
Recovering Clear, Natural Identifiers from Obfuscated JS Names
Bogdan Vasilescu

School of Computer Science
Carnegie Mellon University, USA

vasilescu@cmu.edu

Casey Casalnuovo
Computer Science Department

University of California, Davis, USA
ccasal@ucdavis.edu

Prem Devanbu
Computer Science Department

University of California, Davis, USA
ptdevanbu@ucdavis.edu

ABSTRACT
Well-chosen variable names are critical to source code readabil-
ity, reusability, and maintainability. Unfortunately, in deployed
JavaScript code (which is ubiquitous on the web) the identi�er
names are frequently mini�ed and overloaded. This is done both
for e�ciency and also to protect potentially proprietary intellectual
property. In this paper, we describe an approach based on statistical
machine translation (SMT) that recovers some of the original names
from the JavaScript programs mini�ed by the very popular Ugli-
fyJS. This simple tool, Autonym, performs comparably to the best
currently available de-obfuscator for JavaScript, JSnice, which uses
sophisticated static analysis. In fact, Autonym is quite complemen-
tary to JSnice, performing well when it does not, and vice versa.
We also introduce a new tool, JSnaughty, which blends Autonym
and JSnice, and signi�cantly outperforms both at identi�er name
recovery, while remaining just as easy to use as JSnice. JSnaughty
is available online at http://jsnaughty.org.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;

KEYWORDS
Deobfuscation, JavaScript, Statistical Machine Translation

ACM Reference format:
Bogdan Vasilescu, Casey Casalnuovo, and Prem Devanbu. 2017. Recover-
ing Clear, Natural Identi�ers from Obfuscated JS Names. In Proceedings of
ESEC/FSE’17, Paderborn, Germany, September 4–8, 2017, 11 pages.
DOI: 10.1145/3106237.3106289

1 INTRODUCTION
While the primary goal of software programmers is to write pro-
grams that perform required tasks according to speci�cations, pro-
grams are also written to be read. This was famously noted by Don
Knuth:

Instead of imagining that our main task is to instruct a computer what
to do, let us concentrate rather on explaining to human beings what we
want a computer to do. [26].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, Paderborn, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5105-8/17/09. . . $15.00
DOI: 10.1145/3106237.3106289

Studies show that programmers spend a large portion of their
work time reading code and trying to understand it [43]. As such,
when writing new code, programmers consciously spend e�ort to
reduce the cognitive burden on those who would later read the
code. A central case in point here is the choice of variable names in
code: while names don’t a�ect program correctness and function, a
well-chosen name, well-�tting its context of use, can considerably
improve the readers’ comprehension [21, 29]. In some sense, the
chosen name must seem “natural” (unsurprising) in the context,
so that readers �nd the code familiar and easy to read. Coding
standards, that prescribe how to choose variable names, also serve
this purpose. By the same token, a poorly chosen variable name
has the opposite e�ect; indeed, deliberately choosing cryptic or
ill-suited names is recognized as a convenient way to obfuscate
code. Furthermore, in settings where it is desirable to make code
hard to read, there are tools available to corrupt the variable names.

In JavaScript (JS) in particular, there are two synergistic reasons
for seeking to corrupt variable names. First, JS programs are down-
loaded on demand, often over mobile networks; once downloaded,
they must be quickly loaded and interpreted. Developers often apply
a “mini�cation” technique (removing whitespace, shortening—or
mangling—variable names, etc.) to shrink �les, thus lowering band-
width usage without a�ecting functionality. Second, JS programs
are shipped as source, thus their logic and any proprietary, clever
tricks that are used can easily be viewed within any browser that
executes them. There is, hence, a naturally adversarial relationship
between the original developers of an application, who want to
preserve competitive advantage, and others, who wish to simply
reuse the code.

For these two reasons, there is a substantial practical imperative
to shorten JS code; since platform API calls and keywords must
be retained, local variable names should be made as short, opaque,
and confusing as possible. There are tools to automatically process
a given JS program, with clear, well-named identi�ers, and return
an “ugli�ed” program that replaces all the variable names with
single-letter names. For example, UglifyJS1 is an enormously pop-
ular such tool, and large amounts of JS code on the internet have
been subjected to its distortions before being placed on websites.
UglifyJS is particularly aggressive about reusing cryptic variable
names in multiple scopes; this improves gzip compressibility (often
used after mini�cation) and diminishes readability, while leaving
program semantics intact. There is, also, a natural need for auto-
matic natural name recovery, so that the large amounts of ugli�ed
JS could be made more accessible for review, learning, maintenance,
reuse, security analysis, etc., especially when source maps2 are not
available. This is precisely what our system Autonym does.

1https://github.com/mishoo/UglifyJS
2https://en.wikipedia.org/wiki/Mini�cation_(programming)#Source_mapping

http://jsnaughty.org
https://github.com/mishoo/UglifyJS
https://en.wikipedia.org/wiki/Minification_(programming)#Source_mapping

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Bogdan Vasilescu, Casey Casalnuovo, and Prem Devanbu

In this paper, we adopt a simple, yet powerful and language-
independent intuition in the design of Autonym: software is highly
repetitive. Gabel & Su [20] observed that code in large corpora is
rarely unique, and tends to reoccur. Hindle et al. [24] then �rst
provided evidence for the “naturalness hypothesis”, showing that
repetition in code could be e�ectively captured in statistical lan-
guage models, and used for software engineering tasks.

An illustrative task shown by Hindle et al. to work well in this
regime was code suggestion: given a context κ, a statistical model
(estimated from a large code corpus) was used to suggest the next
token τ by maximizing (over τ) a probability from a model of the
form p (τ | κ). Given the high degree of repetitiveness in large code
corpora, these models can make highly accurate predictions, as
shown by tools such as Cacheca [18].

We transfer this intuition concerning repetitiveness and natu-
ralness of software to identi�er naming: for clarity and readability,
programmers will tend to choose the same name in the same con-
text! Thus arises our central claim: to guess the clear, natural name
ν of an obfuscated identi�er ω, all we must do is to guess the most
likely name given the context κ in which in the obfuscated identi�er
ω appears. In other words,

ν = clear_name(ω) = argmax
α

p (α | κ) (1)

Given a context κ, we choose that name α which maximizes the
conditional probability as shown. Given that programmers are
uncreative in their choice of variable names, and if we have a big
enough corpus, then we can estimate a decent model that gives
reliable scores p (α | κ).

Our tool, JSnaughty, realizes this intuition via two complemen-
tary mechanisms: a) the existing JSnice tool [42], which conditions
“natural” names on semantic properties of the mini�ed code, using
static analysis; and b) Autonym, which uses an o�-the-shelf statis-
tical machine translation tool, and is comprised of two parts: b1) a
distortion model that captures exactly how the mini�er changes
names, and b2) a language model that captures how programmers
choose to write code (including variable name choices). We use the
standard natural language translation model from Moses [27] to es-
timate these probabilities from a large, matched corpus of clear and
mini�ed names, as we describe in more detail below in Section 3.

This paper makes the following contributions:
• We present a novel approach to automatically recover identi�er

names from mini�ed (JS) code: training an o�-the-shelf statis-
tical translation model (Moses), originally designed for natural
language translation, on a large matched corpus of clear and
mini�ed code. We show that even this simple, language-inde-
pendent approach successfully recovers a non-trivial number
of the names used in the original un-obfuscated code.

• We show that a simple bit of tuning on the training data, to
account for JS syntax, and some post-processing, to manage
scoping, improves performance substantially. With these two
simple steps, the performance of this Moses-based approach,
which we call Autonym, matches that of JSnice.

• Finally, we observed that JSnice and Autonym are actually
quite complementary, each often performing well when the
other fails; this led us to o�er to the community the JSnaughty
tool, which is an opportunistic blending of the two; JSnaughty
performs substantially better than either of its constituents.

To our knowledge, JSnaughty is currently the best-performing
available tool to recover the original names from mini�ed JS names;
in addition, our work illustrates how, with some slight tuning of
the training data to account for language speci�cs, and some simple
post-processing, an o�-the-shelf statistical NLP tool can be quite
useful in software engineering applications. Readers are welcome
to try JSnaughty online at http://jsnaughty.org.

2 BACKGROUND
Autonym uses a statistical machine translation (SMT) approach to
recover the original names from the contrived ones that UglifyJS
inserts. Our basic approach is independent of programming lan-
guage, but performance can be improved through scoping analysis,
the details of which we present below, in Section 3.

