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ABSTRACT
Attracting and retaining new developers is often at the heart of
open-source project sustainability and success. Previous research
found many intrinsic (or endogenous) project characteristics asso-
ciated with the attractiveness of projects to new developers, but
the impact of factors external to the project itself have largely been
overlooked. In this work, we focus on one such external factor,
a project’s labor pool, which is defined as the set of contributors
active in the overall open-source ecosystem that the project could
plausibly attempt to recruit from at a given time. How are the size
and characteristics of the labor pool associated with a project’s
attractiveness to new contributors? Through an empirical study of
over 516,893 Python projects, we found that the size of the project’s
labor pool, the technical skill match, and the social connection be-
tween the project’s labor pool and members of the focal project
all significantly influence the number of new developers that the
focal project attracts, with the competition between projects with
overlapping labor pools also playing a role. Overall, the labor pool
factors add considerable explanatory power compared to models
with only project-level characteristics.
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1 INTRODUCTION
The importance and economic value of open-source software are,
by now, undeniable [25]. Open source is used in all domains, by
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companies big and small, public institutions, scientific organiza-
tions, etc. There is a wealth of open-source libraries, frameworks,
and tools that can be reused and built upon to facilitate innovation
and increase software development productivity [59].

Much like any software [15], open source also requires consid-
erable effort to develop and maintain, e.g., to respond to evolving
user needs [5], unexpected bugs or issues [67], and ever-changing
dependencies [11]. However, since much of open source is still
being developed and maintained by volunteers [7, 55], for projects,
being able to attract and retain new contributors is essential [53].
Attracting and onboarding new contributors preserves the conti-
nuity of project development and maintenance, and can even save
the project from being abandoned when core developers leave [4].
The arrival of new contributors may also bring new knowledge and
perspectives to the project team, and thus help to produce software
of higher quality [54]. Yet, open-source projects often struggle to
find the right contributors [4] and this is aggravated by the volun-
tary nature of many open-source contributions — turnover rates
are high [31], disengagement of core project developers is com-
mon [30], and the reasons people drop out are often unavoidable,
e.g., a change of job or life status [48].

There has been considerable prior research to understand the
characteristics of projects that succeed in attracting and onboarding
new contributors, as well as the barriers faced by people placing
their first contributions in open-source projects [63]. For exam-
ple, there is empirical evidence that project popularity [13], age,
size in terms of the number of contributors [64], license [57], the
presence and quality of documentation [51], and even activity on
social media [29], are all associated with a project’s likelihood of
attracting new contributors. However, much less is known about
how factors external to the project, related to its position and role in
the overall open-source ecosystem, impact the process of attracting
and retaining new contributors.

Meanwhile, there is mounting evidence that open-source contrib-
utors, especially volunteers, have ample freedom to choose which
projects to contribute to [34], typically join existing communities
over starting new projects [34], and often jump around between
projects and programming language ecosystems [20, 39, 73], bring-
ing with them knowledge and skills. Therefore, it is insufficient to
consider open-source projects as independent — their success or
failure to attract and retain new contributors is likely influenced
by the broader context they are part of and their relationships to
other projects in the overall open-source ecosystem.

With this holistic view, in this paper we take a step towards
better understanding an open-source project’s labor pool, defined
as the set of contributors active in the overall open-source ecosystem
that a given project could plausibly attempt to recruit from at a
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given time. Using longitudinal data from a large sample of 516,893
Python projects, and holding constant project-level characteristics
previously reported in the literature, we show that 1) the level of
technical skill match between potential contributors and a focal
project, 2) the strength of their connection to existing teammembers
from past collaborations, and 3) the amount of ‘competition’ from
other similar projects in the overall ecosystem, are all statistically
associated with a project’s attractiveness to new contributors.

Our methodology and results can help open source practitioners,
community managers, platform designers, and funders to better
allocate typically already scarce resources, target promotional cam-
paigns, and monitor the health and sustainability of projects. By
illuminating, with quantitative empirical evidence, possible new
mechanisms through which open-source projects can attract (or
may struggle to attract) new contributors, our work also contributes
to our theoretical understanding of the ecosystem-level dynamics in
open source, an area in much need of additional research attention,
in our opinion.

