
Novelty Begets Long-Term Popularity, But Curbs Participation
A Macroscopic View of the Python Open-Source Ecosystem

Hongbo Fang
hongbofa@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

James Herbsleb
jdh@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

Bogdan Vasilescu
vasilescu@cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

ABSTRACT
Who creates the most innovative open-source software projects?
And what fate do these projects tend to have? Building on a long
history of research to understand innovation in business and other
domains, as well as recent advances towards modeling innovation
in scientific research from the science of science field, in this paper
we adopt the analogy of innovation as emerging from the novel
recombination of existing bits of knowledge. As such, we consider
as innovative the software projects that recombine existing soft-
ware libraries in novel ways, i.e., those built on top of atypical
combinations of packages as extracted from import statements. We
then report on a large-scale quantitative study of innovation in
the Python open-source software ecosystem. Our results show that
higher levels of innovativeness are statistically associated with
higher GitHub star counts, i.e., novelty begets popularity. At the
same time, we find that controlling for project size, the more in-
novative projects tend to involve smaller teams of contributors, as
well as be at higher risk of becoming abandoned in the long term.
We conclude that innovation and open source sustainability are
closely related and, to some extent, antagonistic.

CCS CONCEPTS
• Software and its engineering→ Open source model.

KEYWORDS
Open-source software, innovation
ACM Reference Format:
Hongbo Fang, James Herbsleb, and Bogdan Vasilescu. 2024. Novelty Begets
Long-Term Popularity, But Curbs Participation: A Macroscopic View of
the Python Open-Source Ecosystem. In 2024 IEEE/ACM 46th International
Conference on Software Engineering (ICSE 2024), April 14–20, 2024, Lisbon, Por-
tugal. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3597503.
3608142

1 INTRODUCTION
It has long been recognized that open-source software development
is an avenue for innovation and creative expression — “how creative
a person feels when working on the project is the strongest and
most pervasive driver” of participation in open source [29]. Unsur-
prisingly, we have seen an explosion in production of open-source

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE 2024, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3608142

software, especially in the last decade, with the proliferation of the
social coding philosophy [10]. Nowadays, open-source software
seems more popular than ever before [12], and it is hard to find
any sectors of the economy that do not rely heavily on open-source
infrastructure [15].

At the same time, with growing use and ubiquity of open source,
there are growing concerns about the maintainability and sus-
tainability of this digital infrastructure [21, 34, 38, 45]. It is not
always without barriers for newcomers to join projects [33, 42],
turnover rates for open-source contributors are high [27, 35], and
even widely-used projects can end up being maintained by a single
person or, sometimes, by no one at all [2, 9]. The insufficient main-
tenance of open-source projects can have disastrous consequences,
as prominent security incidents like Heartbleed [47], the Equifax
breach [7], and Log4Shell [23] have shown, just to name a few.

These days, significant attention is being paid by policy makers,
practitioners, and researchers to understanding open source health
and improving open source sustainability, with many open ques-
tions remaining around determinants of project success and failure,
governance models, procurement and allocation of resources, and
others. In this general context we focus on one important but poorly
understood concept — innovation. While open source as a whole is
a catalyst for innovation [14] (e.g., technology startup companies
would have much slower start without access to open-source infras-
tructure) and understanding, and being able to identify, innovations
in other fields has always been of great interest to investors, gov-
ernments, etc, we know very little about how innovation emerges
at the individual project level and what are its consequences, in
either open-source or commercial software development.

Taking one step in this direction, in this paper we begin to study
innovation in open source in the Schumpeterian tradition [40] of
viewing innovation as emerging from the novel recombination
of existing bits of knowledge, a typical perspective in the science
of science field [18]. Operationalizing innovation at code level as
a function of the libraries and packages a project imports (see
Section 3.3) — projects built on top of more atypical combinations
of libraries are considered to be more innovative — we find that
in the Python open-source ecosystem projects with higher levels
of innovation tend to be more popular on average, in terms of
GitHub star counts. Stated differently, novelty begets popularity.
At the same time, we find that controlling for project size, projects
with higher levels of innovation tend to involve smaller teams and
are more likely to become abandoned sooner, suggesting that the
benefits of increased popularity also carry a cost of limiting the
available labor pool [16] of potential maintainers of a code base
that, on average, fewer people may be familiar with.

https://doi.org/10.1145/3597503.3608142
https://doi.org/10.1145/3597503.3608142
https://doi.org/10.1145/3597503.3608142


ICSE 2024, April 14–20, 2024, Lisbon, Portugal Hongbo Fang, James Herbsleb, and Bogdan Vasilescu

Based on these results, we argue that innovation and open source
sustainability are closely related and, to some extent, antagonistic.
With creative expression being such a dominant driver of contribut-
ing to open source, as discussed above, one can expect that there
will always be an incentive to create ever-new open-source software
(innovation seems to be rewarded with increased popularity) over
doing the work of maintaining existing systems through bug fixes
and the like, which is often perceived as “grunt work” [25, 30]. This
can contribute to exacerbating the resource allocation problem at
the global, ecosystem level, by making it even harder to ensure that
sufficient maintenance attention (developers, funding, etc) is being
allocated to the projects that need it the most.

2 THEORETICAL FRAMEWORK
We start by reviewing prior work and developing our hypothe-
ses. Innovation has long been an important but elusive construct
in all domains, including the literature reporting on the software
industry [13]. Various theoretical models of innovation and innova-
tiveness of firms have been proposed [1, 43], touching on multiple
dimensions such as process, product, and organization. And while
innovation is often operationalized in terms of patents [32], as of
2020 “there is [still] little consensus on how innovation measure-
ment should be carried out” [3].

Instead, we adopt the Schumpeterian [40] view of innovation
as a novel recombination of existing bits of knowledge, and draw
inspiration from studies of innovation in research publications and
its relationship to scientific impact. In a widely cited paper, Uzzi
et al. [44] analyzed the list of references in research articles indexed
by the Web of Science database, measuring the extent to which
papers cite atypical versus conventional combinations of prior work
as a proxy for how innovative the papers are — more innovative
papers are expected to combine existing bits of knowledge, i.e.,
cite prior papers or publication venues, in novel ways. For exam-
ple, aggregating at the level of publication venues, a paper that is
early to cross disciplinary boundaries would tend to rank as inno-
vative because within a discipline researchers tend to publish in
relatively small and disjoint sets of venues. Similarly, a later paper
in an established interdisciplinary area would be perceived as less
innovative, if there is a history of prior work citing combinations
of venues from both disciplines. A similar argument can be made at
the individual publication level, instead of aggregating at the level
of publication venues. A key finding from this work by Uzzi et al.
[44] is that papers citing some amount of atypical combinations of
prior work at publication time “are unusually likely to have high
impact,” as measured by citation counts to the focal papers over the
following years post publication.