2.1 SMT 101
SMT is a data-driven approach to machine translation, based on
statistical models estimated from (large) bi-lingual text corpora;
see Ochs et al. [38] for a good introduction. SMT is widely used in
services like Google Translate. In SMT, documents are translated
according to a probability distribution p (e | f) that a string e in the
target language (say, English) is the translation of a string f in
the source language (say, Finnish). As per the Bayes theorem, the
probability distribution p (e | f) can be reformulated as

p (e | f) =
p (f | e)p (e)

p (f)
, (2)

and the best output string ebest given an input string f is

ebest = argmax
e

p (e | f)

= argmax
e

p (f | e)p (e)

p (f)
(3)

= argmax
e

p (f | e)p (e) (for a given f) (4)

Note above, that once a Finnish sentence f is given, the marginal
term in the denominator of (3) is �xed, and we can just maximize
the numerator as in (4).

This formulation of the translation problem is called the “noisy
channel” model; intuitively, we think of Finnish as a “noisy dis-
tortion” of English, and attempt to recover the most likely Eng-
lish sentence that would have resulted in the Finnish sentence. As
per (4), there are two parts to the SMT model: a translation model,
which captures how English sentences can be “noisily distorted”
into Finnish ones (p (f | e)) and a language model, (p (e)) which cap-
tures the likelihood of di�erent types of English sentences. Hence,
the problem of estimating p (e | f) can be decomposed into two sub-
problems, estimating a translation model p (f | e) and a language
model p (e). The connection to name “de-minifying” is evident: just
as SMT is used to “de-noisify” and “de-distort” Finnish back to Eng-
lish, one could use SMT to remove the “noise” of mini�ed variables
and recover their original form.

The language model, often based on n-grams, is estimated from
a text corpus in any single language using fairly straightforward
maximum-likelihood methods [30]. The translation model can be
estimated from parallel data using the expectation–maximization
(EM) algorithm [14]. Such parallel data matches text in source and

http://jsnaughty.org

Recovering Clear, Natural Identifiers from Obfuscated JS Names ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

target languages,3 typically aligning matched text fragments at
sentence level [39]. Consequently, each sentence in one language
is matched to its corresponding translation in the other language.
Then, a phrase-based translation model [31] is typically estimated.
In principle, one could estimate a word-to-word translation model,
which captures the probability of each word in the source language
being related, by translation, to a speci�c word in the target lan-
guage. However, by including phrases (sequences of words) in the
translation table, one can both use local context for disambiguation
and also capture local reordering, which together substantially im-
proves translation quality [28]. There’s an accuracy-performance
tradeo� here: models trained with more data and longer phrase
lengths (in the extreme, entire sentences or, in principle, even entire
documents) are more accurate, but also more resource-intensive,
slower, and more prone to over�t. For example, Moses [27], the
SMT toolkit we use, by default uses phrases no longer than 7 words
in its translation model, unless speci�ed otherwise.

In natural language translation, matching phrases needn’t have
the same length (e.g., the French “à la maison” translates to the
English “home”), and comprising words needn’t be in the same
order (e.g., the English “I want to go home” translates to the Dutch
“Ik wil naar huis gaan”, with the verb now at the end). Therefore, in
practice [28] the translation model p (f | e) is extended to include
a “relative distortion" probability distribution that penalizes too
much reordering, and a factor to calibrate the output length, usually
biasing longer output. Finally, the translation model used by popular
SMT systems such as Moses [27] (the basis for Autonym) also
includes a lexical weighting component which validates the quality
of a phrase translation pair by checking how well its words translate
to each other. For example, the lexical weight of the word pair
(“maison”, “home”) from the French–English matching phrases
above can be computed as the relative frequency of “maison” among
all possible translations of “home” into French.

2.2 SMT for Name Recovery
Statistical machine translation is surprisingly well-suited for the
problem of recovering original names from mini�ed ones. As dis-
cussed above, while translating between natural languages, SMT
needs to be very much aware of context. Thus the word “bark” in
the two phrases “the dog’s bark” and “the tree bark” would have
to be translated quite di�erently; a modern SMT tool is very capa-
ble of resolving such contextual ambiguities and making the right
word choice based on context. Why? Fortunately, there is a high
degree of repetitiveness, both within a single natural language,
as well as in the translation processes between languages. Given
su�cient training data, SMTs are very capable of capturing and
e�ciently exploiting contextual regularities to provide nuanced,
correct translations.

As it turns out, there is a great deal of predictable repetition in
software source code, in fact much more so than in natural language
corpora [20, 24]. As mentioned earlier, programmers write code
to be read by other humans; code is harder to read than natural
language, so arguably, readability is an even stronger imperative to
consider when writing code. As noted earlier, identi�er names are

3E.g., the simultaneously translated multilingual European Parliament proceedings
are a valued resource.

Input
program
(minified)

Output
program

(un-minified)

Moses SMTOptional:
Pre-processor

Post-
processor

Autonym

JSNice

Aligned clear-text/
minified corpus

Language modelTranslation model

Clear-text corpus

M
od

el
 tr

ai
ni

ng

Figure 1: Overview of our approach.

chosen to be natural, unsurprising, and well-suited to local context,
in much the same way that word choices in natural language re-
�ect context. Thus, even though tools like UglifyJS reduce many
di�erent identi�ers to cryptic single letters like t or x, they do so in
very systematic ways, based on context; and thus, given su�cient
data, SMT based tools are very well-suited to capture and exploit
this through language and translation models.

A recent tool, JSnice [42], aims to recover mini�ed variable
names based on a similar conceptual stance. However, rather than
using SMT directly on the source code, they rely on semantic anal-
ysis, and posit that a learned distribution of variable name choices,
conditioned on semantic dependencies of that variable, would be
su�ciently informative to recover suitable names. They use condi-
tional random �elds to model the name distribution. Their approach
requires an analysis of the semantic dependencies in the code; our
approach only requires variable scoping information, and recov-
ers about as many variable names using an o�-the-self SMT tool
(Moses); we also �nd that their approach is quite complementary
to ours in performance, leading to a synergistic combination that
outperforms both, as we describe below.

3 APPROACH
We now motivate and present the technical details of our Autonym
approach. We present the blending of Autonym and JSnice later,
in Section 3.4.

To use SMT in any setting, we �rst have to train the models,
and then use the trained models to perform the translation task.
Our approach relies on using a JS mini�er (UglifyJS) to generate
large amounts of matched (clear—mini�ed) pairs of training data,
and then training an o�-the-shelf SMT system (Moses [27]) on
these pairs (Figure 1). Once trained, our system Autonym accepts
JS code as input and tries to recover clear, natural identi�er names
as output, by “translating” (using Moses’ built-in decoder [31])
the mini�ed code into clear code, much the same way one would
translate, say, French to English.

3.1 Translation Challenges
Unlike natural language texts, which are inherently polysemous and
ambiguous and, therefore, more amenable to approximate transla-
tions, computer programs have strictly de�ned semantics that must
be exactly preserved during translation. So how can a statistical

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Bogdan Vasilescu, Casey Casalnuovo, and Prem Devanbu

1 var geom2d = function () {
2 var sum = numeric . sum ;
3 function Vec to r2d (x , y) {
4 th i s . x = x ;
5 th i s . y = y ;
6 }
7 mix (Vector2d , {
8 d o t P r o d u c t : function d o t P r o d u c t (v e c t o r) {
9 return sum ([th i s . x ∗ v e c t o r . x , th i s . y ∗ v e c t o r . y]) ;

10 }
11 }) ;
12 function mix (des t , s r c) {
13 f o r (var k in s r c) d e s t [k] = s r c [k] ;
14 return d e s t ;
15 }
16 return {
17 Vec to r2d : Vec to r2d
18 } ; } () ;

(a) Original

1 var geom2d = function () {
2 var n = numeric . sum ;
3 function t (t , n) {
4 th i s . x = t ;
5 th i s . y = n ;
6 }
7 r (t , {
8 d o t P r o d u c t : function i (t) {
9 return n ([th i s . x ∗ t . x , th i s . y ∗ t . y]) ;

10 }
11 }) ;
12 function r (t , n) {
13 f o r (var r in n) t [r] = n [r] ;
14 return t ;
15 }
16 return {
17 Vec to r2d : t
18 } ; } () ;