2 RELATEDWORK
The sustainability of open-source projects is one of the key ques-
tions emerging since the early days of open-source development.
Software development is a complex, effort-intensive process [15, 49],
and the maintenance of such products can be no less costly [8]. Be-
cause open-source teams often consist of volunteer developers,
being able to sustain contributions becomes especially challenging.
Multiple studies have looked at how developers become involved in
open-source projects. Krogh et al.proposed a “joining script” of de-
veloper participation in the open-source mailing list and described
the practice it took for a newcomer to become established in the
community [74]. Crowston and Howison studied an onion-like
structural model of open-source teams, with the transition between
different layers being a result of team interaction and developer
contribution [21]. Steinmacher and others described the developer
contribution to a project as a multi-stage process that starts from
an initial motivation and attraction phase, then moves to the re-
tention phase in the later stage [64]. The developers’ advancement
towards becoming long-term contributors was also studied. Re-
searchers found that the developers’ relative sociality [77], their
attitudes [78], and the project environmental factors such as the
availability of work opportunities and project popularity [78, 79]
all play a role to influence the likelihood of long-term contributions.
Those works helped to support more sustainable open-source de-
velopment by providing guidance on tool design [6, 35, 60, 61, 66]
and project or task recommendations [58].

Attracting new developers to contribute to an open-source project
is an important part of the project’s sustainability and the early
stage of developer involvement in the project. Researchers have
identified several factors that should help with attracting and on-
boarding new developers. For example, Hahn et al.reported that
developers tend to join projects where they have past collaboration
experience with the existing developers [36, 37], with a similar
result found by Casalnuovo et al. [18]. Tan and others found that
beginner-friendly tasks and their characteristics impact developer
onboarding [68]. More recently, studies looked at attracting new
contributors through the lens of signaling theory, reporting that

better READMEs [51], the adoption of badges [69], the project pop-
ularity metrics (e.g., the number of stars [13, 32]), and the time to
review pull requests [32] all help to make the project more attractive
to new contributors.

Our work provides an alternative perspective to understanding
the new contributors to a project by shifting the focus from the
project itself to the characteristics of potential contributors. Our
results also connect to the research on social media promotion [14,
29] for open-source projects and open-source project diffusion in
general [42], as we show that the characteristics of the community
that the promotion reaches impact the successful attraction of new
contributors. We further identify several such characteristics that
open-source promoters may pay attention to.

3 THEORETICAL FRAMEWORK AND
RESEARCH HYPOTHESES

Our study investigates the relationship between characteristics of
a project’s labor pool and its ability to attract new contributors.
As mentioned above, we define labor pool as the set of developers
active in the overall open-source ecosystem around the same time,
that a given project could plausibly attempt to recruit new contrib-
utors from. That is, in our definition labor pools are always tied
to specific projects. For example, we expect that a text processing
project’s labor pool is different from a bioinformatics project’s labor
pool, although the two may overlap if, for example, they involve
applications of machine learning. In addition, we require a notion
of plausible awareness of the focal project from developers in the
labor pool. Indeed, at the very least, one would need to be aware of
a project and possible opportunities to contribute before deciding
to do so. We discuss our operationalization later, in Section 4.1.

With this definition, we hypothesize about differences in tenden-
cies to join (i.e., start contributing changes to) a focal project for
developers in the labor pool, and the relationships (we theorize the
direction of influence as well) between such factors external to a
project and the project’s success at attracting new contributors. We
will operationalize and more formally test these hypotheses below,
in Section 5. Note also that we use the terms developer and contrib-
utor interchangeably, and inclusively of all types of contribution,
not just code.1

To begin with, the size of the project’s labor pool at some point
in time should be an important predictor of the number of new
contributors the project engages in the near future. A larger labor
pool size should indicate that more developers are aware of the
project, thus the possibility that some of those developers will be
interested to contribute increases. Therefore, we hypothesize:
H1. The number of developers in a project’s labor pool is positively
associated with the number of new contributors the project receives in
the near future.