By analogy, software is also rarely created from scratch but,
rather, by recombining existing bits of functionality in novel ways.
These days, there is a wealth of open-source code that developers
can reuse, and mature package managers and package registries
like PyPI (Python) and npm (JavaScript) to facilitate such reuse.
Naturally, not every piece of code using some libraries will be
hugely innovative. Conversely, at some level almost all open-source
projects are at least somewhat innovative, except in some relatively
rare instances of hard forking [49] or code copying [36]. However,
similar to the previous argument about scientific innovations, we

expect that combining existing software libraries in novel ways
indicates, on average, a higher degree of creativity and innovation.
Consequently, we hypothesize that:
H1. Open-source projects reusing more atypical combinations of soft-
ware libraries tend to be more popular.

At the same time, higher levels of innovation may come at a cost
and not every team may be equally positioned and equally able
to pursue innovations. In the economics literature it is generally
understood that large business organizations tend to be more risk
adverse when it comes to untested ideas, which may have potential
for greater returns if successful, but also carry higher risk of fail-
ure [8]. Similar effects are present in scientific research. Indeed, Wu
et al. [48] have recently shown that it is the smaller teams that most
innovate, “disrupt[ing] science and technology with new problems
and opportunities.”

One can expect a similar effect in open source through at least
two complementary mechanisms. One mechanism is related to a
similar willingness to experiment and take greater technological
risks in smaller teams compared to larger ones, as expected in
commercial firms and scientific research. Another mechanism in
open source could be related to the availability of appropriately
skilled maintainers and contributors — the more atypical a project
is in its technology stack, the fewer people may have the relevant
knowledge to participate in it [16]. Either way, regardless of the
mechanism, we hypothesize that:
H2. Open-source projects reusing more atypical combinations of soft-
ware libraries tend to involve smaller groups of contributors.

In the long term, both having a more atypical technology stack
and having smaller teams may pose a sustainability risk for projects.
Except in rare cases of “feature completeness” [45], open-source
projects rely on a constant stream of contributors for survival. There
is a rich literature on attracting and retaining contributors to open
source, exploring a diversity of topics ranging from motivations to
participate [22] and barriers to placing a first contribution [33, 42],
to engagement [6, 39] and disengagement factors [27, 35]. Simi-
larly, prior research has also tried to explain the factors associated
with project abandonment and survival [2, 9, 45]. We add to this
literature by exploring the link between project innovativeness and
project long-term survival. On the one hand, there is prior evidence
suggesting that higher project popularity is associated with higher
attractiveness to new contributors [19]; in turn, this should increase
a project’s chances of long-term survival. On the other hand, while
possibly more popular, we expect that more innovative projects
will involve smaller teams per H2 above and will have a harder
time recruiting contributors, because there may be fewer people
with the right expertise in their potential contributor pools. In the
long term, we hypothesize that:
H3. Open-source projects reusing more atypical combinations of soft-
ware libraries tend to be at greater risk of abandonment.

In the remainder of the paper, we describe how we tested these
hypotheses at scale, using a large longitudinal dataset of open-
source projects part of the Python ecosystem.



Novelty Begets Long-Term Popularity, But Curbs Participation ICSE 2024, April 14–20, 2024, Lisbon, Portugal

3 METHODS
3.1 Data Collection
The main source of data in this study is the World of Code [31]
dataset. This dataset records the development activities of millions
of open-source projects hosted in public git repositories online,
including all of GitHub, Gitlab, and BitBucket. World of Code also
includes timestamped package dependency information for many
programming languages, extracted by parsing import statements,
which we use to compute the atypicality of the projects’ combina-
tions of imported packages. This information is usually not available
in other open-source software datasets. The closest are package
manager dependency datasets (e.g., libraries.io), which contain only
within-package-manager dependencies; in World of Code we can
observe also dependencies in projects that are not themselves li-
braries hosted by a package manager registry.

To keep the analysis tractable (our data collection involves aggre-
gation of raw data across platforms and complex, computationally
expensive measurement steps), we focus within World of Code
only on Python projects hosted on GitHub as the subjects of study.
Python is one of the top languages used for open-source projects [4]
and supports a wide range of applications and projects of differ-
ent purposes.1 It is a large, diverse, and interesting ecosystem.
GitHub is the largest platform for hosting open-source development.
Therefore, the effects observed in our sample may generalize to
other open-source projects and programming language ecosystems,
though that remains to be tested.

We consider projects with over 50% of their source code files
written in Python as Python projects in the World of Code dataset
and we query the complete commit activities for all projects before
the end of 2021. To address the risk of including in our sample
personal projects that are not intended to be used or developed by
others (e.g., class projects), we require projects to have at least one
release on GitHub to be considered for further analysis.

We obtain the commit activities of projects directly from the
World of Code dataset, which provides de-aliased developer infor-
mation through the approach developed by Fry et al. [20]. Commits
from bots are removed following the approach described by Dey
et al. [11]. In addition, we compute timestamped GitHub star counts,
and extract public GitHub release dates and data to compute other
control variables through the GitHub API.2

Lastly, for projects that implement a Python package, we also
use their number of downloads from the PyPI package manager as
an outcome measure of project usage. We obtained the monthly
download data from public PyPI download statistics,3 collected
using the Google BigQuery API. Download counts from common
mirroring tools are excluded to reflect more accurate download
behaviors by users.

Overall, there are 70,891 projects left in our sample after this pro-
cedure, and those projects will be further filtered for each specific
analysis as we describe below.

1https://www.python.org/about/apps/
2https://docs.github.com/en/graphql
3http://www.lesfleursdunormal.fr/static/informatique/pymod_stat_en.html

3.2 Pre-processing of Package Dependencies
We extracted package dependency information from the World of
Code dataset by parsing the content of source code files.4 To ensure
accuracy, we de-aliased packages that were imported with different
names but provided very similar functions (e.g., urllib and urllib3).
We accomplished this by collecting the package homepage URL
from libraries.io,5 and we merged two packages if they pointed to
the same homepage.

To focus on commonly used packages, we removed all packages
that were imported by no more than one hundred projects, as
well as Python standard libraries. The latter tend to provide little
information about project functions and appear in many projects
(e.g., os). We obtained a list of Python standard libraries by crawling
the standard library page.6

After pre-processing, our sample consisted of 1,055 packages.

3.3 Quantifying Project Atypicality
At a high level, we first compute an atypicality score for all pairwise
package combinations, i.e., all distinct pairs of packages imported
in the same project.7 We then aggregate the package-pairwise atyp-
icality scores at the project level by taking the average atypicality
of all package combinations in a project. Moreover, since the atyp-
icality of package combinations can change over time (e.g., two
packages that were previously used separately may become com-
monly imported in the same project years later), we compute the
atypicality of packages and projects for each year.