(b) After mini�cation with UglifyJS

Figure 2: Example JavaScript program.

approach (with the inherent randomness), like the one Autonym
uses, do this? The key insight comes from the structure of the
problem we are trying to solve: layout and source code comments
aside, mini�ed JS programs are alpha-renamings of their clear-text
counterparts; therefore, the probability of any language construct
being a translation of anything other than itself is zero by construc-
tion, i.e., the program’s structure can be trivially preserved.4 Even
so, there are still two challenges with using SMT for “translating”
source code, mini�ed JS in particular, which we detail next. Our
adaptations addressing these challenges are implemented in the
pre- and post-processor components depicted in Figure 1.
Inconsistency. The context captured by multi-word phrases, as
opposed to single words is paramount to the e�ectiveness of SMT
(recall the example pairing “bark” with “tree” or “dog”). However,
while each occurrence of “bark” can be independently translated
in a natural language document, depending on what is most ap-
propriate for its context, the same cannot be said about source
code identi�er names. Consider the example JS program in Fig-
ure 2. Indeed, renaming di�erent occurrences of the same identi�er
di�erently (e.g., the two occurrences of n on lines 2 and 9 in the
mini�ed program in Figure 2b, both corresponding to sum in the
clear-text version in Figure 2a) would alter the program’s semantics.
There is no inherent mechanism in phrase-based SMT to en-
sure consistency of translation for the same identi�er name.
This is especially true since phrases captured by the translation
model component would likely not span the entire program (recall
the accuracy-performance tradeo� discussed in Section 2); indeed,
by default, Moses translates each line independently. We describe
our solution to this challenge in Section 3.2.
Ambiguity. While source code is unambiguous, and admits no am-
biguity in reserved language keywords (for is always for), across
a large corpus identi�ers could still be named di�erently despite
having similar context. So far, this is not much di�erent from natu-
ral language, where words can have multiple meanings. However,
JS mini�cation carries an additional complication: it is possible

4More sophisticated (structure altering) types of JavaScript compression, such as those
introduced by Google’s Closure compiler https://developers.google.com/speed/articles/
compressing-javascript, are beyond the scope of this work.

to “overload” the same mini�ed name by reusing it within several
di�erent scopes. An extreme version of this occurs when a line like
“function Vector2d(x, y) {” is mini�ed as “function t(t, n)
{” (line 3 in Figure 2). This is entirely legal; t is simultaneously a
function and a parameter to the function. Indeed, this type of name
overloading ampli�es obfuscation, and makes the program even
harder to read.

There are two consequences. First, this presents a challenge for
name recovery. It’s very unlikely that real programmers overload
the same name in this confusing manner. If we were to recover the
same name for both occurrences of t (a straightforward solution
also to the inconsistency challenge above), while certainly correct,
it would not result in natural names and reusable code. Therefore,
post-translation renaming should be a�empted only within
scope; this overloading is a peculiarity of JavaScript, and is the only
step that makes our approach language-dependent.

Second, high-performance statistical NLP methods, SMT in-
cluded, all rely on large training corpora. In our case, we train
Moses’ translation model on a large corpus of aligned clean—mini�ed
JS source �les (Figure 1). Therefore, in addition to the inherent ambi-
guity resulting from, say, di�erent parameter names being mini�ed
to t across our corpus, this peculiarity of minifying JS means that
di�erent function names are also mini�ed to t when such name
overloading occurs. As a result, one has to choose the most likely
clear-text name (that would have resulted in the t mini�cation)
among many possible alternatives. The more a mini�ed name
is reused, the less useful its context becomes in the training
corpus. We describe our optimization addressing this challenge in
more detail in Section 3.3.

3.2 Resolving Inconsistencies
The Moses SMT tool (see Figure 1) reads a mini�ed program, line by
line; for each mini�ed line lm , Moses uses a conditional distribution
over “clear lines” p (lc | lm) to produce a candidate set of possible
translations. The number of suggested translations per line can be
set as a parameter. Furthermore, even without con�guring Moses
to provide multiple, instead of single, suggestions per line, di�erent
suggestions for the same identi�er occurring on di�erent input

https://developers.google.com/speed/articles/compressing-javascript
https://developers.google.com/speed/articles/compressing-javascript

Recovering Clear, Natural Identifiers from Obfuscated JS Names ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

lines may still ensue, since lines are translated independently. For
example, Moses might suggest that the line r = t(r) in mini�ed
code be rendered as setA = conv(setA), and also suggest that
the next line, e.g, s = t(s) be rendered as setB = redup(setB),
thus providing two choices to unminify the identi�er t, either
conv or redup. Therefore, for each mini�ed identi�er, we must
choose precisely one unmini�ed “translation” from the available
suggestions, to ensure name consistency.

Algorithm 1 describes the process by which we recover (in the
Postprocessor component seen in Figure 1) clear names from mini-
�ed ones, addressing the inconsistency challenge described above.
There are two subroutines. First, the procedure ComputeCandi-
dateNames takes a tokenized input �le, and uses Moses to generate
a translation for each line (line 2). Then, it collects all possible re-
namings suggested by Moses for any given mini�ed name (lines
3–6). However, as discussed above (recall the “function t(t, n)
{” example), we need to address the name-overloading ambiguity
challenge: renaming both instances of t to the same name may
result in unnatural renamings, since one is a function name and the
other is a parameter. In order to preserve program semantics, we
need only ensure that distinct variable names are retainedwhen they
exist in the same scope. Therefore, in the aforementioned example,
function t and parameter t (line 3 in Figure 2) will have di�erent
candidate sets, and thus can be renamed di�erently, because they
are not in the same scope.

Second, the procedure RankCandidates takes a set of candidate
renamings for a mini�ed name, and ranks them based on how well
they �t the context where they are to be used, i.e., how natural
they are. For each candidate, we use the same language model used
by Moses to score translations (recall the two SMT components,
translation model and language model, from Section 2) to compute
a “naturalness” score for each corresponding mini�ed line, after
temporarily renaming the mini�ed name to that candidate (lines
8–10). We exhaustively try all candidates and rank them by their
average naturalness score (line 11), computed across the di�erent
lines implicated. We also experimented with other ranking schemes,
detailed below.

The main procedure PickNames (lines 12–19) iterates over all
mini�ed names and chooses the highest ranked candidate for each.
Since a candidate could have been suggested for di�erent mini�ed
names in the same scope, the traversal order matters. For example,
assume two same-scope mini�ed names n and t, with candidates
{src} and {src, dest}, respectively (e.g., line 12 in Figure 2).
Since a candidate cannot be used multiple times in the same scope,
choosing src for t before considering n would invalidate src as a
candidate for n in a next step. But which names should one give
priority to? We base our traversal on two criteria: (1) we assume
that more frequent names in the input, i.e., those appearing on
more lines, are more important for program comprehension and
should be considered �rst; (2) we traverse names with smaller
candidate sets �rst. Consequently, we sort all mini�ed names by
line frequency, descending (line 14), then traverse all mini�ed names
with a single candidate translation (lines 15–16) before mini�ed
names with larger candidate pools (lines 17–19). In the example
above, we would �rst rename n to src, since t has more candidates

Algorithm 1 Choose consistent names
1: procedure ComputeCandidateNames(input)
2: Translate input using Moses. Assert translated lines

have as many tokens as originals.
3: for all l ine ∈ Moses output do
4: Parse line.
5: for all mini�ed name ∈ matching input line do
6: Record Moses suggestion as candidate renaming.

Record line number.

7: procedure RankCandidates(candidates)
8: for all candidate ∈ candidates do
9: Select all a�ected mini�ed lines and temporarily

rename mini�ed name to candidate .
10: Use language model to compute log probability

for each line, after renaming.
11: Sort candidates by average log probability across all

a�ected lines, descending.