For potential contributors in the labor pool, a social connection
with current project developers should reduce their uncertainty
about the project, as they may trust the information about the
project provided by their ‘friends’ and may be in a better position
to evaluate the outcome of contributing [44]. In addition, familiarity

1Although in our operationalization below we consider only contributions in the form
of commits (including pull request commits), to keep our analysis tractable. Commits
can still touch non-code parts of a project, e.g., documentation files.
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with the current project members should help potential developers
to understand the working norms and the way of collaboration
better [26]. Finally, the focal project’s current developers are gen-
erally more likely to accept contributions from people they know
about [70]. We thus hypothesize:
H2. The strength of social connections between existing project mem-
bers and others in the labor pool is positively associated with the
number of new developers the project receives in the near future.

The development of open-source software is skilled work. To
provide valuable contributions to the project, developers need to be
familiar with the programming languages, technologies, and coding
style in the project [17], and align with the project’s goals and other
such constraints. The requirement for technical programming skills
is often a barrier for new contributors to join a project [65], and
the contributions of people with less of a track record of activity in
open source are also less likely to be accepted [70]. Going one step
further, we hypothesize that it’s not enough to have open source
contribution experience, but rather that the experience should be
technically relevant to the focal project:
H3. The degree of similarity (or fit) between the technologies used in a
project and the technical background of the developers in the project’s
labor pool is positively associated with the number of new developers
the project receives in the near future.

Finally, contributing to open-source projects takes a lot of ef-
fort [15, 49]. Given that the amount of time anyone can invest in
contributing to open source is unavoidably limited (at the very
least by the laws of physics), one can expect that the total number
of projects one can join should be limited as well. And while it is
common for people to contribute to multiple open-source projects
even during the same day [72], and one’s capacity for ‘multitasking’
across projects increases when the projects share the same pro-
gramming languages [72], there can still be more projects available
than one has capacity for. Therefore, a developer part of the labor
pool of multiple projects may be forced to choose from among them.
Stated differently, a developer’s tendency to join a project may not
only be influenced by the characteristics of the focal project, but
also by the amount of other ‘competing’ projects the developer is
exposed to. As competition for new contributors can exist between
projects with overlapping labor pools, we hypothesize:
H4. A project will engage fewer new contributors in the near future
the more overlap there is between its labor pool and labor pools of
other projects.

H5. The project will receive more new contributors if it is relatively
attractive compared to other projects that developers in its labor pool
are also possibly exposed to.

We describe our study design for testing these hypotheses next.

4 METHODS
This section first gives the high-level intuition behind our research
design, and then dives into the technical details for each step.

4.1 Key Study Design Decisions and Tradeoffs
Testing the hypotheses above requires a macro, ecosystem-level
analysis. Given a focal project at a given time, we need to opera-
tionalize its labor pool from among those people active across the

entire open-source ‘universe’ at that time (H1,H2). Then, for every
such person, we need tomake inferences about their past experience
with different technologies across the open-source ‘universe.’ We
then need to use these estimates to compute the people’s technical
fit with the focal project (H3), as well as to compute, pairwise, their
technical fit with all other available projects in the open-source
‘universe’, to identify the ones which might be competing for their
attention (H4, H5).

Given the obvious computational complexity of such analysis,
we made several tradeoffs between computational feasibility, on
the one hand, and realism and statistical power, on the other hand.
This resulted in the following three key study design decisions.
Study Context: The Python Ecosystem. To keep our analysis
tractable we choose to analyze only one open-source ecosystem —
the Python programming language ecosystem — but consider all
projects part of the ecosystem. Python is among the most popular
and widely used programming languages in open source [9, 22],
and it is the language behind libraries and frameworks used in a
diversity of application domains.2 At the same time, the Python
open-source ecosystem contains a large set of projects, enabling
us to draw conclusions with high statistical power. Thus, a study
of the Python ecosystem provides important practical implications
and also significant scientific value.
Labor Pool Sampling Frame: The Co-commit Network. We
operationalize the labor pool of a focal project at a given time based
on relationships between nodes in the project’s collaboration net-
work. Nodes in the network represent individual developers, and
edges indicate that those two developers made commits to a same
project in the same time period, i.e., a co-commit relationship. For
simplicity, we compute the collaboration network in yearly snap-
shots, with each snapshot capturing the activity in the respective
previous full calendar year 𝑦 − 1, i.e., from 1st of January, 𝑦 − 1 to
31st of December, 𝑦 − 1. We construct the network starting from
the set of all contributors to the focal project in year 𝑦 − 1. Then we
expand outwards, to include all their ‘collaborators’ from all other
projects each contributed to in year 𝑦 − 1. Then, transitively, we
collect all their ‘collaborators’ in the same year 𝑦 − 1 and so forth,
up to three hops away from the starting set of the focal project’s
contributors.3

