize:

H3. Dockerfile stability tends to increase over time.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yang Zhang et al.

3.5 Workflow evolution
We also asked participants about changes to their CD workflows
over time (open ended, 71 answers). Among the respondents, 45.8%
report having changed their CD workflows at least once before,
with the common reasons (barriers) given being listed in Table 4.
[B1] Difficult to setup and maintain. Configuration and main-
tenance costs cause many developers to change their workflows.
For example, R119 switched their workflow because “the old CD
pipeline is a little harder to setup. It was necessary to write several
scripts to get everything working properly. The new CD pipeline is
easier to setup and maintain”.
[B2]Missing features I need. Like R37 described, their old work-
flow was “too slow and missing features”; the poor feature support
made some developers switch to a different workflow.
[B3] Weak support for automation. Some developers changed
their workflow because their old workflow had weak support for
automation. Like R128 told us, their old workflow contained “many
manual steps prone to errors”, while with the new workflow “every-
thing goes smoothly”.
[B4] Overly long build times. As we found earlier when asking
about CD needs, build speed affects the developers’ work efficiency.
Some developers changed their workflow due to slow image build
speed. For example, R159 told us, in their old CD workflow, “Cache
was dropped when the build executed, and for no good reason. So it
took too much time to build the image”.
[B5]More friction and failures. Brittle builds make the workflow
unreliable, which cause some developers to change their workflow.
For example, R66 said, “we noticed that the builds are not really
reliable since there wasn’t any testing. So we refactored the workflow
to TravisCI which is way better for testing, but has disadvantages in
speed of pushing and handling images on Docker Hub. But with a
little bit of scripting the problems went away”.
[B6] Experimenting with new tools. Some developers changed
their workflow because they wanted to use some new tools. Like
R43 answered, “just tried new stuff ”.
[B7] Steep learning curve. Complex processes and unfamiliar
configurations make some developers abandon their old workflow.
Like R76 told, their old workflow was “hard to learn, configure, or
plain inefficient”.
Developers encountered increased complexity, increased latency,
and decreased reliability in previous CD workflows. These barri-
ers caused them to switch to new CD workflows.
In a CIW, CI tools may provide more effective testing support

than in a DHW, which helps developers find more defects before
deploying. But a CIWmay require more complex configuration and
maintenance than a DHW, which increases the likelihood of build
failures. We hypothesize:

H4. CIW tends to have more failed builds than DHW.
Moreover, because CIWs require more configuration, it may take

more time to run these operations. We hypothesize:
H5. CIW tends to have longer build latency than DHW.

3.6 Specifics of DH and CI workflows
We asked participants for more details on the perceived advantages
of DHW or CIW, giving them a choice of 7 predefined answers (Ta-
ble 5) plus the option to provide others. We collected 132 answers,

Table 4: Barriers with previous CD workflows. N=71.
Barriers Total Perc.

Difficult to setup and maintain 25 35.2%
Missing features I need 15 21.1%
Weak support for automation 13 18.3%
Overly long build times 10 14.1%
More friction and failures 10 14.1%
Experimenting with new tools 6 8.5%
Steep learning curve 4 5.6%

Table 5: Specific reasons for using a DH or CI workflow.
NDH=74, NCI=58.
Reasons DH workflow CI workflow

Reduce the time spent on setting up 63 (85.2%) 35 (60.3%)
Deploy more frequently 34 (45.9%) 34 (58.6%)
Increase confidence in build quality and results 32 (43.2%) 46 (79.3%)
Less CD processing latency 23 (31.1%) 22 (37.9%)
Allow higher flexibility of builds 17 (23.0%) 13 (22.4%)
Create more visibility into team’s workflow 16 (21.6%) 21 (36.2%)
Convenient custom settings and modifications 14 (18.9%) 17 (29.3%)

74 for DHW and 58 for CIW. For the DHW, the most important
reason given was to reduce the time spent on setting up (85.2%),
followed by to deploymore frequently (45.9%). Respondents also
gave other reasons, e.g., “it’s free and ready to work with GitHub
projects”, “Easy to share with other Docker users”. As for CIW, the
most important reason was to increase confidence in build qual-
ity and results (79.3%), followed by to reduce the time spent on
setting up (60.3%). Other reasons given were similar to the prede-
fined answer we provided, e.g., “automated test and quality control”.

Overall, we found that CIWs may provide developers more in-
tegration tests to help them find errors easier and faster before
publishing images to Docker Hub. This could make CIWs more
reliable, increasing developer confidence in the build quality. But
the DHW may provide developers with more automation and sim-
pler configuration, which allows them to shift the time spent on
setting up to other development activities. Also, we found some
other differences in developers’ goals when using the two work-
flows. More respondents (29.3%) thought CIWs have convenient
custom settings and modifications than respondents using the
DHW (18.9%). And more respondents (36.2%) thought CIWs cre-
ate more visibility into the team’s workflow than respondents
using the DHW (21.6%).

The DH and CI workflows may differ in release frequency, build
outcomes, build configuration stability, and build latency.

From the responses, CIWs may provide developers higher con-
figurability than the DHW, which should result in more efficient
CD workflows. So, we hypothesize:

H6. CIW tends to have higher release frequency than DHW.
Similarly, the high configurability of a CIW may provide devel-

opers more possibilities to revise their Dockerfile configurations.
We hypothesize:

H7. CIW tends to have lower Dockerfile stability than DHW.
It is very intuitive for us to expect a significant difference be-

tween CIW and DHW. But within CIWs, different CI tools should
have similar functions and roles in the CD workflow. Thus, we
hypothesize:

H8. Within CIWs, there should not be significant differences be-
tween different CI tools.