12: procedure PickNames(input)
13: ComputeCandidateNames(input)
14: Sort mini�ed names by how many lines they appear

on in input , descending.
15: for all name ∈ input with single candidate do
16: Rename to candidate if not already chosen elsewhere

in same scope. Keep mini�ed name otherwise.
17: for all remaining name ∈ input do
18: RankCandidates(candidates)
19: Rename to top candidate if not used elsewhere

in same scope. Keep mini�ed name otherwise.

to choose from. If, during this process, a mini�ed name remains
without any feasible candidate, we leave it unchanged.5

Alternative Ranking Schemes. There are other ways to select
a renaming from a set of candidates, besides the one we presented
above (language model). We describe two additional variants of the
RankCandidates procedure that we experimented with.
Frequency-based. A straightforward approach is to choose the
renaming option that is suggested for the greatest number of lines
on which the mini�ed identi�er appears (ties can be broken, e.g.,
by name length). This is best explained through an example. Recall
the two potential choices to unminify the identi�er t above, either
conv or redup, collected across di�erent mini�ed input lines where
t appears. In the frequency-based ranking, if t is rendered as conv 5
times and redup only twice, we would prefer conv. This technique
is simpler (and faster) than using the language model, so it might
be preferred in practice if it performs well.
Feature-based. A more general approach is to extract features
from both the context and the suggestions themselves, and learn
a classi�er to rank candidates using a weighted combination of
these features. Many features could potentially be useful: How
long is the name in characters? Is it only a single character?6 Does
the name use camel case, underscores, or the dollar sign? We can
also take advantage of the language model to extract additional
5Or we rename to an arti�cially su�xed mini�ed name, when the mini�ed name itself
had been the top candidate for something else in the same scope earlier (very rarely).
6Single character names are uncommon outside of iterators, and should likely be
avoided in many other contexts.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Bogdan Vasilescu, Casey Casalnuovo, and Prem Devanbu

features: What’s the average log probability of all the implicated
lines, after replacing the mini�ed name with the candidate, i.e., how
well does the candidate �t the context, on average?7 What’s the
maximum gain in probability across all implicated lines, relative
to the mini�ed �le, i.e., does the candidate �t any mini�ed line
particularly well? In addition to these suggestion features, there
are features that apply to the context where we are making the
suggestion: How many lines does the mini�ed identi�er appear
on? What’s the maximum number of times the name appears on
any single line? Does the name appear on lines with literals or
de-mini�able names (i.e., globals)? Does the name appear on a line
with a loop statement? We will call these context features.

To determine which (if any) of these features might be useful and
what the weighted combination should be, we built logistic regres-
sion models in R, on a set-aside tuning dataset of clear text JS �les
that had been mini�ed by UglifyJS and de-mini�ed by Autonym.
The criterion for evaluating a regression model was the number of
original names correctly recovered. We tried to answer the ques-
tion: when the desired renaming is among the translation candidates,
what is a weighted combination of suggestion and context features
that maximizes the probability of ranking it as the top candidate?
Therefore, in our tuning sample, we only considered suggestion
lists that contained the original de-mini�ed name. Furthermore, we
selected exactly one incorrect renaming at random from each such
list of (potentially many) candidates, as imbalanced data can lead
to poor models. We also assessed multicollinearity using the vari-
ance in�ation factor and excluded predictors accordingly. Finally,
we pruned the tuning data to remove suggestions with outlying
behavior in their features, which would act as high leverage points
in the regression models. Equation 5 lists the features we selected
for our logistic model that performed best in the prediction task on
the tuning data.

score = α1 · loд(#linesSuддestedFor)
+ α2 · (lenдth > 1) + α3 · (averaдeLoдProbDrop)
+ α4 · (AveraдeRawProb) + α5 · (usesCamelCase)

+ α6 · (useUnderscores) + α7 · (contains$) (5)

We found that while including the context features as controls
resulted in better model �t, excluding them led to better predictive
performance. Similarly, experimentation showed that while some
features were useful as controls, including their coe�cients in the
ranking score calculation diminished accuracy in recovering the
original names in the tuning set. The coe�cients included in our
�nal ranking function are underlined: the log of the frequency of
the suggestion, measured in lines; the average log probability across
implicated lines; the average change in log probability between the
mini�ed and renamed implicated lines; and whether the candidate
name is a single character or not.

3.3 Optimization: Reducing Ambiguity
We described in Section 3.2 how scoping information can help to re-
solve ambiguities caused by overloaded mini�ed names, e.g., when
a line “function Vector2d(x, y) {” is mini�ed as “function

7This is exactly the “naturalness” score ranking criterion in Algorithm 1 above.

Table 1: Examples of context tokens that make up our hash
renamings for some mini�ed names in Figure 2. Note that
function r (line 12) does not get renamed because its hash
has been used once by function t in the same scope (line 3).

Mini�ed Original Location Hash renaming
n sum line 2 SHA1(“var#=numeric.sum;”)
t Vector2d line 3 SHA1(“function#(,){”)
t x line 3 SHA1(“function(#,){”)
r mix line 12 r
r k line 13 SHA1(“for(var#in)[]=[];”)

t(t, n) {” (line 3 in Figure 2). To amplify this association be-
tween context and names, we arti�cially (but consistently) rename
mini�ed names in each scope before feeding the code toMoses (in
the Preprocessor component in Figure 1), so that such name over-
loading is eliminated already prior to decoding. Moses can then
more easily provide distinct translations. Of course, this means that
Moses must be trained on data that consistently renames variables
according to scope in the same way.

One can readily imagine many such possible context-aware re-
naming strategies. One strategy we experimented with is to com-
pute a SHA1 hash of all the tokens on the de�nition line8 of a name,
that remain unchanged during mini�cation, i.e., all language con-
structs and global names. Table 1 illustrates the context tokens that
feed the hashes, for some of the mini�ed names in Figure 2. Note
that all local names have been stripped away and the mini�ed name
itself has been replaced with the # placeholder. We also make sure
not to overload hashes in the same scope (see the example of func-
tion r). In practice, this renaming scheme increases the vocabulary
size (unique names) in our corpus by approximately 250%, i.e., it is
quite e�ective at disambiguating!

3.4 Blending Autonym with JSNice
In order to blend Autonym and JSnice, we simply updated the
ComputeCandidateNames procedure in Algorithm 1 to record,
for each mini�ed name in the input, the JSnice renaming as an
additional suggestion to the ones o�ered by Moses. This means
that the rest of our algorithm for choosing consistent names re-
mains unchanged: the renaming candidates, which now include
also the JSnice renaming, are ranked using the di�erent schemes
we presented above in Section 3.2; the top ranked candidate is
chosen as the �nal renaming. We also tried building logistic mod-
els to explicitly discriminate between when to choose the name
selected by JSnice vs Autonym using the suggestion and context
features described earlier, but found the models extremely poor.
Thus, JSnaughty uses the simple blending scheme described here.

4 EVALUATION
To evaluate Autonym, we train and tune a Moses model on a joint
corpus of mini�ed and clear-text JavaScript code from GitHub;
then measure the accuracy of retrieving the original, un-mini�ed
names on a set-aside testing corpus.

8We use information stored in the mini�er’s internal representation of the abstract
syntax tree to infer which line is the de�nition line for a name. Note that the de�nition
line is not always the line of �rst occurrence; e.g., function r (originally mix, line 12) is
used on line 7, before it is de�ned.

Recovering Clear, Natural Identifiers from Obfuscated JS Names ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●●●●●●

●

●

●

●

●

●

●●●

●

●●●

●●

●●

●●

●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●● ●●●●●

●
●

●●●●●●●●●

●

●●●●

●

●●●●●

●

●●

●

●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●

0.00

0.25

0.50

0.75

1.00

Fre
q

Fre
q

(H
as

h) LM

LM
 (H

as
h)

Lo
gis

tic

Lo
gis

tic
 (H

as
h)

Selection technique

%
 lo

ca
l n

am
es

 r
ec

ov
er

ed
 −

 2
15

0
fil

es

Figure 3: File level accuracy of our three name selection tech-
niques, with and without the optimization.

This evaluation strategy, also adopted by JSnice [42], was chosen
primarily due to its practicality, i.e., it can be fully automated. Note,
however, that failure to recover the original identi�er names is not
necessarily a failure of the method, as the suggested names could
actually be “better” than the originals. An extensive human evalua-
tion of the quality of the recovered names, for di�erent attributes
such as readability, and while controling for the provenance of
the training data (e.g., di�erent open-source projects have di�er-
ent naming conventions and style guides, which could in�uence
performance) is beyond the scope of this work.