More concretely, to measure the atypicality of a package combi-
nation (i.e., pair), we use a variation of the Markov Chain Monte
Carlo algorithm following Uzzi et al. [44]. We construct simulations
of importing events where projects import the same number of
packages in the same year, but the choice of packages to import is
decided randomly. This allows us to create an artificial source of
counterfactual evidence, such that we can compare how often two
packages are actually used together (the reality) with how often
one could have expected the two packages to be used together,
given how much each package has been used individually (the
counterfactual) – naturally, the more widely used two packages
are, the more likely they could end up being used together, sim-
ply by chance. Using this strategy, we can therefore compare the
empirically-observed frequency of any pair of two packages with
the frequency resulting from the simulation runs, to estimate if the
two packages in a given pair are used together more, less, or about
as much as could be expected by random chance. Specifically, a
low observed frequency of a pair of two packages relative to the
hypothetical, simulated one indicates an atypical combination of
those two packages. Note how this random shuffling of links in the
package dependency network preserves the total numbers of im-
porting projects and imported packages, the global frequency of use
of each imported package, and the number of imported packages
per project – that is, it implicitly controls for many confounding
factors that could bias the estimates of atypicality of a package
combination.
4https://github.com/woc-hack/tutorial
5https://libraries.io/
6https://docs.python.org/3/library
7If a project imports 𝑛 packages, the binomial coefficient of 𝑛 and 2 gives the total
number of distinct pairs.



ICSE 2024, April 14–20, 2024, Lisbon, Portugal Hongbo Fang, James Herbsleb, and Bogdan Vasilescu

Figure 1: Package combinations within a project

Next, we describe how we computed and aggregated the atypi-
cality scores in detail.

3.3.1 Obtaining Timestamped Project Dependency Information. We
use the World of Code dataset to extract information about the
packages that projects import. Specifically, we mine all Python
source files in a repository and parse out the packages imported
therein, recording also the earliest importing time for every package
imported in a project (a package could be imported multiple times,
in different files part of the same repository). The earliest time
a package is imported across all projects indicates how “old” the
package is. Therefore, each project and a package it imports can
be represented as a tuple [𝑃, 𝑝, 𝑡𝑃 , 𝑡𝑝 ], where 𝑃 is the project, 𝑝 is
the package, and 𝑡𝑃 and 𝑡𝑝 represent the time when project 𝑃 first
imports package 𝑝 and when package 𝑝 was first imported by any
project, respectively. To simplify the representation, 𝑡𝑃 and 𝑡𝑝 only
record the year instead of the exact time.

3.3.2 Measuring the Frequency of Pairwise Package Combinations.
Based on the timestamped dependency information, we compute
the number of times that two packages are imported in the same
project. In Figure 1, the focal project imports three packages X, Y
and Z, with package X and Y being imported in 2016 and package Z
in 2017. There are three possible pairwise combinations of packages
(i.e., X and Y, Y and Z, and X and Z), and we consider the later time
that one package was imported into a project as the time when
new package combinations appear. For the focal project in Figure 1,
there is one package combination in 2016 (X-Y, shown in blue), and
two package combinations in 2017 (X-Z and Y-Z, shown in red).

For each given year, we aggregate over all projects in our sample
and measure the frequency that two packages appear in the same
project until that year, which gives us a dynamic measurement of
package combinations and their evolution over time.

3.3.3 Simulating Package Importing Events. In the description be-
low, we use importing events to refer to the importing activities
represented by the tuple in Section 3.3.1. In this step, we generate
random simulations of importing events which change the pack-
ages that a project imports, but preserve the other properties of the
global project-package dependency network as much as possible,
through a variation of the Markov Chain Monte Carlo algorithm.
Importing events refer to the importing activities represented by
the tuple in Section 3.3.1; the process is illustrated in Figure 2.

In Figure 2, there are three project nodes A, B, and C (project C
appears two times), and three package nodes X, Y, Z. A directed edge

Figure 2: Switching package importing events

from one project to a package corresponds to an importing event,
where the year that the project node is in represents the earliest
time when the project imports the package (or 𝑡𝑃 in the tuple), and
the year that the package node is in corresponds to 𝑡𝑝 and stands
for the earliest time that the package was ever imported by any
projects. For example, the edge from C (project) to Z (package)
indicates that project C imported package Z (first ever imported
in 2015) in 2016, and one year later project C imported package
Y, which was first ever imported in 2016. For simplicity, we use
P-p links to describe an importing event where project P imports
package p (e.g., the A-X link in Figure 2)

A random switch of importing events is defined as randomly
taking two importing events, and exchanging the package being
imported between the two events. Given the A-X and B-Y links in
Figure 2, a switch between those two links will lead to simulated
importing events where project A imports package Y, and project B
imports package X (or, the A-Y and B-X links). This random switch
changes the packages that a project uses (and the package combi-
nation within a project), but keeps fixed the number of packages
that a project imports, and the number of projects that a package
was imported in.

In addition, because the atypicality of package combinations is
computed longitudinally, we preserve the longitudinal pattern of
imports by restricting the switch to be between 𝑡𝑃 and 𝑡𝑝 . Therefore,
a switch between the A-X and B-Y links is allowed, because both
importing events happened in 2018, and the imported packages
were both first-imported in 2016. In contrast, a switch between the B-
Y and C-Y links will not be allowed, because project B imported the
package in 2018 while project C made the import in 2017. Similarly,
switching between A-X and B-Z is not allowed because package
X was first imported in 2016, which differs from 2015 for package
Z. Finally, we further require that a given package be imported at
most once per project

For each given 𝑡𝑃 and 𝑡𝑝 , and the set of events selected by the
two timestamps, we conduct the described switch within this set of
events many times to simulate random dependency relationships.
There is no guarantee when the Monte Carlo algorithm will con-
verge, but Uzzi et al. [44] suggest to run the switch 100 ∗ 𝐸 times,
where 𝐸 corresponds to the number of links (or importing events).



Novelty Begets Long-Term Popularity, But Curbs Participation ICSE 2024, April 14–20, 2024, Lisbon, Portugal

3.3.4 Comparing the Empirically-Observed Events with the Simu-
lated Ones. We run the same simulation twenty times which results
in twenty different randomly generated importing event sets. For
each simulated set, we measure the frequency of package combina-
tions until a given year as described in Section 3.3.2. Given twenty
simulated event sets and the empirically observed pairwise package
combination frequency, we compute a z-score for each package
combination with equation 1,

𝑧𝑖 𝑗𝑡 = (𝑜𝑏𝑠𝑖 𝑗𝑡 − 𝑒𝑥𝑝𝑖 𝑗𝑡 )/(𝜎𝑖 𝑗𝑡 ) (1)

where 𝑜𝑏𝑠𝑖 𝑗 corresponds to the empirically observed number of
times that packages 𝑖 and 𝑗 appeared in the same project until year
𝑡 , 𝑒𝑥𝑝𝑖 𝑗𝑡 is the average number of times (or the expected times)
that packages 𝑖 and 𝑗 appear in the same project until year 𝑡 over
twenty simulated event sets, and 𝜎𝑖 𝑗𝑡 is the standard deviation of
the co-appearance frequency of packages 𝑖 and 𝑗 in those sets as
well.