An Empirical Study of Containerized CD Workflows ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

4 LARGE-SCALE QUANTITATIVE STUDY
Based on the findings and hypotheses from our qualitative study
(detailed above, in §3), we conducted a quantitative study to explore
differences between the two CD workflows (RQ2).

4.1 Methods
Projects selection. From the container list in Docker Store, we
collected basic information for all containers listed on or before
July 2017. Our survey responses show that the two widely used
CD workflows are DHW and CIW (§3.3); we selected projects that
used only those two workflows. For projects using CIW, we limited
our study to two cloud-based CI platforms, Travis CI and CircleCI,
since in the Docker Hub documentation and in our survey, we
found these to be among the most popular three; the third, Jenkins,
runs locally and thus has no publicly-available data or API. We call
projects that use the DH workflow DH projects, those that use the
Travis CI workflow Travis projects, and those that use the CircleCI
workflow Circle projects. We identified DH projects by checking
for the presence of the string “is_automated” through the Docker
Hub API (True means the project has auto-builds); this yielded 500
DH projects. For Travis and Circle projects, we identified them
by checking the Docker-enabled deployment settings [12, 13], e.g.,
“docker push” and “docker build”, in their “.travis.yml” or
“circle.yml” configuration files; this yielded 282 Travis projects
and 343 Circle projects; each of them only used one type of CD
workflow in their history.
Data collection and filtering. Out data collection involved min-
ing three types of sources: (1) Docker Hub data, i.e., Docker Hub
builds, using the Docker Hub API; (2) GitHub data, i.e., commits
and git logs of Dockerfile, using the GitHub API; and (3) CI data, i.e.,
CI builds, using the Travis CI and CircleCI APIs. For CI builds, the
main work done by the CI tools is integration testing, so we parsed
the CI build scripts8 to distinguish between deployment builds
(the aim of this CI build is to deploy images) and general test builds.
We only consider deployment builds in our study. Then, we filtered
out projects with less than 10 successful builds, as these might indi-
cate experiments with the infrastructure rather than more serious
CD practice. After this filtering, we obtained our final set of 855
projects for the quantitative study, 428 of them DH projects, 236
Circle projects, and 191 Travis projects.

In total, our dataset contains 133,593 image builds. Among them,
39,094 (29.3%) are Docker Hub builds, 30,990 (23.2%) are Travis
CI builds and 63,509 (47.5%) are CircleCI builds. Table 6 presents
aggregate descriptive statistics over the 855 projects.
Regression analysis. To test our hypotheses, we built four mixed-
effects linear regression models (packages lme4 and lmerTest in
R) with the same random-effect term for the base image. The base
images specified in the Dockerfile (defined in the FROM instruction)
can give a first indication of what it is that the projects use Docker
for [17]. Every Docker image starts from a base image, e.g., Ubuntu
base image. So we expected that the base image has an important
effect on the image build process, especially the build latency. We
captured the base image information by extracting its name from the
specification, i.e., a tuple of the form namespace/name(:version).

8Check if the script has “docker build” and “docker push” commands.

Table 6: Aggregate statistics of the 855 projects.
Group Statistic Mean St. Dev. Min Median Max

DH projects
#Total builds 91.3 155.7 11 30 1,000
#Successful builds 80.5 144.4 10 25 942
#Errored builds 10.9 43.1 0 3 783

Travis projects
#Total builds 162.3 341.5 12 51 3,366
#Successful builds 121.8 270.1 10 42 2,799
#Errored builds 40.4 82.8 0 12 567

Circle projects
#Total builds 269.1 790.8 14 63 7,506
#Successful builds 172.3 506.3 10 34 5,494
#Errored builds 96.9 363.8 1 31 4,133

The random effect allows us to avoid modeling each base image
separately, which would use up degrees of freedom unnecessarily,
but still capture base image variability in the response. All other
variables were modeled as fixed effects. We divide the build data of
each project into different stages, in 30-day windows.

The following outcomes, or dependent variables, were observed
during those time-windows:
• nSuccessBuilds: number of successful builds per time window, as a
proxy for release frequency.

• nErrorBuilds: number of errored builds per time window, as a proxy
for build results.

• nDockerfileChanges: number of Dockerfile changes per time window,
as a proxy for configuration stability of builds.

• avgBuildLatency: mean latency of successful builds per time window,
as a proxy for build speed. Build latency is the time duration from build
start to end, in minutes.
Our independent variables come from two covariate areas: global

(or aggregate level) and local (or time-window level):
• totalCommits and totalBuilds: total number of commits and total
number of image builds in the project’s history, as a proxy for project
size/activity.

• ageAtCD: project age at the time of adopting CD, in days, computed
since the earliest recorded image build.

• workflow: different types of CD workflows, we distinguished DH work-
flow, Travis CI workflow, and CircleCI workflow. We used effect cod-
ing [26] to set the contrasts of this three-way factor, i.e., comparing each
level to the grand mean of all three levels.

• timeFlag: label of the time window, in months, computed since the
earliest image build.

• nLinesOfDockerfile: number of lines of Dockerfile per time window.
We removed the blank lines and comments.