4.1 Experimental Setup
Corpus. We �rst identi�ed the oldest 100,000 non-fork JavaScript
repositories using GHTorrent [22] and cloned them from GitHub,
yielding 5.3 million �les with a .js extension. Next, we removed
duplicate �les (i.e., having the same SHA1 hash), leaving 1.4 million
unique �les; from these we randomly sampled to generate the
following non-overlapping sets: 300,000 �les for translation model
training, 1,000 �les for Moses hyper-parameter tuning, and 10,000
�les for logistic regression estimation. We further used heuristics
and the mini�er UglifyJS to determine which �les are already
mini�ed, and we excluded them from our samples: �rst, we excluded
�les that remained unchanged after mini�cation; second, since not
all mini�ed �les remain unchanged, e.g., �les mini�ed by a di�erent
mini�er could still change, we used additional heuristics based on
the distribution of identi�er name lengths. Few other �les that
failed to parse during scope analysis (we reuse the scope analysis
information that UglifyJS collects during mini�cation, rather than
writing our own scope analyzer) were discarded as well.

In the end, the di�erent �lters shrunk our samples to: 227,233
�les in theMoses training set, 659 in theMoses tuning set, and 5,825
in the regression estimation set. In addition, we randomly sampled
500,000 �les to train the language model (no overlap with the tuning
and test sets). Finally, we randomly sampled 2,150 parseable and
non-mini�ed �les to form a held-out testing set. Tuning and test
�les had 100 lines or less (the median �le pre-sampling had 58 lines,
i.e., our sample is representative). The training and test sample sizes
are comparable to those used by JSnice [42].

0.00

0.25

0.50

0.75

1.00

Aut
on

ym
 (L

oc
al)

Aut
on

ym
 (A

ll)

JS
Nice

 (L
oc

al)

JS
Nice

 (A
ll)

JS
Nau

gh
ty

(L
oc

al)

JS
Nau

gh
ty

(A
ll)

Renaming technique

%
 n

am
es

 r
ec

ov
er

ed
 −

 2
14

9
fil

es

Figure 4: File level accuracy for ourAutonym tool, JSnice, and
our blended tool, JSnaughty, which substantially dominates
the state-of-the-art JSnice.

Training. Recall the two components to a Moses-based translation
system that need to be trained: the translation model, estimated
from a parallel, sentence-aligned corpus in the source and target lan-
guages, and the language model, estimated from a standard corpus
in the target language.

Building our parallel JS corpus was straightforward: we passed
all �les in the training sample through the mini�er UglifyJS9 and
scanned the output to ensure the program structure (and align-
ment) was preserved. We then trained two standard translation
models using the built-in Moses train-model.perl script, one for
the default case without the ambiguity reduction optimization in
Section 3.3, and one with the context-aware hash renaming imple-
mented. The only adjustment to the default settings was that we
allowed phrases of length up to 20 to be included in the phrase table
(default is 7). For the language model, we estimated a KenLM [23]
�ve-gram model with modi�ed Kneser-Ney smoothing [9], after
pruning singletons above order three.
Tuning. After training, Moses assigns default weights to the dif-
ferent components that make up its translation model (recall the
discussion in Section 2.1). Three10 of these components are rele-
vant to our discussion here: the phrase table component, which
contributes a probability of two “phrases” (sequences of consec-
utive tokens) being translations of each other (e.g., how likely is
it that “function t(t, n) {” is a mini�ed version of “function
Vector2d(x, y) {”?); the language model component, which con-
tributes a probability of the output being being “natural” JS; and
the lexical weighing component, which checks how well tokens
translate to each other (e.g., how likely is it that t is a mini�cation
of Vector2d?). We used the built-in Moses mert-moses.pl script
with default settings on the hyper-parameter tuning set to tune the
di�erent weights given to each component, separately for each of
the renaming techniques we tested.
Evaluation Criterion: Precision. For each JS �le in our test set,
we minify it ourselves, then use Autonym (after training and tun-
ing) to recover the original names. We additionally run JSnice

9We used version 2.7.3, with the -m (mangler) parameter.
10Trivially, token reordering does not occur in our setting.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Bogdan Vasilescu, Casey Casalnuovo, and Prem Devanbu

on the same mini�ed �les, for comparison. We used the publicly
available implementation of JSnice from the unuglify-js NPM
package,11 which is a client of the Nice2Predict12 framework.

Our performance metric is the percentage of original, pre-mini�-
cation local identi�er names that each technique recovers, per �le;
global names can be trivially recovered, since only local names are
renamed during mini�cation. Our test �les contain between 1 and
75 local (mini�able) names (mean 10.6, median 8); or between 1 and
87 total names, both local and global (mean 15.5, median 13).

4.2 Choosing Consistent Names
The �rst set of results we present pertains to the strategy used
to choose a consistent renaming from among a set of candidates.
We implemented all three strategies presented in Section 3.2: our
default language model based approach (“LM”), the straightforward
frequency-based approach (“Freq”), and the more general feature-
based logistic regression approach (“Logistic”). Figure 3 presents
the distributions of precision scores on the test set for the three
approaches, in light green.

We observe that all three distributions are right skewed, i.e., all
three methods have limited precision. LM performs best; it retrieves
a median 17% of the local names in our test �les, and it statistically
signi�cantly outperforms Freq (paired Wilcoxon signed rank test,
p < 0.0001), with a medium e�ect size13 (r = 0.32). LM and Logistic
are statistically indistinguishable (paired Wilcoxon signed rank test,
p = 0.99), i.e., the more general feature-based approach does not
provide additional gains over our default language model based
approach; this is not particularly surprising, as we have tuned the
logistic regression coe�cients only on data pre-processed with
the context-aware hash renaming strategy discussed above in Sec-
tion 3.3.

4.3 Capturing Context Using Hash-based
Pre-renamings

The second set of results we present, visualized in dark green in
Figure 3, pertains to the e�ectiveness of the context-aware hash-
based renaming we apply as a pre-processing step. We observe that
the model trained on a hash-based renamed corpus consistently
outperforms the standard (not preprocessed) one, with a between
12–15 percentage points increase in the median number of local
names recovered. All di�erences between precision with and with-
out hashing are statistically signi�cant (paired Wilcoxon signed
rank test, p < 0.0001), with medium e�ect sizes (r = 0.4 for Freq;
r = 0.38 for LM; and r = 0.4 for Logistic).

The best performing model, “Logistic (Hash)” uses the more
general feature-based logistic regression approach to rank candidate
names, as well as arti�cially renaming local names to a hash of
their context tokens (Section 3.3) prior to translation. Naturally, the
training corpus must be preprocessed similarly. The interquartile
range of precision on local names is 10–60%, with a median of 30%.
We select this model for the subsequent comparison to JSnice.

11https://www.npmjs.com/package/unuglify-js
12http://www.nice2predict.org
13We report the r measure proposed by Field [16] as an alternative to Cohen’s d for
non-normal distributions. We interpret r using the rules of thumb suggested by Cohen,
with suggested thresholds of 0.1, 0.3, and 0.5 for small, medium and large magnitudes
respectively.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Autonym File Accuracy

JS
N

ic
e

F
ile

 A
cc

ur
ac

y

20
40
60

Frequency

Figure 5: Hexbin scatterplot comparing �le level accuracy
for Autonym and JSnice. Excludes �les where both tech-
niques fail or succeed completely.

4.4 Comparison to JSNice
The results from the comparison between Autonym (the best per-
forming “Logistic (Hash)” variant) and JSnice are depicted in Fig-
ure 4. As discussed, we perform the comparison of precision only on
local names, which get mini�ed by UgligyJS and need recovery. We
also present (light gray background boxplots) the precision results
on all names, local and global (the latter don’t need any recovery),
to be consistent with the original presentation of JSnice [42].

We observe that the static analysis based JSnice and our simpler,
SMT (Moses) based Autonym perform comparably. The precision
values for JSnice are more dispersed: the interquartile range is 0–
67%, with a median of 25%; in contrast, Autonym has higher median
precision, 30%, but the distribution is more concentrated (IQR 10–
60%). Formal testing con�rms our visual observation: there is no
signi�cant di�erence in medians between the two distributions of
precision values (paired Wilcoxon signed rank test, p = 0.76).

4.5 Blend between Autonym and JSNice
The previous comparison suggests that Autonym and JSnice, de-
spite having similar performance, behave quite di�erently. Figure 5
displays a hexbin scatterplot comparing the �le level precision of
Autonym and JSnice at recovering originals from mini�ed local
names. Points below the main diagonal correspond to �les where
Autonym outperforms JSnice; points above the main diagonal cor-
respond to �les where JSnice outperforms Autonym. Analyzing
the scatterplot enables us to con�rm the earlier intuition: the two
techniques seem quite complementary, with one often succeed-
ing when the other fails, and vice versa. This led us to propose
JSnaughty, a straightforward blend between Autonym and JSnice,
which adds the renaming proposed by JSnice to the candidate pool
proposed by Moses; JSnaughty uses the logistic regression based
approach to rank candidates (now one extra) described above.