The goal here is to approximate the number of developers who
might be aware of the focal project at a given time — awareness is a
first step towards deciding to contribute. Clearly, there are myriad
online and offline ways to learn about new projects, including social
media [12, 28, 62], recommendation systems [46], directly follow-
ing other developers on social coding platforms like GitHub [10],
meetings [14], and many other channels [50].

Identifying the exact set of developers who are aware of the
project at a given time is impossible. Instead, we use co-committing
relationships as a proxy for awareness of the focal project. Prior
research suggests that the collaboration between developers creates
opportunities for communication, and the information about a
project is likely to diffuse as a result of developer interactions [2].

2https://www.python.org/about/apps/
3Note that all subsequent outcome measures in our models are computed in year 𝑦, to
avoid soundness issues caused by the possibly reversed chronology of the ‘collabora-
tion’ and focal project joining events.
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Figure 1: Summary of our data preparation and analysis process.

Co-committing to a common project does not guarantee direct
collaboration or interaction [40], but is a prerequisite for both for
contributors who make changes to a project’s codebase — at the
very least, it provides an opportunity for interaction and direct
collaboration. Moreover, not all such co-committing relationships
will result in information about the focal project being diffused,
especially as the number of hops from the focal project’s developers
increases. However, we expect that, on average, the more such
opportunities for interaction exist, the more likely it becomes for
information about the focal project to be diffused.

This operationalization also has the advantage of being agnostic
to the platform where the source code repository is being hosted,
thereby allowing us to more easily scale the analysis beyond any
single platform where additional, platform-specific forms of inter-
action could also be considered, e.g., interactions via issue tracker
comments. While currently the dominant one, GitHub is not the
only platform for hosting open source.
Labor Pool Operationalization: People One-Hop Away From
Current Project Contributors in the Co-commit Network.
To further reduce the computational complexity of the analysis,
we operationalize the labor pool of a focal project at a given time
only as the set of developers within one hop away from current
project contributors in the collaboration network, who have never
contributed to the project before. The rationale is twofold.

First, information diffusion theory suggests that the closer nodes
are to the information source in a network, the more likely they
are to receive the information [56, 76]. Thus, one can expect that
awareness of the focal project should decrease substantially the
more hops away one is from the focal project’s current developers.
This is consistent with prior software engineering research [29]
reporting a relatively low tendency to join the focal project in
the future for people who saw it mentioned on Twitter — there is

arguably considerable distance between a focal open-source project
hosted on the GitHub platform and an average Twitter user.

Second, we analyzed the yearly snapshots of the collaboration
network between new contributors and the existing project devel-
opers across all projects in our sample, and computed the network
distances (number of hops) from the existing project developers.
Figure 2 visualizes the ratio

∑
𝑝 𝑁𝑑𝑝𝑦∑
𝑝 𝑁𝑝𝑦

, where 𝑁𝑑𝑝𝑦 is the number
of new contributors to project 𝑝 in year 𝑦 who are 𝑑-hops away
from the existing developers in the collaboration network in year
𝑦 − 1,4 and 𝑁𝑝𝑦 is the total number of new contributors to project
𝑝 in year 𝑦.5 As expected, the number of new contributors iden-
tifiable in the collaboration network decreases sharply with the
number of hops, with the one-hop distance capturing most of them
— around 61-65% of everyone identifiable within three hops. Given
the exponential increase in complexity with network distance, we
choose to restrict the operationalization of a project’s labor pool
to developers one-hop away in the collaboration network, as this
distance captures most identifiable developers.