• nIssuesOfDockerfile: number of quality issues of the Dockerfile per
time window, computed by Dockerfile Linter [17, 37].
In our models, where necessary we log-transformed dependent

variables to stabilize their variance and reduce heteroscedastic-
ity [19]. We also removed the top 1% of the data for highly-skewed
variables to control outliers and improve model robustness, in line
with best practices [48]. The variance inflation factors, which mea-
sure multicollinearity of the set of predictors in our models, were
safe, below 3. For each model variable, we report its coefficients,
standard error, significance level, and sum of squares (via ANOVA).
Because each coefficient in the regression amounts to a hypothesis
test, we employ multiple hypothesis correction over all coefficient
results, to correct for false positives, using the Benjamini-Hochberg
step-down procedure [5]. We consider the such corrected coeffi-
cients noteworthy if they were statistically significant at p<0.05.
Model fit was evaluated using a marginal (R2m) and a conditional
(R2c) coefficient of determination for generalized mixed-effects mod-
els [33, 44]. R2m describes the proportion of variance explained by

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yang Zhang et al.

the fixed effects alone, and R2c describes the proportion of variance
explained by the fixed and random effects together.

4.2 Results
Difference in release frequency. First, we examined the release
frequency in terms of the number of successful builds per 30-day
time-window. Table 7 shows the results of the release frequency
model (Model-1). The fixed-effects part of the model explained
R2m=0.28 of the deviance. A considerable amount of variability
is explained by the random effect (R2c=0.43), i.e., base image, not
explicitly modeled by our fixed effects.

Among the fixed effects, as expected, totalCommits and total-
Builds have significant, positive effects, together explaining 64% of
the variance. Thus, big or active projects may associate with higher
release frequency. We also note that timeFlag has a significant,
negative effect on release frequency (24% of the variance explained).
This indicates that release frequency tends to decrease over time,
holding all other variables constant, which offers support for H1.
Compared to the overall mean across all workflows, the DH work-
flow has a significant negative effect on release frequency (11% of
the variance explained), while the Travis CI and CircleCI work-
flows have significant positive effects. Holding all other variables
constant, DHW tends to have lower release frequency than CIW.
This is consistent with H6. Thus,
Release frequency tends to decrease over time. But DHW tends
to have lower release frequency than CIW.

Difference in build results. Next, we used the number of errored
builds to compare the workflows. Table 8 shows the summary of
the build results regression model (Model-2). The fixed-effects part
of the model explained R2m=0.21 of the deviance, for a total R2c=0.27
with the random effect.

Among the model results, totalCommits and totalBuilds have
a significant positive effect,9 but they explain different proportions
of variance (40% vs 4%), consistent with more code may bring more
errors to the build. timeFlag has a significant negative effect (12%
of the variance explained). Thus, the number of errored builds tends
to become smaller over time. Compared to the overall mean of three
workflows, the DHworkflowhas a significant negative effect (37% of
the variance explained).While the Travis CI and CircleCI workflows
have significant positive effects on the outcome. This indicates that
compared to DHW, CIW is associated with more errors in the
builds, holding all other variables constant; this is consistent with
H4. Thus,
CIW tends to have more errored image builds than DHW.

Difference in build configuration stability. We next used the
number of Dockerfile changes per 30-day time-windows to com-
pare the build configuration stability between the workflows; thus,
higher # changes indicates lower stability. Table 9 shows the con-
figuration stability model (Model-3) summary. The fixed-effects
explained R2m=0.07 of the deviance; with the random effect the
model explained R2c=0.13 of the deviance, and this was our poorest
fitting model.
9Note that in this model, “positive” effect means more errored builds and “negative”
effect means fewer errored builds.

Table 7: Release frequency model. The response is
log(nSuccessBuild). R2m=0.28, R2c=0.43.

Coeffs (Error) Sum Sq.

(Intercept) 0.3631 (0.0398)***
totalCommits 0.4041 (0.0202)*** 265.84***
ageAtCD -0.0602 (0.0156)*** 9.89***
totalBuilds 0.4625 (0.0160)*** 551.21***
timeFlag -0.0385 (0.0018)*** 306.15***
nIssuesOfDockerfile -0.0229 (0.0142) 1.72
nLinesOfDockerfile -0.0359 (0.0138)* 4.44**
workflow=DH -0.3244 (0.0219)*** 145.76***
workflow=Travis CI 0.1922 (0.0228)***
workflow=CircleCI 0.1322 (0.0213)***
***p < 0.001, **p < 0.01, *p < 0.05

Table 8: Build results model. The response is
log(nErrorBuild). R2m=0.21, R2c=0.27.

Coeffs (Error) Sum Sq.

(Intercept) 0.0806 (0.0382)*
totalCommits 0.3754 (0.0241)*** 184.56***
ageAtCD -0.1426 (0.0227)*** 30.21***
totalBuilds 0.1135 (0.0238)*** 17.32***
timeFlag -0.0243 (0.0028)*** 56.03***
nIssuesOfDockerfile -0.0315 (0.0209) 1.74
nLinesOfDockerfile -0.0058 (0.0210) 0.06
workflow=DH -0.4566 (0.0332)*** 169.40***
workflow=Travis CI 0.1293 (0.0298)***
workflow=CircleCI 0.3273 (0.0271)***
***p < 0.001, **p < 0.01, *p < 0.05

Table 9: Configuration stability model. The response is
log(nDockerfileChanges). R2m=0.07, R2c=0.13.

Coeffs (Error) Sum Sq.