Intuitively, the z-score represents how many standard deviations
more (or less) the observed combination frequency between two
packages is, compared to that expected by random chance. Since the
numeric value of the z-score can be quite dispersed, we transform
it with equation 2 to smoothen it.

𝑍𝑖 𝑗𝑡 =

{
log(𝑧𝑖 𝑗𝑡 + 1) 𝑧𝑖 𝑗𝑡 ≥ 0
− log(−𝑧𝑖 𝑗𝑡 + 1) 𝑧𝑖 𝑗𝑡 < 0

(2)

A high Z-score corresponds to low atypicality and vice versa.

3.3.5 Aggregating the Package Combination Atypicality Scores at
the Project Level. Given the package combination atypicality score
(measured by the Z-score above) until a given year, we aggregate it
at the project level by taking the average atypicality of all its pack-
age combinations, with package atypicality measured in the year
when the combination appears in the focal project. Using Figure 1
again as an example, the atypicality score of the focal project is
measured by averaging over the atypicality of the X-Y combina-
tion measured until 2016, and the X-Z and Y-Z combinations both
measured until 2017.

3.4 Studying the Association between Project
Atypicality and Interest from Developers
and Users

We conducted regression analysis to understand the association
between project atypicality scores and the outcomes of interest, as
described in Section 2. Only projects with at least 𝑋 years (where 𝑋
is a hyper-parameter) of historical commit data before 2022-01-01
were selected for this analysis. Both the outcome and independent
variables were computed based on activities in the first𝑋 -year after
the projects’ first commit. Table 1 provides a full list of variables
used in the model.

To test the robustness of our results when modeling the effect of
project atypicality on the number of project developers and project
stars, we selected 𝑋 = 1, 2, 3, 4, and 5. We report the results for all
values of 𝑋 .

Table 1: Variables used in the regression analysis

Dependent variables
Developer count The total number of developers whomade at least

one commit to the project within its first 𝑋 -year
(after its first commit). Also used as controls when
Star count being the outcome variable.

Star count The total number of GitHub stars the project re-
ceived within its first 𝑋 -year. Also used as con-
trols when Developer count being the outcome
variable.

Download count The total number of PyPI downloads the project
received within its first 𝑋 -year.

Control variables
Package imported The number of packages that the project im-

ported within the first 𝑋 -year.
Is owned by organization A binary variable indicating whether the project

was owned by an organizational account.
Time in GitHub The number of days since project creation in

GitHub, it differs from the project development
lifespan as some projects onlymigrated to GitHub
in later stage of project development.

Time in PyPI The number of days since project registration in
PyPI, and it is different from the project develop-
ment lifespan.

Year of first commit Fixed effect variable representing the year when
the project received its first commit.

Atypicality measurement
Conventionality The aggregated Z-score at the project level as

described in Section 3.3, with the value computed
based on activities within its first 𝑋 -year.

3.5 Survival Analysis on the Sustainability of
the Project and its Relationship to
Atypicality

In addition to measuring the amount of attention a project receives
from the community, we also use a Cox proportional-hazards model
to conduct survival analysis and understand how project conven-
tionality influences its long-term activity. To do so, we sample
projects that received at least one commit in year 𝑌 (where 𝑌 is a
hyper-parameter) and analyze how long they are active before no
longer receiving commit contributions. Following Qiu et al. [39], we
consider projects with no commit activity for a period of 12 months
to be abandoned, as the duration between a large majority of two
consecutive commits is less than 12 months. As we have commit
activity data until the end of 2021, we can detect project abandon-
ment events that occurred before the end of 2020. Projects that are
still receiving contributions by the end of this period are labeled
as censored and considered to be actively maintained. We use the
same control variables and atypicality measurement as described
in Table 1, with the exception that they are computed based on
activities until the end of year 𝑌 instead of within the first 𝑋 years
of the project’s first commit. Additionally, we include the number of
commits a project receives in year 𝑌 and the number of developers
who made at least one commit to the project in year 𝑌 as controls



ICSE 2024, April 14–20, 2024, Lisbon, Portugal Hongbo Fang, James Herbsleb, and Bogdan Vasilescu

Robotics, 

Computer Vision

Medical Image

Synchronization

Reinforcement 

Learning

Geo-data 

Analysis

Astronomy

3D Visualization

Computing,

Data Process

Figure 3: Typical combination of Python packages (until 2019)

to account for recent project activity. We select 𝑌 = 2016, 2018 and
find that the results are qualitatively similar. We report the survival
analysis effects with 𝑌 = 2016 in Section 4 with the other results
available in the replication package.

The processed dataset and the scripts to replicate our results are
available in the replication package.

4 RESULTS
4.1 Understanding the Atypicality

Measurement
The atypicality measurement, or the Z-score, is the key variable of
interest in the study. To validate the effectiveness of this measure-
ment and providemore context, we describe what this measurement
captures for both individual package combinations and clusters of
package connections.

4.1.1 Understanding the Conventional (Atypical) Package Combina-
tions. High Z-score package combinations indicate that two pack-
ages are frequently used together in the same project. To evaluate
this, we manually examined instances of Python packages used for
different purposes and identified their most commonly combined
packages. These results are shown in Table 2.

Our measurement captures reasonable pairwise package com-
binations. For example, numpy is a general statistical computing
package and is frequently used together with other computing
packages such as scipy, machine learning packages including ten-
sorflow and sklearn, data processing packages such as pandas, and
visualization packages like matplotlib.

Another package, OpenSSL, provides a Python interface to the
OpenSSL library, which is a popular network security package. It
is commonly used in combination with other packages related to
network connections and communications, such as ntlm (a network
authentication package), cryptography (a package that provides



Novelty Begets Long-Term Popularity, But Curbs Participation ICSE 2024, April 14–20, 2024, Lisbon, Portugal

Table 2: Examples of typical package combinations

Focal package Top five mostly combined pacakges

numpy matplotlib, scipy, sklearn, pandas, tensorflow
tensorflow keras, cv2, numpy, sklearn, scipy
django rest, dj, south, whitenoise, celery
OpenSSL ntlm, cryptography, ndg, pyasn1, idna
pymysql MySQLdb, aiomysql, pstat, psycopg2, pymssql

cryptographic recipes and primitives), ndg (an HTTPS client im-
plementation based on PyOpenSSL), pyasn1 (packages related to
telecommunications), and idna (support for domain names).