To assess how well does the blend performs we turn our atten-
tion back to Figure 4, where the last pair of boxplots depicts the
distribution of �le-level precision values for JSnaughty on local
and, for consistency with the original JSnice presentation [42], all

https://www.npmjs.com/package/unuglify-js
http://www.nice2predict.org

Recovering Clear, Natural Identifiers from Obfuscated JS Names ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Original: req

AUTONYM fileStream
AUTONYM (hash) req
JSNICE q
JSNAUGHTY req

Original: res

AUTONYM res
AUTONYM (hash) res
JSNICE r	
JSNAUGHTY res

Original: headers

AUTONYM headers
AUTONYM (hash) headers
JSNICE headers
JSNAUGHTY headers

Original: jsonStream
AUTONYM i
AUTONYM (hash) i
JSNICE s
JSNAUGHTY s

Original: separator
AUTONYM c
AUTONYM (hash) data
JSNICE sep
JSNAUGHTY sep

Original: data

AUTONYM data
AUTONYM (hash) req
JSNICE data
JSNAUGHTY data

Original: index

AUTONYM res
AUTONYM (hash) res
JSNICE index
JSNAUGHTY index

Original: tuple

AUTONYM tuple

AUTONYM (hash) tuple

JSNICE key
JSNAUGHTY tuple

Original: count

AUTONYM err
AUTONYM (hash) err
JSNICE matches
JSNAUGHTY err

Original: error

AUTONYM err

AUTONYM (hash) err

JSNICE err
JSNAUGHTY err

1 module . export s = http . c r e a t eSe rv e r (function (e , r) {
2 var t ;
3 var i = new stream . Stream () ;
4 . . .
5 var n = "" ;
6 csv () . fromStream (e) . on (" data " , function (e , r) {
7 i f (! t) { . . . }
8 var a = {} ;
9 (. z ip (t , e)) . each (function (e) { . . . }) ;

10 i . emit (" data " , n + JSON. s t r i n g i f y (a)) ;
11 n = " ," ;
12 }) . on (" end " , function (e) {
13 i . emit (" data " , "]} ") ;
14 i . emit (" end ") ;
15 }) . on (" error " , function (e) {
16 i . emit (" error " , e) ;
17 conso l e . l og (" csv error " , e . message) ;
18 }) ;
19 }) ;

Figure 7: Case study

very popular: for the majority of potential adversaries, the
output of UglifyJS provides a su�cient deterrence.

Turning to de-obfuscation, a key focus in reverse engineer-
ing and deobfuscation is on static & dynamic analysis tech-
niques [10, 12]. This has great relevance for malicious code
detection [9, 31], and has received a great deal of attention.
Given the constraints on obfuscation use for JavaScript,
these approaches are ill-suited to the most common use case,
which is to recover full, natural, identifier names which are
corrupted by minifiers like JavaScript. Code analysis tools
generally focus on the semantics of obfuscated programs, to
recover intent; however, what most JavaScript programmers
need is a way to make minified programs easier to read, with
natural, well-suited identifiers that promote human under-
standing. Thus, in this setting, a statistical approach, which
helps make minified programs look “familiar”, viz, textually
similar to most JavaScript programs that do the same thing,
is precisely what is needed; thus SMT techniques, trained
over large corpora are specially well-suited.

5.2 The Naturalness of Software
Gabel & Su observed [19] that most short code sequences

are not unique; following this work, Hindle et al [23] showed
that statistical language models were just as e↵ective (in fact
more so) for software, as for natural language corpora, thus
suggesting that software is also natural. Language models
are central to the great success of NLP techniques in speech
recognition, translation and so on; thus Hindle et al ’s work
suggests great promise for the use of language models in
code. There have been substantial further applications of
statistical models for code, in areas such as coding stan-
dards mining and checking [1], code summarization [16], id-
iom mining [2, 36], and bug localization [40].

The key insight of this work is that identifier names are
natural ; meaning, that programmers choose “natural sound-
ing” identifier names, in regular, predictable, repetitive ways
that reflect the context of use, so as to convey a predictable,
unsurprising intent to the reader. Thus, even though Java-
script minifiers shorten variables to single letters, there is
su�cient information in the context to predict which names
make the most sense. Furthermore, even if minifiers might
contrive to map many di↵erent names in di↵erent, (or over-

lapping) contexts to the same single-letter names, there is
su�cient regularity in joint distribution of the context of
both “clear” and “minified” context that allows us to get
a good statistical prediction on what the unminified name
should be.

5.3 SMT in Software Engineering
There have been e↵orts to apply SMT to software engi-

neering problems along the two directions below.

Migration. It is straightforward to imagine a potential use
of SMT in software engineering: if programming languages
are “natural,” can we automatically translate between them
the way we translate from English to French?

Nguyen et al. [33] were among the first to address this
question, by experimenting with translation from Java to
C#. The authors treat source code as a sequence of lexical
tokens (each code token is the equivalent of a word; a method
is the equivalent of a sentence), which enables them to ap-
ply a standard phrase-based SMT model [7] out-of-the-box.
Empirical evaluation on a parallel corpus of around 13,000
Java-to-C# method translations, automatically mined from
two open-source projects available in both languages, found
the approach imperfect but promising: more than half of all
translated methods were syntactically incorrect, yet users
would not have to edit more than 16% of the total num-
ber of tokens in the translations in order to correct them.
Based on their experiments, the authors advocate for more
program-oriented SMT models instead of purely lexical ones.
In follow-up work, they propose several such models aimed
at migration of API usages [32,34,35].

Karaivanov et al. [24], as did Nguyen et al. [33], experi-
mented with translation from C# to Java on a parallel cor-
pus of around 20,000 C#-to-Java method translations mined
from open-source projects available in both languages. How-
ever, they also trained hybrid phrase and rule-based SMT
models that take the grammatical structure of the target lan-
guage into account. Experimental evaluation on a sample of
1,000 C# methods confirmed that the approach is promis-
ing: SMT was sometimes able to learn how to translate en-
tire methods, and map one set of API calls to another, espe-
cially with the more program-oriented models (roughly 60%
of the resulting translations compiled). Still, the authors
note that obtaining a parallel corpus of translated programs
is challenging.

Documentation. Pseudo-code written in natural language
can be a valuable resource during program comprehension
for developers unfamiliar with the source code programming
languages. Can we automatically translate source code into
pseudo-code using SMT? Oda et al. [18, 39] experimented
with generating English and Japanese pseudo-code from
Python statements, reporting positive outcomes. The au-
thors first created Python-to-English (18,000 statements)
and Python-to-Japanese (700 statements) parallel corpora,
by hiring programmers to add pseudo-code to existing source
code. Then, they trained di↵erent phrase-based SMT mod-
els that vary in their level of program orientation, ranging
from a purely lexical one to one that operates on modified
abstract syntax trees (ASTs). Experiments showed that all
models generate grammatically correct and fluent pseudo-
code for at least 50% of the statements, with the more
syntax-aware models performing better.

Figure 6: Example mini�ed test �le, with names suggested by Autonym with and without the hash based optimization, JSnice,
and JSnaughty shown alongside. Exact matches are highlighted green; approximate matches yellow.

names. We observe that JSnaughty clearly dominates both of its
constituent approaches: it recovers a median 37% (mean 44%) of the
local names in a �le, with an interquartile range of 13–75%. Consid-
ering all names in a �le, both local and global, JSnaughty recovers
a median 67% of names, with an interquartile range of 44–86%. The
performance improvement is non-trivial (paired Wilcoxon signed
rank test, p < 0.0001): JSnaughty performs signi�cantly better
than both JSnice (r = 0.23) and Autonym separately (r = 0.18),
with a small e�ect size. Although the e�ect size is small, given the
experimental �nding that JSnaughty does a substantially better
job at name recovery than the best available alternative, it would
make little sense for practitioners to not use our approach.