(Intercept) 0.2257 (0.0401)***
totalCommits 0.1193 (0.0235)*** 23.11***
ageAtCD -0.0845 (0.0253)** 9.97***
totalBuilds -0.0027 (0.0222) 0.01
timeFlag -0.0346 (0.0035)*** 87.40***
nIssuesOfDockerfile 0.0479 (0.0235) 3.72*
nLinesOfDockerfile 0.0775 (0.0240)** 9.35**
workflow=DH -0.1668 (0.0326)*** 27.93***
workflow=Travis CI 0.0350 (0.0368)
workflow=CircleCI 0.1318 (0.0331)***
***p < 0.001, **p < 0.01, *p < 0.05

timeFlag has a significant negative effect, accounting for 54%
of the variance explained. Holding all other variables constant, it
indicates that the build configuration tends to become more stable
(i.e., have fewer changes) over time; this is consistent with H3.
Compared to the overall mean of three workflows, the DHworkflow
has a significant negative effect (17% of the variance explained), but
the Travis CI workflow has no significant difference; the CircleCI
workflow has a significant positive effect. This is evidence that CIW
may have lower Dockerfile stability than DHW, holding all other
variables constant. Hence, this is consistent with H7.
Container configuration stability tends to increase over time. But
CIW tends to have lower Dockerfile stability than DHW.

Difference in build latency. Finally, we examined build latency.
Table 10 shows the build latency model (Model-4) result. The frac-
tion of total deviance explained by the fixed-effects part of themodel
is R2m=0.20. A considerable amount of variability is explained by
the random effect (R2c=0.57). This is consistent with our description
in §4.1, of the strong effect the base image latency may have on the
total build latency.

An Empirical Study of Containerized CD Workflows ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 10: Build latency model, The response is
log(avgBuildLatency). R2m=0.20, R2c=0.57.

Coeffs (Error) Sum Sq.

(Intercept) -0.1974 (0.0544)***
totalCommits 0.1551 (0.0170)*** 44.56***
ageAtCD 0.0139 (0.0142) 0.52
totalBuilds 0.2023 (0.0148)*** 99.75***
timeFlag 0.0110 (0.0016)*** 24.39***
nIssuesOfDockerfile 0.0387 (0.0131)** 4.70**
nLinesOfDockerfile 0.1381 (0.0127)*** 63.07***
workflow=DH 0.4336 (0.0204)*** 245.90***
workflow=Travis CI -0.2891 (0.0209)***
workflow=CircleCI -0.1445 (0.0196)***
***p < 0.001, **p < 0.01, *p < 0.05

As expected, more lines in a Dockerfile (nLinesOfDockerfile)
are associated with longer build latency (13% of the variance ex-
plained). timeFlag has a small, significant positive effect (5% of the
variance explained), meaning build latency tends to increase over
time, holding other variables constant; this is consistent with H2.
Compared to the overall mean across all workflows, the DH work-
flow has a strong, positive effect (51% of the variance explained),
and the Travis CI and CircleCI workflows have significant negative
effects. This means that DHW tends to have longer build latency
than CIW, holding all other variables constant, which is contrary
to our expectation. So, H5 is rejected.10

Build latency tends to increase slightly over time. Interestingly,
DHW tends to have longer build latency than CIW.

Differences among CI workflows. From our models, we find
that usage of CIW or DHW associate with significant differences
in outcomes, consistent with our hypotheses. But with respect to
errored builds and build latency, we also find differences between
the Travis CI and CircleCI workflows. This indicates that different
CI tools may perform the same or similar role, but be associated
with different effects. So H8 is rejected. Thus,

DHW and CIW are significantly different. Using different CI tools
can also associate with different outcomes.

5 DISCUSSION
Here we discuss the practical differences and the trade-offs between
the DH workflow (DHW) and CI workflows (CIWs), followed by
the practice implications.

5.1 Practical differences
We recapitulate the practical differences between DHW and CIW
based on their support for CD automation and Docker, build en-
vironment, as well as developer experience. These recapitulations
allowed us to develop a deeper understanding of our survey and
quantitative study results.
Support for automated testing. In CIW, CI tools set up “hooks”
with GitHub to automatically run tests (typically unit and integra-
tion) at specified times. By default, these are set up to run after a
pull request is created or when code is pushed to GitHub. DHW has
10Some developers have posted about the build latency problem of Docker Hub auto-
builds on the Docker forum (https://forums.docker.com/t/why-does-it-take-so-long-
for-the-docker-hub-automated-builds-to-upload-the-built-image). Some in our survey
are ok with it. R23 said, “The latency and build times are totally okay due to the fact
that it’s free. I would have a different opinion if I paid for the same service though”.