Interestingly, packages with similar functions, such as pymysql
and MySQLdb may also be imported in the same project often.
Manual inspections over a sample of projects importing both pack-
ages suggest that package replacement likely to contribute to the
phenomenon. For example, project brendanberg/f5 initially use
MySQLdb in its development, but later switch to pymysql. It is
also possible that projects import both packages to accommodate
different users. Project INWTlab/dbrequests imports both MySQLdb
and pymysql, and its users can choose one version of implementa-
tion as MySQLdb is more efficient but harder to install.

At a higher level, we visualize the combination of Python pack-
ages by constructing a topological graph shown in Figure 3. Each
node in the graph represents a Python package, and an edge be-
tween two nodes indicates that the two packages have been im-
ported in the same project, with the weight of the edge being its Z-
score. The packages shown and their Z-scores are computed based
on combination information until the end of 2019. We only keep
the top 0.006% of edges with the highest weights and present the
largest connected component to obtain a visually readable graph.

The size of each node represents the number of projects that
imported the package by 2019. We used a fast unfolding community
detection algorithm [5] to identify the discernible clusters (“commu-
nities”) in the network. The communities are presented in different
colors in the graph, and our community partition has a modularity
level of 0.82, indicating a strong community structure.

Overall, the graph reveals a core-periphery structure, with a large
orange cluster in the middle and other communities surrounding
it. Our manual evaluation of packages suggests the existence of
semantically meaningful clusters.

The orange community in the middle represents the core cluster
and consists of many widely used packages, including statistical
computing packages like numpy, data processing packages like
pandas, visualization packages like matplotlib, and popular ma-
chine learning libraries like tensorflow. This observation indicates
that these packages are used in diverse projects and are essential
building blocks for many different applications.

The core community connects to several smaller but more spec-
ified package clusters. For instance, the pink community mostly
comprises packages related to robotics, motion control, and com-
puter vision, which are connected to the core community through
image processing packages such as cv2. Similarly, the brown com-
munity includes packages important for reinforcement learning

Figure 4: Distribution of Z-score and example of projects

projects, such as gym, and connects to the core community through
machine learning packages like tensorflow.

There are several package clusters that are distant from the
core community. For example, there is a package cluster for 3D
visualization on the right side of the graph, and another cluster for
asynchronous programming.

In summary, the graph based on the most conventional combi-
nation of packages represents meaningful clusters of communities,
and the atypicality measurement captures how packages are com-
monly used together in projects.

4.2 Distribution of Project Z-scores
Figure 4 shows the distribution of Z-scores aggregated at the project
level. As the figure illustrates, the distribution is skewed towards the
positive end of the axis, indicating that most projects are not very
atypical. This result is expected given the definition of atypicality.
The project density peaks at around 0.7 Z-score, and very few
projects have an extremely high Z-score. This suggests that the
majority of projects are marginally conventional, meaning they are
neither very atypical nor very conventional.

We also provide examples of atypical and conventional projects
as captured by our measurement. SublimePrettyJson is a plugin
supporting sublime, and it combines simplejson library with sublime
which makes it atypical projects by our measurement. In the same
vein, django-hstore provides PostgreSQL HStore support for Django,
which makes it marginally atypical. Typical examples for conven-
tional projects are machine learning repositories. For example, the
keras-vggface repository implements VGG framework with keras,
and it is done together with other statistical computing packages
that are commonly used together.

4.3 Project Atypicality and the Outcome of
Interest

Table 3 presents the results for the regression analysis when select-
ing𝑋 =5 (see Section 3.4). We visualize the estimated coefficient for
the atypicality effect for each value of 𝑋 in Figure 5. Table 4 sum-
marizes our survival analysis results for 𝑌 = 2016 (see Section 3.5).
The models behave similarly for other values of 𝑌 , as demonstrated
in the replication package.



ICSE 2024, April 14–20, 2024, Lisbon, Portugal Hongbo Fang, James Herbsleb, and Bogdan Vasilescu

−0.050

−0.025

0.000

0.025

−0.4

−0.2

0.0

0.2

1 2 3 4 5
Period duration (in years)

C
oe

ffi
ci

en
t (

de
ve

lo
pe

r, 
st

ar
)

C
oefficient (dow

nload)

Outcome
developer
stargazer
download

Figure 5: Estimated coefficient of Z-score with different out-
come variables across different period duration (Error bar
represents 95% confidence interval)

4.3.1 Project Atypicality and Popularity. Table 3 shows the results
of Model I, which examines the relationship between project atyp-
icality and the number of stars that the project receives. After
controlling for the number of commits, the number of developers,
project owner identity, and the number of imported packages, we
find that the conventionality of a project’s package combinations is
negatively associated with the number of project stars on GitHub.

The conventionality variable is standardized to have a mean
of zero and a standard deviation of one. The coefficient indicates
that, after controlling for other variables, a one-standard-deviation
increase in project conventionality (or a decrease in atypicality)
corresponds to a 3% decrease in the number of project stars.

For example, the 25% most atypical projects in our sample have
a conventionality that is 0.5 standard deviations below the mean,
while the 25% most typical projects have a conventionality that
is 0.4 standard deviations above the mean. Given that the mean
number of stars for projects in our sample is 123 (median 7.0),
shifting from the 25% most conventional projects to the 25% most
atypical ones leads to an average increase of 3.3 stars, controlling
for other variables.

The orange line in Figure 5 presents the estimated atypicality
effects on project star counts measured for different time periods.
The estimated coefficient is significantly below zero in most cases,
suggesting that atypical projects tend to have more stars. The excep-
tion appears in the early stage when we only measure the project
star counts within one year after project creation – in that case
atypical projects tend to receive fewer stars during the period. One
possible explanation is that atypical projects take longer time to be
recognized and appreciated, which is known as the sleeping beauty
effect in the science of science literature [46].

Next, we measure the relationship between project atypicality
and the number of downloads that the project receives. In con-
trast to the effect on star counts and as shown in Model II, we
do not observe a statistically significant effect at 95% confidence
level, and the insignificant correlation holds for all the time period
lengths measured in our study, as shown by the red line in Figure 5.
Therefore, we report no conclusive association between project
atypicality and the number of downloads.

Given our results, we partially confirm H1 by suggesting that
the project atypicality associates with higher GitHub star counts
in the long term, but possibly a lower number of stars in the short
run. In addition, we find no significant association between project
atypicality and project download counts.

4.4 Project Atypicality and the Size of the
Developer Team

Model III, presented in Table 3, investigates the relationship be-
tween project atypicality and the size of the development team.
After controlling for the number of commits, project owner, project
popularity, and the number of imported packages, we find that the
conventionality of a project’s package combination is positively
associated with the number of developers working on the project.

The estimated coefficient indicates that, after controlling for
other variables, a one-standard-deviation increase in project con-
ventionality (or a decrease in atypicality) corresponds to a 1% in-
crease in the number of developers working on the project. A similar
change from the quarter of most conventional projects to the 25%
most atypical projects corresponds to a change in conventionality
of -0.9 standard deviations, which would lead to a decrease of 0.14
developers per project, or approximately one fewer developer per
every seven projects, after controlling for other variables.