4.6 Illustration
We illustrate the complementary nature of Autonym and JSnice,
which inspired JSnaughty, with the example in Figure 6, from
which we draw the following observations:

• Some mini�ed names are exactly reverted to the original names
by Autonym but not JSnice (e.g., parameters e and r on line 1,
restored to req and res, respectively), while other names are
exactly reverted by JSnice but not Autonym (e.g., parameter r
on line 6 restored to index).

• Both techniques sometimes suggest approximate matches (e.g.,
for n on line 5, sep instead of separator; also e on line 15)
which, although di�erent than the originals, capture the same
spirit. This reiterates the need for a future, carefully controled
human study to evaluate the quality of the suggested names
beyond our automated approach.

• Some names are exactly recovered by all methods (e.g., t on
line 2), while others are not reverted by any (e.g., i on line 3).

5 RELATEDWORK
5.1 Obfuscation & Deobfuscation
Code obfuscation is a general topic, spanning a wide range of goals:
in addition to intellectual property protection [15], applications in-
clude inter alia, tamper-resistance [4, 44], and water-marking [12].
Obfuscation is also used in malice, to evade detection by software
defensive mechanisms [6]. There are some negative theoretical
results by Barak et al [5] concerning the possibility of code obfus-
cation in general; still, obfuscation has durable commercial and
intellectual charms; a constant stream of new techniques, papers,
and patents has continued over the years, despite Barak et al.

More speci�cally, for JavaScript, there are some idiosyncratic
constraints that impose some natural limits on excessive use of ob-
fuscation. First, with the current browser ecosystem, code must be
shipped in source code form. Second, typical JavaScript programs
use quite a few APIs; the API calls must use the correct name, which
appears in the clear in the source code. Third, in general, run-time
e�ciency is a concern, so that obfuscations that require a run-
time overhead are undesirable. Likewise, obfuscations that increase
code size are undesirable, due to impact on bandwidth use—indeed,
“small is beautiful" applies. For all these reasons, code mini�ers are
a good trade-o�: they are simple, easy to use, and make the code
smaller and di�cult to read, without a�ecting performance. Ugli-
fyJS is thus very popular: for the majority of potential adversaries,
the output of UglifyJS provides a su�cient deterrence.

Turning to de-obfuscation, a key focus in reverse engineering and
deobfuscation is on static & dynamic analysis techniques [11, 13].
This has great relevance for malicious code detection [10, 32], and
has received a great deal of attention. Given the constraints on
obfuscation use for JavaScript, these approaches are ill-suited to the
most common use case, which is to recover full, natural, identi�er

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Bogdan Vasilescu, Casey Casalnuovo, and Prem Devanbu

names which are corrupted by mini�ers like JavaScript. Code analy-
sis tools generally focus on the semantics of obfuscated programs, to
recover intent; however, what most JavaScript programmers need is
a way to make mini�ed programs easier to read, with natural, well-
suited identi�ers that promote human understanding. Thus, in this
setting, a statistical approach, which helps make mini�ed programs
look “familiar”, viz, textually similar to most JavaScript programs
that do the same thing, is precisely what is needed; thus SMT tech-
niques, trained over large corpora are specially well-suited.

5.2 The Naturalness of Software
Gabel & Su observed [20] that most short code sequences are not
unique; following this work, Hindle et al [24] showed that statistical
language models were just as e�ective (in fact more so) for software
as for natural language corpora, thus suggesting that software is
also natural. Language models are central to the great success of
NLP techniques in speech recognition, translation and so on; thus
Hindle et al’s work suggests great promise for the use of language
models in code. There have been substantial further applications of
statistical models for code, in areas such as coding standards mining
and checking [1], code summarization [17], idiom mining [3, 37],
and bug localization [41]. The key insight of this work is that identi-
�er names are natural; i.e., programmers choose “natural sounding”
identi�er names, in regular, predictable, repetitive ways that re�ect
the context of use, so as to convey a predictable, unsurprising in-
tent to the reader. Thus, even though Javascript mini�ers shorten
variables to single letters, there is su�cient information in the con-
text to predict which names make the most sense. Furthermore,
even if mini�ers might contrive to map many di�erent names in
di�erent, (or overlapping) contexts to the same single-letter names,
there is su�cient regularity in joint distribution of the context of
both “clear” and “mini�ed” context that allows us to get a good
statistical prediction on what the unmini�ed name should be. Alla-
manis et al. [2] use this idea to suggest more “natural” method and
class names for otherwise unaltered code; we use it here to recover
any/all mini�ed identi�er names in code subject to mini�cation.

5.3 SMT in Software Engineering
There have been e�orts to apply SMT to software engineering
problems along the two directions below.
Migration. It is straightforward to imagine a potential use of SMT
in software engineering: if programming languages are “natural,”
can we automatically translate between them the way we translate
from English to French?

Nguyen et al. [34] were among the �rst to address this question,
by experimenting with translation from Java to C#. The authors
treat source code as a sequence of lexical tokens (each code token
is the equivalent of a word; a method is the equivalent of a sen-
tence), which enables them to apply a standard phrase-based SMT
model [8] out-of-the-box. Empirical evaluation on a parallel corpus
of around 13,000 Java-to-C# method translations, automatically
mined from two open-source projects available in both languages,
found the approach imperfect but promising: more than half of all
translated methods were syntactically incorrect, yet users would
not have to edit more than 16% of the total number of tokens in the
translations in order to correct them. Based on their experiments,

the authors advocate for more program-oriented SMT models in-
stead of purely lexical ones. In follow-up work, they propose several
such models aimed at migration of API usages [33, 35, 36].

Karaivanov et al. [25], as did Nguyen et al. [34], experimented
with translation from C# to Java on a parallel corpus of around
20,000 C#-to-Java method translations mined from open-source
projects available in both languages. However, they also trained
hybrid phrase and rule-based SMT models that take the grammat-
ical structure of the target language into account. Experimental
evaluation on a sample of 1,000 C# methods con�rmed that the
approach is promising: SMT was sometimes able to learn how to
translate entire methods, and map one set of API calls to another,
especially with the more program-oriented models (roughly 60%
of the resulting translations compiled). Still, the authors note that
obtaining a parallel corpus of translated programs is challenging.
Documentation. Pseudo-code written in natural language can be
a valuable resource during program comprehension for develop-
ers unfamiliar with the source code programming languages. Can
we automatically translate source code into pseudo-code using
SMT? Oda et al. [19, 40] experimented with generating English and
Japanese pseudo-code from Python statements, reporting positive
outcomes. The authors �rst created Python-to-English (18,000 state-
ments) and Python-to-Japanese (700 statements) parallel corpora,
by hiring programmers to add pseudo-code to existing source code.
Then, they trained di�erent phrase-based SMT models that vary
in their level of program orientation, ranging from a purely lexical
one to one that operates on modi�ed abstract syntax trees (ASTs).
Experiments showed that all models generate grammatically cor-
rect and �uent pseudo-code for at least 50% of the statements, with
the more syntax-aware models performing better.

A related problem is generating descriptive summaries in nat-
ural language (i.e., docstrings) for functions written in program-
ming languages, using SMT. Cabot [7] reports on successful exper-
iments with generating English docstrings for Python functions.
He builds phrase-based SMT models on a parallel corpus of around
70,000 docstring-documented functions extracted from open-source
projects: the phrases are the linearized ASTs extracted from these
functions (input) and the English docstrings (output); alignment is
performed using standard models [39].

6 CONCLUSIONS
Mini�ed JavaScript code is ubiquitous on the web; the mini�ed,
overloaded names in these programs impede program understand-
ing. Using statistical machine translation tools, with some post-
processing (to both handle name scopes, and to choose the best
available name consistently) we �rst built a tool that essentially
equals the performance of the state-of-the-art tool, JSnice. During
evaluation, we noticed that JSnice, and our tool, Autonym, perform
well in di�erent settings; so we then built an opportunistic mix of
the two, JSnaughty, that statistically signi�cantly beats both. Our
tool is available online; based on its best-in-class performance, we
expect it should be the preferred tool for developers seeking name
recovery for mini�ed programs found “in the wild”.

ACKNOWLEDGEMENTS
BV, CC, PD are partially supported by the NSF grant 1414172.

Recovering Clear, Natural Identifiers from Obfuscated JS Names ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2014. Learn-

ing natural coding conventions. In Proc. International Symposium on Foundations
of Software Engineering (FSE). ACM, 281–293.

[2] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2015. Suggest-
ing accurate method and class names. In Proc. 2015 Joint Meeting on Foundations
of Software Engineering (ESEC/FSE). ACM, 38–49.