a complementary automated testing tool for deployment images
(auto-test) [28], provided by Docker Hub. Before using auto-test,
a docker-compose.test.yml automated test file must be set up.
This file defines a sut service that lists the tests to be run and it
should be located in the same directory that contains the Dockerfile.
Since the docker-compose.test.yml is a standard Compose file,
developers could also just invoke Compose in the CI configuration
file to run those tests, which implies CIW may be more powerful.
Support for Docker and Docker tools. DHW, naturally, has bet-
ter support for Docker and Docker tools than CIW, since Docker
Hub itself is a cloud-based service provided by Docker. In addi-
tion, CI tools differ in the amount of Docker support they pro-
vide. Docker version support provided in Travis CI is more re-
cent and more diverse than that in CircleCI. Travis CI develop-
ers can manually upgrade Docker to the latest version by updat-
ing .travis.yml [10], whereas CircleCI currently supports only 3
fixed Docker versions [14]. Also, we found that Travis CI has some
Docker tools pre-installed, e.g., the Docker Compose tool [11]. In
CircleCI, developers need to install and configure this tool in their
container in order to use it [15].
Build environment. As reported on the Docker forum [24], the
current limits on Docker Hub auto-builds are 1 CPU and 2 GB RAM,
which in practice means potential latency problems for large builds.
On the other hand, Travis CI and CircleCI both provide 2 CPUs and
larger RAM limits (4 GB and 8 GB) for the build environment [9, 16].
We found latency to be an issue in Docker Hub in our survey and
quantitative study.
Developer work experience. In our survey, we found that the
average OSS work experience of respondents who use DHW is
7.8 years (median 6), while for respondents who use CIW it is 8.8
years (median 7). While CIW users seem to have one additional
year of OSS experience, the difference is not statistically significant
(Wilcoxon test; p=0.42). On the other hand, the average CI/CD work
experience of DHW respondents is 3.6 years (median 3), and of CIW
respondents it is 4.5 years (median 4). The statistical test shows that
this difference is significant (Wilcoxon test; p=0.04). So, in practice
this may mean that the use/implementation of CIW associates with
more developer CI/CD experience than DHW.

5.2 Trade-Offs between CD workflows
Our survey and data analysis revealed that when choosing between
CIW and DHW one may have to trade some features for others and
that it is unlikely that one workflow will fit all:
Higher configurability (CIW) vs. Higher simplicity (DHW)
(see M7, B1, N2, N6, Model-3 and §5.1). Highly configurable work-
flow means also one that is harder to use due to its complexity.
On the other hand, simplicity means higher build configuration
stability, but may also mean less control and lower flexibility.
Higher performance (CIW) vs. Diverse needs (DHW) (see N1,
B2, B3, B4, Model-1, Model-4 and §5.1). Specific requirements (e.g.,
different Docker versions) may bring about lower performance. But
higher performance may not meet more diverse needs.
Higher reliability (CIW) vs. Lower maintenance (DHW) (see
M3, M5, M8, N3, B5, Model-2 and §5.1). More testing means higher
reliability, but also more errored builds, i.e., more maintenance.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yang Zhang et al.

Higher scalability (CIW) vs. Lower experience (DHW) (see
N2, N5, B7 and §5.1). Higher scalability means that more tools or
services can be integrated and do not strongly limit the CD process
(e.g., build speed) in a project, even if the image grows in size and
complexity. But CIW may require more experienced developers.

5.3 Implications
For researchers. Our studies provide a rich resource of initial ideas
for further study. Our survey showed that 45.8% of the respondents
have changed from one to another CD workflows (§3.5). Examining
the costs and benefits that arise from switching CD workflows
may point to best practices for developers needing to change their
solutions. Hence, our study motivates future work to explore the
CD workflow evolution.

We also found that developers have a choice of different CI tools
(§3.3), and that using different CI tools associates with different out-
comes (§4.2). Therefore, researchers should investigate the barriers
and benefits developers face when using particular CI tools.

Our quantitative study mostly focused on comparing CD out-
comes between DHW and CIW (§4). How the two CD workflows
differ in other dimensions should be further empirically evaluated.
E.g., we have found in our data, only anecdotally, that some types
of projects may gravitate toward one or the other of the workflows.
With much more data and careful project classification along differ-
ent dimensions, some patterns may become apparent. Our findings
motivate the need for collecting more empirical evidences that help
developers, who wish to reduce complexity and improve perfor-
mance, to choose appropriate CD tools and establish CD workflow
without arbitrary decisions.
For developers. Our study shows that developers face trade-offs
when choosing different CD workflows (§5.2). A direct implication
is that developers should not only consider their own experiences
and needs, but also consider the different CD support in the CD
workflows. E.g., less experienced developers may benefit more from
using DHW instead of CIW, because DHW has higher simplicity
and lower maintenance cost. More experienced developers may
instead benefit from CIW, which can bring higher configurability
and performance. Hence, there is a need for a list of “bespoke CD
best practices” for developers with different experiences and needs.

Our quantitative studies revealed that Dockerfile configuration
details, e.g., base image, have important effects on the CD workflow
outcomes (§4.2). Developers should select appropriate base image
and instructions. Also, developers should simplify their Dockerfile
content and optimize the image structures, i.e., image layers and
instruction orders. Therefore, the issue of how to manage and help
developers configure the best Dockerfile needs to be addressed.
For service providers. Based on the trade-offs developers face
(§5.2), there are two suggestions for service providers, one is simpli-
fying the configuration complexity, to lower the initiation obstacles
for more inexperienced developers. The other is improving their
support for CD automation, e.g., integrating more powerful Docker
tools and providing more virtual machine environments.
For tool builders. Our respondents expressed their needs for build
testing and failure logging (N3 and N7). Hence, tool builders may
look into creating modern tools that enhance build testing and in-
tegrate with different workflows. Also, developers could use more

sophisticated (e.g., social coding integrated/enabled) tools that man-
age and analyze logs of build failures.

6 THREATS TO VALIDITY
Internal validity. Surveys can be affected by bias and inaccurate
responses, whichmay be intentional or unintentional. To ameliorate
this threat, we designed and delivered our survey by following es-
tablished guidelines [51, 61]. Most of our questions are open-ended
so that participants can freely fill their own answers, and during
our manual analysis, we carefully removed unrelated answers.