Importantly, the number of developers is positively associated
with the project conventionality only when controlling for Commit
count and Package imported, which are two measures of project size.
Without them as controls, this correlation is reverted, becoming
statistically significantly negative. Indeed there is both a negative
correlation between project size (measured by the number of pack-
ages imported and the number of commits) and project convention-
ality, and a negative correlation between project conventionality
and the number of developers. Conventional projects tend to have
fewer developers, but each developer contributes fewer commits
compared to atypical projects, hence the positive correlation as
shown in Table 3 after controlling for the project size.

This observation aligns with the result reported by Uzzi et al.
[44] on scientific paper novelty, where the authors found that larger
researcher teams tend to generate more novel, or atypical, papers.
In open-source software, we found that novel projects tend to be
developed by larger teams, but have fewer developers for the same
amount of work, which may influence the sustainability of the
project as it requires more effort from each developer on average,
as we discuss in Section 4.5 below.

Therefore, H2 is partially confirmed by our findings that con-
trolling for the size of the project, novel projects tend to have fewer
developers, but the correlation is reverted without the project size
as a control variable.

4.5 Project Atypicality and its Sustained
Development

Table 4 presents the results of our survival analysis when setting
𝑌 = 2016. Our findings show that, when controlling for the number
of project developers, the number of commits to the project, and the
project-level popularity, conventional projects tend to have a lower



Novelty Begets Long-Term Popularity, But Curbs Participation ICSE 2024, April 14–20, 2024, Lisbon, Portugal

Table 3: Results for regression analysis (X=5)

Dependent variable:

Model I (stars) Model II (downloads) Model III (developers)

Control variables
Commit count (log) 0.09∗∗∗ (0.01) −0.06 (0.12) 0.29∗∗∗ (0.005)
Package imported (log) −0.07∗∗∗ (0.02) −0.60∗∗∗ (0.18) −0.03∗∗ (0.01)
Developer count (log) 1.36∗∗∗ (0.01) 1.24∗∗∗ (0.11)
Star count (log) 0.26∗∗∗ (0.003)
Is owned by organization −0.73∗∗∗ (0.02) −0.28 (0.20) 0.46∗∗∗ (0.01)
Time in GitHub 1.58∗∗∗ (0.05)
Time in PyPI −0.10 (0.08)
Atypicality
Conventionality (scaled) −0.03∗∗ (0.01) 0.17 (0.10) 0.01∗∗ (0.005)

Observations 17,211 1,114 17,211
Adjusted R2 0.55 0.49 0.69

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 4: The effect of project atypicality on the sustained
development (Y=2016)

Coefficient Exp(coefficient)

Commit count (log) −0.09∗∗∗ (0.01) 0.92
Package imported (log) 0.01 (0.03) 0.01 1.01
Developer count(log) −0.31∗∗∗ (0.03) 0.73
Star count (log) −0.11∗∗∗ (0.01) 0.90
Is owned by organization −0.40∗∗∗ (0.03) 0.67
Conventionality (scaled) −0.05∗∗∗ (0.01) 0.95

Observations 10,997 10,997
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

hazard rate or a lower probability of being abandoned. This is indi-
cated by the significant negative coefficient of the conventionality
variable.

Specifically, we found that a one standard deviation increase in
the conventionality score changes the probability of project aban-
donment to 95% of its original value. In this sample, shifting from
the 25% most atypical projects to the quarter of most conventional
projects would result in a likelihood of project abandonment that
is a 95.5% of its original value (0.950.9). Therefore, we confirm H3.

5 DISCUSSION
As one of the first studies on innovation in the open-source soft-
ware context, our work begins to reveals the impact that atypical
combinations of packages have on outcomes related to the success
of the project. We summarize the main findings below and discuss
their implications and future research directions.

5.1 Atypical Projects Draw More User Attention
Innovation is often praised and encouraged as it leads to success
in business [37], technology [41], and scientific publications [44].
With atypical combinations of packages as one possible way to
measure innovation in open-source software, we show that more
atypical projects tend to draw more user attention and receive more
GitHub stars. This suggests that the pursuit of atypical, innovative
projects does come with rewards in terms of project popularity.

5.2 Atypical Projects Can Face Difficulty in
Development

While developing atypical projects brings higher levels of user
attention, it also comes with challenges in project development.
We observe that controlling for the project size, atypical projects
tend to be developed by a smaller set of developers, suggesting
that the workload on individual developers is larger compared to
conventional projects as the latter have more contributors to share
the workload with.

While projects developed by small teams may enjoy advantages
such as reduced communication overhead and easier coordina-
tion [28], they also face greater risk to their long-term sustainability
as their development and maintenance are dependent on a smaller
set of developers and the overall maintenance status of the project
may be strongly influenced by the activity status change of one
or two of those developers [2]. This is indeed what we observe
empirically for projects in our analysis, as the conventionality of
a project is positively associated with an decreased probability of
project abandonment, or increase in the project sustainability.

5.3 The Tension Between Popularity and
Participation

It is often a puzzle why many open-source projects, while popular
and widely adopted by users, are only maintained by a very small
set of developers. This puzzle is not only of scientific interest, but



ICSE 2024, April 14–20, 2024, Lisbon, Portugal Hongbo Fang, James Herbsleb, and Bogdan Vasilescu

also embodies practical implications towards a more sustainable
open-source development and the construction of more reliable
open-source projects [14].

In our work, we provide a new perspective to explain this puz-
zling tension between project popularity and developer participa-
tion through the measurement of project atypicality and innova-
tion. Empirical evidence suggests that more atypical projects tend
to draw more attention from users, possibly due to a competitive
advantage relative to other packages available to the open-source
community. However, more atypical projects tend to be developed
by a smaller set of contributors, which could lead to problems in
their sustainability. Following this observation, new questions arise.
How to reduce the seemingly negative consequences of atypical
combinations (fewer contributors with relevant expertise) while
maintaining the positive consequences (higher popularity)? And
how to reduce the long-term abandonment risk of open-source
projects through the identification of atypical projects and under-
standing the mechanisms behind the tension between project pop-
ularity and developer participation?

5.4 Future Work: The Context Surrounding
Innovativeness

Our paper suggests a way of measuring innovation in open-source
and studying its association with measures of open-source project
success. This opens up the discussion around how innovation hap-
pens in an open-source context. What developers or teams are most
likely to produce innovative projects and what are their character-
istics? And how can we support innovative teams and address the
challenges faced by emerging innovations? In the value-in-diversity
literature outside of software engineering, the diversity-innovation
relationship is well studied: surface-level differences between team
members in socio-demographic attributes are linked to cognitive
diversity, conceptualized as the different ways in which people
represent and solve problems when working in teams; in turn,
cognitive diversity in a team can increase creativity and foster
innovation, with empirical evidence from corporate and public or-
ganizations [26], scientific research [24], and many others. Does
this relationship also hold in open source? If so, how strongly and
under what conditions?