[3] Miltiadis Allamanis and Charles Sutton. 2014. Mining idioms from source code.
In Proc. International Symposium on Foundations of Software Engineering (FSE).
ACM, 472–483.

[4] David Aucsmith. 1996. Tamper resistant software: An implementation. In Proc.
International Workshop on Information Hiding. Springer, 317–333.

[5] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. 2001. On the (im) possibility of obfuscating programs.
In Proc. Annual International Cryptology Conference. Springer, 1–18.

[6] Jean-Marie Borello and Ludovic Mé. 2008. Code obfuscation techniques for
metamorphic viruses. Journal in Computer Virology 4, 3 (2008), 211–220.

[7] Michael Anthony Cabot. 2014. Automated Docstring Generation for Python Func-
tions. Master’s thesis. University of Amsterdam.

[8] Daniel Cer, Michel Galley, Daniel Jurafsky, and Christopher D. Manning. 2010.
Phrasal: A Statistical Machine Translation Toolkit for Exploring New Model
Features. In Proc. NAACL HLT 2010 Demonstration Session. Association for Com-
putational Linguistics, 9–12.

[9] Stanley F Chen and Joshua Goodman. 1996. An empirical study of smoothing
techniques for language modeling. In Proc. Annual Meeting of the Association for
Computational Linguistics. ACL, 310–318.

[10] Mihai Christodorescu and Somesh Jha. 2006. Static analysis of executables to
detect malicious patterns. Technical Report. DTIC Document.

[11] Christian Collberg, Clark Thomborson, and Douglas Low. 1998. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Proc. ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). ACM, 184–196.

[12] Christian S. Collberg and Clark Thomborson. 2002. Watermarking, tamper-
proo�ng, and obfuscation-tools for software protection. IEEE Transactions on
Software Engineering 28, 8 (2002), 735–746.

[13] Mila Dalla Preda, Matias Madou, Koen De Bosschere, and Roberto Giacobazzi.
2006. Opaque predicates detection by abstract interpretation. In Proc. Interna-
tional Conference on Algebraic Methodology and Software Technology. Springer,
81–95.

[14] Arthur P Dempster, Nan M Laird, and Donald B Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (methodological) (1977), 1–38.

[15] Premkumar T Devanbu and Stuart Stubblebine. 2000. Software engineering for
security: a roadmap. In Proc. Conference on the Future of Software Engineering.
ACM, 227–239.

[16] Andy Field. 2009. Discovering statistics using SPSS. Sage.
[17] Jaroslav Fowkes, Razvan Ranca, Miltiadis Allamanis, Mirella Lapata, and Charles

Sutton. 2014. Autofolding for Source Code Summarization. arXiv preprint
arXiv:1403.4503 (2014).

[18] Christine Franks, Zhaopeng Tu, Premkumar Devanbu, and Vincent Hellendoorn.
2015. Cacheca: A cache language model based code suggestion tool. In Proc.
International Conference on Software Engineering (ICSE), Vol. 2. IEEE, 705–708.

[19] Hiroyuki Fudaba, Yusuke Oda, Koichi Akabe, Graham Neubig, Hideaki Hata,
Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura. 2015. Pseudogen: A Tool to
Automatically Generate Pseudo-Code from Source Code. In Proc. International
Conference on Automated Software Engineering (ASE). IEEE, 824–829.

[20] Mark Gabel and Zhendong Su. 2010. A study of the uniqueness of source code.
In Proc. International Symposium on Foundations of Software Engineering (FSE).
ACM, 147–156.

[21] Edward M Gellenbeck and Curtis R Cook. 1991. An investigation of procedure
and variable names as beacons during program comprehension. In Proc. Fourth
Workshop on Empirical Studies of Programmers.

[22] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: GitHub’s data from
a �rehose. In Proc. Working Conference on Mining Software Repositories (MSR).
IEEE, 12–21.

[23] Kenneth Hea�eld, Ivan Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn.
2013. Scalable Modi�ed Kneser-Ney Language Model Estimation. In Proc. Annual
Meeting of the Association for Computational Linguistics. ACL, 690–696.

[24] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In Proc. International Conference on Software
Engineering (ICSE). IEEE, 837–847.

[25] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. 2014. Phrase-based
statistical translation of programming languages. In Proc. 2014 ACM International
Symposium on New Ideas, New Paradigms, and Re�ections on Programming &
Software. ACM, 173–184.

[26] Donald Ervin Knuth. 1984. Literate programming. Comput. J. 27, 2 (1984),
97–111.

[27] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, and others. 2007. Moses: Open source toolkit for statistical machine
translation. In Proc. 45th Annual Meeting of the ACL on Interactive Poster and
Demonstration Sessions. Association for Computational Linguistics, 177–180.

[28] Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-
based translation. In Proc. 2003 Conference of the North American Chapter of
the Association for Computational Linguistics on Human Language Technology -
Volume 1. Association for Computational Linguistics, 48–54.

[29] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a Name? A Study of Identi�ers. In Proc. International Conference on Program
Comprehension (ICPC). IEEE, 3–12.

[30] Christopher D Manning and Hinrich Schütze. 1999. Foundations of statistical
natural language processing. MIT Press.

[31] Daniel Marcu and William Wong. 2002. A phrase-based, joint probability model
for statistical machine translation. In Proc. ACL-02 Conference on Empirical Meth-
ods in Natural Language Processing - Volume 10. Association for Computational
Linguistics, 133–139.

[32] Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Exploring multiple
execution paths for malware analysis. In Proc. IEEE Symposium on Security and
Privacy (SP). IEEE, 231–245.

[33] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N Nguyen.
2014. Statistical learning approach for mining API usage mappings for code
migration. In Proc. International Conference on Automated Software Engineering
(ASE). ACM, 457–468.

[34] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2013. Lexical
statistical machine translation for language migration. In Proc. Joint Meeting on
Foundations of Software Engineering (ESEC/FSE). ACM, 651–654.

[35] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2014. Migrating
code with statistical machine translation. In Companion Proceedings of the 36th
International Conference on Software Engineering. ACM, 544–547.

[36] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2015. Divide-and-
Conquer Approach for Multi-phase Statistical Migration for Source Code (T). In
Proc. International Conference on Automated Software Engineering (ASE). IEEE,
585–596.

[37] Tam The Nguyen, Hung Viet Pham, Phong Minh Vu, and Tung Thanh Nguyen.
2015. Learning api usages from bytecode: A statistical approach. arXiv preprint
arXiv:1507.07306 (2015).

[38] Franz Josef Och. 2005. Statistical machine translation: Foundations and re-
cent advances. Tutorial at MT Summit. (2005). http://www.mt-archive.info/
MTS-2005-Och.pdf.

[39] Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various
statistical alignment models. Computational Linguistics 29, 1 (2003), 19–51.

[40] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to Generate Pseudo-Code
from Source Code Using Statistical Machine Translation (T). In Proc. International
Conference on Automated Software Engineering (ASE). IEEE, 574–584.

[41] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto
Bacchelli, and Premkumar Devanbu. 2016. On the naturalness of buggy code. In
Proc. International Conference on Software Engineering (ICSE). ACM, 428–439.

[42] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program
Properties from “Big Code”. In Proc. SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL). ACM, 111–124.

[43] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. 2010.
An examination of software engineering work practices. In CASCON First Decade
High Impact Papers. IBM Corp., 174–188.

[44] Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson. 2000. Software
tamper resistance: Obstructing static analysis of programs. Technical Report.
Technical Report CS-2000-12, University of Virginia, 12 2000.

http://www.mt-archive.info/MTS-2005-Och.pdf
http://www.mt-archive.info/MTS-2005-Och.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 SMT 101
	2.2 SMT for Name Recovery

	3 Approach
	3.1 Translation Challenges
	3.2 Resolving Inconsistencies
	3.3 Optimization: Reducing Ambiguity
	3.4 Blending Autonym with JSNice

	4 Evaluation
	4.1 Experimental Setup
	4.2 Choosing Consistent Names
	4.3 Capturing Context Using Hash-based Pre-renamings
	4.4 Comparison to JSNice
	4.5 Blend between Autonym and JSNice
	4.6 Illustration

	5 Related work
	5.1 Obfuscation & Deobfuscation
	5.2 The Naturalness of Software
	5.3 SMT in Software Engineering

	6 Conclusions
	References