In the quantitative study, we controlled for the build complexity
with the number of lines in the Dockerfile, andwe set the base image
as a random-effect. But the Dockerfile may have many different
instructions inside, which may cause some bias, although in our
manual examination we did not find evidence for it. We note that
our models’ fit to the data is around 25% of the deviance, and lower
for the build configuration stability model (Model-3). That is not
necessarily a problem for our purposes as we are only interested in
the coefficients’ effect and not relying on the models to explain the
full phenomena, which would require many more variables, and is
beyond the scope of this work.
External validity. We only considered Docker repositories that
are on GitHub. Thus, our findings cannot be assured to generalize
to projects hosted on other services, e.g., Bitbucket and GitLab,
although there is no inherent reason why they would be biased.
Moreover, we only analyzed open source software. CD workflow
and its influence might be different in closed source environments.
Finally, we conducted our study on the Docker-enabled CD work-
flow. We cannot assume that our findings generalize to other CD
workflows that are not using Docker.

7 CONCLUSION
We conducted the first large-scale study of Docker-enabled CD
workflows on Docker Hub/GitHub to shed light on the developers’
experiences and expectations when using CD. Our mixed qualita-
tive and quantitative approach enabled us to tease out categories
of developers’ opinions on CD and the two workflows, as well as
test hypotheses arising from them using large data sets. Most of
our survey findings were confirmed in the data, but some were
not, emphasizing the power of mixed methods to produce holistic
findings. Our findings indicate that developers face trade-offs when
choosing between different CD workflows with respect to config-
urability, simplicity, requirements, performance, stability, developer
experience, etc., and we were able to distill some implications for
different stakeholders.

ACKNOWLEDGMENTS
The bulk of this work was produced while the first author was visit-
ing DECAL at UC Davis. We thank members of DECAL, especially
Prof. Devanbu, for their comments and directions on this research.
We also thank the 168 survey respondents for their valuable an-
swers and the anonymous reviewers for their insightful comments
on earlier versions of this paper. This work was supported by the
NSF (Grants No. 1717370 and 1717415), the National Natural Sci-
ence Foundation of China (Grant No. 61502512 and 61432020), and
China Scholarship Council.

An Empirical Study of Containerized CD Workflows ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] Charles Anderson. 2015. Docker [software engineering]. IEEE Software 32, 3

(2015), 102–c3.
[2] Valentina Armenise. 2015. Continuous delivery with Jenkins: Jenkins solutions to

implement continuous delivery. In International Workshop on Release Engineering
(RELENG). IEEE, 24–27.

[3] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A Software Architect’s
Perspective. Addison-Wesley Professional.

[4] Robert Benefield. 2009. Agile deployment: Lean service management and deploy-
ment strategies for the SaaS enterprise. In Hawaii International Conference on
System Sciences (HICSS). IEEE, 1–5.

[5] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the royal statistical
society. Series B (Methodological) (1995), 289–300.

[6] David Bernstein. 2014. Containers and cloud: From lxc to docker to kubernetes.
IEEE Cloud Computing 1, 3 (2014), 81–84.

[7] Carl Boettiger. 2015. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Systems Review 49, 1 (2015), 71–79.

[8] Lianping Chen. 2015. Continuous delivery: Huge benefits, but challenges too.
IEEE Software 32, 2 (2015), 50–54.

[9] Travis CI. 2018. Build Environment Overview. Retrieved July 17, 2018 from
https://docs.travis-ci.com/user/reference/overview/

[10] Travis CI. 2018. Installing a newer Docker version. Retrieved July 17, 2018 from
https://docs.travis-ci.com/user/docker/#Installing-a-newer-Docker-version

[11] Travis CI. 2018. Using Docker Compose. Retrieved July 17, 2018 from https:
//docs.travis-ci.com/user/docker/#Using-Docker-Compose

[12] Travis CI. 2018. Using Docker in Builds. Retrieved July 17, 2018 from https:
//docs.travis-ci.com/user/docker/

[13] CircleCI. 2018. Continuous Integration and Delivery with Docker. Retrieved
July 17, 2018 from https://circleci.com/docs/1.0/docker/

[14] CircleCI. 2018. Docker version. Retrieved July 17, 2018 from https://circleci.
com/docs/2.0/building-docker-images/#docker-version

[15] CircleCI. 2018. Installing and Using docker-compose. Retrieved July 17, 2018
from https://circleci.com/docs/2.0/docker-compose/

[16] CircleCI. 2018. Remote Docker Environment. Retrieved July 17, 2018 from
https://circleci.com/docs/2.0/building-docker-images/#specifications

[17] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi,
and Harald C Gall. 2017. An empirical analysis of the Docker container ecosystem
on GitHub. In International Conference on Mining Software Repositories (MSR).
IEEE Press, 323–333.

[18] Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum. 2015. On
the journey to continuous deployment: Technical and social challenges along
the way. Information and Software Technology 57 (2015), 21–31.

[19] Jacob Cohen, Patricia Cohen, Stephen G West, and Leona S Aiken. 2013. Applied
multiple regression/correlation analysis for the behavioral sciences. Routledge.

[20] T. Combe, A. Martin, and R. Di Pietro. 2016. To Docker or Not to Docker: A
Security Perspective. IEEE Cloud Computing 3, 5 (2016), 54–62.

[21] Juliet Corbin and Anselm Strauss. 1990. Grounded theory research: Procedures,
canons and evaluative criteria. Zeitschrift für Soziologie 19, 6 (1990), 418–427.