5.5 Future Work: Atypicality and
Measurements of Innovation

Measuring innovation has been a challenge in almost every field
that it was touched in. Borrowing an established measure from
other fields, particularly the study of scientific publications and new
knowledge discovery [44], we propose the atypicality of package
combinations as a measure of software project innovativeness.

Still, we needmore evidence of the extent to which it captures the
concept of innovation in a software context in general and in open-
source ecosystems in particular. We consider our study as a starting
point for future research into measuring innovation in software
and we call for more effort into the discussion of measurement and
the development of validation approaches and datasets.

6 CONCLUSIONS
In this project, we built a theoretical framework around innovation
in open-source software and its relationship to project popularity
and sustained development. A main contribution of our work is
a new measure of innovation in software, based on the atypical-
ity of imported package combinations. We explained the scientific
intuition behind it and provided empirical evidence on what the
measure captures. We further carried out a large-scale study of
open-source projects part of the Python ecosystem. We found that
innovative projects tend to draw more attention, primarily in the
form of GitHub stars, and more contributors, especially in the
long term. At the same time, we found that innovative projects
require more effort from developers on average and face greater
challenges with sustaining their activity. We hope that our theoret-
ical framework, measurement approach, and empirical evidence on
the association between innovation and project outcomes will help
attract more research attention to empirically studying innovation
in software engineering.

7 DATA AVAILABILITY
The data and scripts to reproduce our results are available in the
replication package [17]. DOIDOI 10.5281/zenodo.836465110.5281/zenodo.8364651

ACKNOWLEDGMENTS
The authors kindly acknowledge partial support from the NSF
awards 1901311, 2107298, and 2120323, the Google Open Source Pro-
grams Office, Google Faculty Research Awards, and a Google Award
for Inclusion Research. We are additionally grateful to Courtney
Miller, Emerson Murphy-Hill, Audris Mockus, and Mahmoud Ja-
hanshahi, for their help with data collection and discussions around
our study design.

REFERENCES
[1] Richard Adams, John Bessant, and Robert Phelps. 2006. Innovation management

measurement: A review. International journal of management reviews 8, 1 (2006),
21–47.

[2] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander
Serebrenik. 2019. On the abandonment and survival of open source projects:
An empirical investigation. In International Symposium on Empirical Software
Engineering and Measurement (ESEM). 1–12.

[3] Nauman bin Ali, Henry Edison, and Richard Torkar. 2020. The impact of a
proposal for innovation measurement in the software industry. In International
Symposium on Empirical Software Engineering and Measurement (ESEM). 1–6.

[4] Tegawendé F Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, and Lau-
rent Réveillere. 2013. Popularity, interoperability, and impact of programming
languages in 100,000 open source projects. In 2013 IEEE 37th annual computer
software and applications conference. IEEE, 303–312.

[5] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[6] Fabio Calefato, Marco Aurelio Gerosa, Giuseppe Iaffaldano, Filippo Lanubile, and
Igor Steinmacher. 2022. Will you come back to contribute? Investigating the
inactivity of OSS core developers in GitHub. Empirical Software Engineering 27,
3 (2022), 76.

[7] Brandon Carlson, Kevin Leach, Darko Marinov, Meiyappan Nagappan, and Atul
Prakash. 2019. Open source vulnerability notification. In IFIP International Con-
ference on Open Source Systems (OSS). Springer, 12–23.

[8] Clayton M Christensen and Clayton M Christensen. 2003. The innovator’s
dilemma: The revolutionary book that will change the way you do business. Harper-
Business Essentials New York, NY.

[9] Jailton Coelho and Marco Tulio Valente. 2017. Why modern open source projects
fail. In Joint meeting on the Foundations of Software Engineering (ESEC/FSE). 186–
196.

https://doi.org/10.5281/zenodo.8364651


Novelty Begets Long-Term Popularity, But Curbs Participation ICSE 2024, April 14–20, 2024, Lisbon, Portugal

[10] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
ACM Conference on Computer Supported Cooperative Work & Social Computing
(CSCW). 1277–1286.

[11] Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry, Bogdan Vasilescu, Anna
Filippova, and Audris Mockus. 2020. Detecting and characterizing bots that
commit code. In 2020 IEEE/ACM 17th International Conference on Mining Software
Repositories (MSR). 209–219.

[12] Thomas Dohmke. 2023. Blog post: 100 million developers and counting. https:
//github.blog/2023-01-25-100-million-developers-and-counting/. Retrieved:
March 2023.

[13] Henry Edison, Nauman Bin Ali, and Richard Torkar. 2013. Towards innovation
measurement in the software industry. Journal of systems and software 86, 5
(2013), 1390–1407.

[14] Nadia Eghbal. 2016. Roads and bridges. The Unseen labor behind our digital
infrastructure (2016).

[15] Nadia Eghbal. 2020. Working in public: The making and maintenance of open
source software. Stripe Press San Francisco.

[16] Hongbo Fang, James Herbsleb, and Bogdan Vasilescu. 2023. Matching Skills, Past
Collaboration, and Limited Competition: Modeling When Open-Source Projects
Attract Contributors. In Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM. ESEC/FSE ’23.

[17] Hongbo Fang, James Herbsleb, and Bogdan Vasilescu. 2023. Replication package.
https://doi.org/10.5281/zenodo.8364651

[18] Santo Fortunato, Carl T Bergstrom, Katy Börner, James A Evans, Dirk Helbing,
Staša Milojević, Alexander M Petersen, Filippo Radicchi, Roberta Sinatra, Brian
Uzzi, et al. 2018. Science of science. Science 359, 6379 (2018), eaao0185.

[19] Felipe Fronchetti, Igor Wiese, Gustavo Pinto, and Igor Steinmacher. 2019. What
attracts newcomers to onboard on OSS projects? tl;dr: Popularity. In Open Source
Systems: 15th IFIP WG 2.13 International Conference, OSS 2019, Montreal, QC,
Canada, May 26–27, 2019, Proceedings 15. Springer, 91–103.

[20] Tanner Fry, Tapajit Dey, Andrey Karnauch, and Audris Mockus. 2020. A dataset
and an approach for identity resolution of 38 million author ids extracted from 2b
git commits. In 2020 IEEE/ACM 17th International Conference on Mining Software
Repositories (MSR). 518–522.

[21] R Stuart Geiger, Dorothy Howard, and Lilly Irani. 2021. The labor of maintaining
and scaling free and open-source software projects. Proceedings of the ACM on
Human-Computer Interaction 5, CSCW1 (2021), 1–28.

[22] Marco Gerosa, Igor Wiese, Bianca Trinkenreich, Georg Link, Gregorio Robles,
Christoph Treude, Igor Steinmacher, and Anita Sarma. 2021. The shifting sands of
motivation: Revisiting what drives contributors in open source. In 2021 IEEE/ACM
43th International Conference on Software Engineering (ICSE). 1046–1058.