[22] Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia. 2014. Virtualization vs
containerization to support paas. In International Conference on Cloud Engineering
(IC2E). IEEE, 610–614.

[23] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2015. An updated
performance comparison of virtual machines and linux containers. In Interna-
tional Symposium On Performance Analysis of Systems and Software (ISPASS).
IEEE, 171–172.

[24] Docker forum. 2015. Automated Build resource restrictions. Retrieved July 17,
2018 from https://forums.docker.com/t/automated-build-resource-restrictions/
1413/2

[25] Martin Fowler and Matthew Foemmel. 2006. Continuous integration. Thought-
Works http://www.thoughtworks.com/Continuous Integration.pdf 122 (2006).

[26] Alkharusi H. 2012. Categorical variables in regression analysis: A comparison of
dummy and effect coding. International Journal of Education 4, 2 (2012), 202–210.

[27] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-Offs in Continuous Integration: Assurance, Security, and Flexi-
bility. In International Symposium on Foundations of Software Engineering (FSE).
ACM, 197–207.

[28] Docker Hub. 2018. Automated repository tests. Retrieved July 17, 2018 from
https://docs.docker.com/docker-cloud/builds/automated-testing/

[29] Docker Hub. 2018. Configure automated builds on Docker Hub. Retrieved July
17, 2018 from https://docs.docker.com/docker-hub/builds/

[30] Jez Humble. 2018. Continuous Delivery. Retrieved July 17, 2018 from https:
//continuousdelivery.com/

[31] Jez Humble andDavid Farley. 2010. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Pearson Education.

[32] Jez Humble, Chris Read, and Dan North. 2006. The deployment production line.
In Agile Conference (AGILE). IEEE, 6–pp.

[33] Paul CD Johnson. 2014. Extension of Nakagawa & Schielzeth’s R2GLMM to
random slopes models. Methods in Ecology and Evolution 5, 9 (2014), 944–946.

[34] Sebastian Klepper, Stephan Krusche, Sebastian Peters, Bernd Bruegge, and Lukas
Alperowitz. 2015. Introducing continuous delivery of mobile apps in a corpo-
rate environment: A case study. In International Workshop on Rapid Continuous
Software Engineering (RCoSE). IEEE, 5–11.

[35] Stephan Krusche and Lukas Alperowitz. 2014. Introduction of continuous deliv-
ery in multi-customer project courses. In International Conference on Software
Engineering (ICSE). ACM, 335–343.

[36] M. Leppanen, S. Makinen, M. Pagels, V. P. Eloranta, J. Itkonen, M. V. Mantyla, and
T. Mannisto. 2015. The highways and country roads to continuous deployment.
IEEE Software 32, 2 (2015), 64–72.

[37] Linter. 2018. Dockerfile Linter. Retrieved July 17, 2018 from http://hadolint.
lukasmartinelli.ch/

[38] Mika VMantyla, Foutse Khomh, BramAdams, Emelie Engstrom, and Kai Petersen.
2013. On rapid releases and software testing. In International Conference on
Software Maintenance (ICSM). IEEE, 20–29.

[39] AR Manu, Jitendra Kumar Patel, Shakil Akhtar, VK Agrawal, and KN Bala Subra-
manya Murthy. 2016. Docker container security via heuristics-based multilateral
security-conceptual and pragmatic study. In International Conference on Circuit,
Power and Computing Technologies (ICCPCT). IEEE, 1–14.

[40] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal 2014, 239 (2014), 2.

[41] Mathias Meyer. 2014. Continuous integration and its tools. IEEE Software 31, 3
(2014), 14–16.

[42] Adrian Mouat. 2015. Using Docker: Developing and Deploying Software with
Containers. O’Reilly Media, Inc.

[43] Preeth E N, F. J. P. Mulerickal, B. Paul, and Y. Sastri. 2015. Evaluation of Docker
containers based on hardware utilization. In International Conference on Control
Communication Computing India (ICCC). 697–700.

[44] Shinichi Nakagawa and Holger Schielzeth. 2013. A general and simple method for
obtaining R2 from generalized linear mixed-effects models. Methods in Ecology
and Evolution 4, 2 (2013), 133–142.

[45] Steve Neely and Steve Stolt. 2013. Continuous delivery? easy! just change ev-
erything (well, maybe it is not that easy). In Agile Conference (AGILE). IEEE,
121–128.

[46] Helena Olsson Holmström, Hiva Alahyari, and Jan Bosch. 2012. Climbing the
"Stairway to Heaven" A multiple-case study exploring barriers in the transition
from agile development towards continuous deployment of software. In Euromicro
Conference on Software Engineering and Advanced Applications. Ieee Computer
Soc, 392–399.

[47] Chris Parnin, Eric Helms, Chris Atlee, Harley Boughton, Mark Ghattas, Andy
Glover, James Holman, John Micco, Brendan Murphy, Tony Savor, et al. 2017.
The top 10 adages in continuous deployment. IEEE Software 34, 3 (2017), 86–95.

[48] Jagdish K Patel, CH Kapadia, and Donald Bruce Owen. 1976. Handbook of
statistical distributions. M. Dekker.

[49] Perforce. 2017. Continuous Delivery: The NewNormal for Software Development.
Retrieved July 17, 2018 from https://www.perforce.com/sites/default/files/files/
2017-09/continuous-delivery-report.pdf

[50] Portworx. 2017. 2017 Annual Container Adoption Survey: Huge Growth
in Containers. Retrieved July 17, 2018 from https://portworx.com/
2017-container-adoption-survey/

[51] Teade Punter, Marcus Ciolkowski, Bernd Freimut, and Isabel John. 2003. Con-
ducting on-line surveys in software engineering. In International Symposium on
Empirical Software Engineering (ISESE). IEEE, 80–88.