[23] Joseph Hejderup. 2022. On the Use of Tests for Software Supply Chain Threats.
In ACM Workshop on Software Supply Chain Offensive Research and Ecosystem
Defenses. 47–49.

[24] Bas Hofstra, Vivek V Kulkarni, Sebastian Munoz-Najar Galvez, Bryan He, Dan
Jurafsky, and Daniel A McFarland. 2020. The diversity–innovation paradox in
science. Proceedings of the National Academy of Sciences 117, 17 (2020), 9284–9291.

[25] James Howison, Keisuke Inoue, and Kevin Crowston. 2006. Social dynamics of
free and open source team communications. In IFIP Conference on Open Source
Systems (OSS). Springer, 319–330.

[26] Charlie Karlsson, Jonna Rickardsson, and Joakim Wincent. 2021. Diversity,
innovation and entrepreneurship: where are we and where should we go in
future studies? Small Business Economics 56, 2 (2021), 759–772.

[27] Rajdeep Kaur and Kuljit Kaur Chahal. 2022. Exploring factors affecting developer
abandonment of open source software projects. Journal of Software: Evolution
and Process 34, 9 (2022), e2484.

[28] Aniket Kittur and Robert E Kraut. 2008. Harnessing the wisdom of crowds
in wikipedia: quality through coordination. In ACM Conference on Computer
Supported Cooperative Work & Social Computing (CSCW). 37–46.

[29] Karim Lakhani and Robert Wolf. 2005. Why Hackers Do What They Do: Under-
standing Motivation and Effort in Free/Open Source Software Projects. MIT Press,

Cambridge.
[30] Jeff Luszcz. 2017. How maverick developers can create risk in the software and

IoT supply chain. Network Security 2017, 8 (2017), 5–7.
[31] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.

2019. World of code: an infrastructure for mining the universe of open source
VCS data. In 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). IEEE, 143–154.

[32] Edwin Mansfield. 1986. Patents and innovation: an empirical study. Management
Science 32, 2 (1986), 173–181.

[33] Christopher Mendez, Hema Susmita Padala, Zoe Steine-Hanson, Claudia Hilder-
brand, Amber Horvath, Charles Hill, Logan Simpson, Nupoor Patil, Anita Sarma,
and Margaret Burnett. 2018. Open source barriers to entry, revisited: A sociotech-
nical perspective. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). 1004–1015.

[34] Courtney Miller, Christian Kästner, and Bogdan Vasilescu. 2023. “We Feel Like
We’re Winging It:” A Study on Navigating Open-Source Dependency Abandon-
ment. In Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM. ESEC/FSE ’23.

[35] Courtney Miller, David Gray Widder, Christian Kästner, and Bogdan Vasilescu.
2019. Why do people give up FLOSSing? A study of contributor disengagement
in open source. In IFIP International Conference on Open Source Systems (OSS).
Springer, 116–129.

[36] Audris Mockus. 2007. Large-scale code reuse in open source software. In First
International Workshop on Emerging Trends in FLOSS Research and Development
(FLOSS’07: ICSE Workshops 2007). IEEE, 7–7.

[37] Andy Neely and Jasper Hii. 1998. Innovation and business performance: a litera-
ture review. The Judge Institute of Management Studies, University of Cambridge
(1998), 0–65.

[38] Cassandra Overney, Jens Meinicke, Christian Kästner, and Bogdan Vasilescu.
2020. How to Not Get Rich: An Empirical Study of Donations in Open Source.
In International Conference on Software Engineering. ACM, 1209–1221. ICSE ’20.

[39] Huilian Sophie Qiu, Alexander Nolte, Anita Brown, Alexander Serebrenik, and
Bogdan Vasilescu. 2019. Going farther together: The impact of social capital
on sustained participation in open source. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 688–699.

[40] Joseph A Schumpeter et al. 1939. Business Cycles: A Theoretical, Historical and
Statistical Analysis of the Capitalist Process. Vol. 1. Mcgraw-hill New York.

[41] Stanley F Slater and Jakki J Mohr. 2006. Successful development and commercial-
ization of technological innovation: Insights based on strategy type. Journal of
product innovation management 23, 1 (2006), 26–33.

[42] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social barriers faced by newcomers placing their first contribution in open
source software projects. In ACM Conference on Computer Supported Cooperative
Work & Social Computing (CSCW). 1379–1392.

[43] Ashok Subramanian. 1996. Innovativeness: redefining the concept. Journal of
engineering and technology management 13, 3-4 (1996), 223–243.

[44] Brian Uzzi, Satyam Mukherjee, Michael Stringer, and Ben Jones. 2013. Atypical
combinations and scientific impact. Science 342, 6157 (2013), 468–472.

[45] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level
determinants of sustained activity in open-source projects: A case study of the
PyPI ecosystem. In Joint Meeting on the Foundations of Software Engineering
(ESEC/FSE). 644–655.

[46] Anthony FJ Van Raan. 2004. Sleeping beauties in science. Scientometrics 59, 3
(2004), 467–472.

[47] James Walden. 2020. The impact of a major security event on an open source
project: The case of OpenSSL. In 2020 IEEE/ACM 17th International Conference on
Mining Software Repositories (MSR). 409–419.

[48] Lingfei Wu, Dashun Wang, and James A Evans. 2019. Large teams develop and
small teams disrupt science and technology. Nature 566, 7744 (2019), 378–382.

[49] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. 2020. How has forking
changed in the last 20 years? A study of hard forks on GitHub. In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). 445–456.

https://github.blog/2023-01-25-100-million-developers-and-counting/
https://github.blog/2023-01-25-100-million-developers-and-counting/
https://doi.org/10.5281/zenodo.8364651

	Abstract
	1 Introduction
	2 Theoretical Framework
	3 Methods
	3.1 Data Collection
	3.2 Pre-processing of Package Dependencies
	3.3 Quantifying Project Atypicality
	3.4 Studying the Association between Project Atypicality and Interest from Developers and Users
	3.5 Survival Analysis on the Sustainability of the Project and its Relationship to Atypicality

	4 Results
	4.1 Understanding the Atypicality Measurement
	4.2 Distribution of Project Z-scores
	4.3 Project Atypicality and the Outcome of Interest
	4.4 Project Atypicality and the Size of the Developer Team
	4.5 Project Atypicality and its Sustained Development

	5 Discussion
	5.1 Atypical Projects Draw More User Attention
	5.2 Atypical Projects Can Face Difficulty in Development
	5.3 The Tension Between Popularity and Participation
	5.4 Future Work: The Context Surrounding Innovativeness
	5.5 Future Work: Atypicality and Measurements of Innovation

	6 Conclusions
	7 Data Availability
	Acknowledgments
	References