[52] Puppet. 2017. 2017 State of DevOps Report. Retrieved July 17, 2018 from
https://puppet.com/resources/whitepaper/state-of-devops-report

[53] GitHub report. 2017. GitHub welcomes all CI tools. Retrieved July 17, 2018 from
https://blog.github.com/2017-11-07-github-welcomes-all-ci-tools

[54] Pilar Rodríguez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna Teppola,
Tanja Suomalainen, Juho Eskeli, Teemu Karvonen, Pasi Kuvaja, June M Verner,
and Markku Oivo. 2017. Continuous deployment of software intensive products
and services: A systematic mapping study. Journal of Systems and Software 123
(2017), 263–291.

[55] Chuck Rossi, Elisa Shibley, Shi Su, Kent Beck, Tony Savor, and Michael Stumm.
2016. Continuous deployment of mobile software at facebook (showcase). In
International Symposium on Foundations of Software Engineering (FSE). ACM,
12–23.

[56] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck, and
Michael Stumm. 2016. Continuous deployment at Facebook and OANDA. In
International Conference on Software Engineering (ICSE). ACM, 21–30.

[57] Gerald Schermann, Jürgen Cito, Philipp Leitner, Uwe Zdun, and Harald Gall.
2016. An empirical study on principles and practices of continuous delivery and
deployment. Technical Report. PeerJ Preprints.

[58] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. 2017. Continuous
Integration, Delivery and Deployment: A Systematic Review on Approaches,
Tools, Challenges and Practices. IEEE Access 5 (2017), 3909–3943.

https://docs.travis-ci.com/user/reference/overview/
https://docs.travis-ci.com/user/docker/#Installing-a-newer-Docker-version
https://docs.travis-ci.com/user/docker/#Using-Docker-Compose
https://docs.travis-ci.com/user/docker/#Using-Docker-Compose
https://docs.travis-ci.com/user/docker/
https://docs.travis-ci.com/user/docker/
https://circleci.com/docs/1.0/docker/
https://circleci.com/docs/2.0/building-docker-images/#docker-version
https://circleci.com/docs/2.0/building-docker-images/#docker-version
https://circleci.com/docs/2.0/docker-compose/
https://circleci.com/docs/2.0/building-docker-images/#specifications
https://forums.docker.com/t/automated-build-resource-restrictions/1413/2
https://forums.docker.com/t/automated-build-resource-restrictions/1413/2
https://docs.docker.com/docker-cloud/builds/automated-testing/
https://docs.docker.com/docker-hub/builds/
https://continuousdelivery.com/
https://continuousdelivery.com/
http://hadolint.lukasmartinelli.ch/
http://hadolint.lukasmartinelli.ch/
https://www.perforce.com/sites/default/files/files/2017-09/continuous-delivery-report.pdf
https://www.perforce.com/sites/default/files/files/2017-09/continuous-delivery-report.pdf
https://portworx.com/2017-container-adoption-survey/
https://portworx.com/2017-container-adoption-survey/
https://puppet.com/resources/whitepaper/state-of-devops-report
https://blog.github.com/2017-11-07-github-welcomes-all-ci-tools

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yang Zhang et al.

[59] Rui Shu, Xiaohui Gu, and William Enck. 2017. A Study of Security Vulnerabilities
on Docker Hub. In International Conference on Data and Application Security and
Privacy. ACM, 269–280.

[60] John Ferguson Smart. 2011. Jenkins: The Definitive Guide: Continuous Integration
for the Masses. O’Reilly.

[61] Edward Smith, Robert Loftin, Emerson Murphy-Hill, Christian Bird, and Thomas
Zimmermann. 2013. Improving developer participation rates in surveys. In
International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE). IEEE, 89–92.

[62] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp
Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. 2017.
A Tale of CI Build Failures: an Open Source and a Financial Organization Perspec-
tive. In International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 183–193.

[63] Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale
Panichella, Massimiliano Di Penta, and Andy Zaidman. 2016. Continuous delivery

practices in a large financial organization. In International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 519–528.

[64] DavidWidder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu. 2018. I’m
Leaving You, Travis: A Continuous Integration Breakup Story. In International
Conference on Mining Software Repositories (MSR). ACM, 165–169.

[65] Tianyin Xu and Darko Marinov. 2018. Mining Container Image Repositories
— MSR for Software Configuration and Beyond. In International Conference on
Software Engineering: New Ideas and Emerging Results (ICSE-NIER). ACM, 49–52.

[66] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-
dan Vasilescu. 2017. The impact of continuous integration on other software
development practices: A large-scale empirical study. In International Conference
on Automated Software Engineering (ASE). IEEE, 60–71.

	Abstract
	1 Introduction
	2 Background and Related work
	3 Developer Survey
	3.1 Survey Methods
	3.2 Motivations for doing CD
	3.3 Tools and workflows
	3.4 Unmet needs
	3.5 Workflow evolution
	3.6 Specifics of DH and CI workflows

	4 Large-Scale Quantitative Study
	4.1 Methods
	4.2 Results

	5 Discussion
	5.1 Practical differences
	5.2 Trade-Offs between CD workflows
	5.3 Implications

	6 Threats to Validity
	7 Conclusion
	Acknowledgments
	References