Note that overall, the one-hop distance captures only around
19-23% of all new contributors, i.e., the majority of new contributors
are unidentifiable within one hop of the current project contributors
in the yearly collaboration graph (similarly, also within three hops).
There are many possible reasons. Perhaps the one-year horizon is
insufficient to capture all ties, and ties surely also form through
many other means than our relatively strict operationalization of co-
committing to the same repository can capture. However, given the
considerable fraction of new contributors that our relatively simple,
but most scalable, operationalization can capture, we expect that
our resulting sample contains sufficient signal for our subsequent

4Recall that outcome measures are computed in subsequent years from collaboration
network edges, cf. footnote 3.
5We apply the same minimum activity filter as in Section 4.5, for consistency.
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Figure 2: Percentage of new contributions from different
network distances to the existing developers, across years.

modeling needs, while at the same time keeping the data volume
and the computation needed for the analysis tractable.

4.2 Overview of the Analysis
Given these key design decisions, we structure our study in two
parts, as summarized in Figure 1. Both parts involve regression
models explaining the tendency and number of new developers
joining projects in a next time period as a function of the sets of
factors we formulate explicit hypotheses about, via their corre-
sponding variables computed in a current time period. In the first
part we take a developer-centric view — from the perspective of
an individual developer, they typically have a choice of projects
they could contribute to and a range of projects they’re in the labor
pool for, based on past collaborations. In the second part we take
a project-centric view, aggregating individual-level effects to the
level of the whole ecosystem, to reason about project labor pool
characteristics and competition effects.

First, we estimate the relative importance of the three sets of
factors we formulate explicit hypotheses about6 — the strength
of social connections to existing project members (H2), the fit be-
tween one’s technical background and the focal project (H3), and
the amount of competition (or choice one has) between available
projects with similar technical fit (H4, H5) — at the individual
level. To do this, we start by computing a data frame of (labor-pool-
developer, focal-project) pairs, with measurements of the relevant
variables (details below) for every developer in a given project’s
labor pool, across all projects in our sample; we also record a binary
outcome variable indicating whether or not that developer joined
the project in the next period. Using this data, we then construct a
logistic regression model explaining the developers’ tendency to
join a focal project in the next year as a function of the variables
of interest; the labor pool is operationalized as described above,
i.e., people one-hop away from the focal project’s developers. We
refer to variations of this logistic regression model (under different
specifications) as individual models.

Note that the goal here is not to make individual predictions
about any one developer’s tendency to join a given project in the
next time period. Rather, the goal is to estimate the relative impor-
tance of the three sets of factors of interest, on average, across a
large sample, such that we can reuse these ‘weights,’ i.e., the es-
timated 𝛽 coefficients from the logistic regression model, in the

6Excluding H1 , which refers to the labor pool size, rather than its composition.

second part of our analysis. For example, we estimate how much
the technical background fit explains the joining tendency of an
average developer, compared to the strength of social connections
and the amount of competition from other projects, over a large
sample. Because we estimate the logistic regression over a very
large sample, we can assume that these coefficients are stable,7 so
we estimate only one set of individual models8 to be used as input
for the second part.

Next, we lift9 the individual-level analysis to the project level by
estimating regressions that explain the number of new developers
joining projects in a next year as a function of their labor pool
characteristics (and control variables) in the current year. We refer
to these models as project models and we use them to formally
test all our hypotheses H1–H5.

To ensure the robustness of our conclusions, we repeat this
analysis for all the complete pairs of consecutive years in our data,
from 2015–2016 to 2020–2021. In the end, we quantify the amount of
variance that the labor pool characteristics explain when modeling
the number of new contributors a project will receive, interpret the
results, and discuss the implications of our findings.

4.3 Data Collection and Filtering
We mine our data from the World of Code (WoC) dataset [45],
which contains the git commit traces for all public projects hosted
on GitHub, Gitlab, Bitbucket, SourceForge, and many other smaller
ones. We expect that World of Code should give better coverage
of open-source development compared to other datasets typically
used in prior research.

To begin with, we define the open-source Python ecosystem as
containing all repositories with over 50% of their files written in
the Python language. We then apply several filters to de-noise the
data, as typical with mining software repositories research [41].

First, we filter out repositories with fewer than 10 commits that
involve changes to library import statements, i.e., adding or re-
moving dependencies. This step is needed because we later use
this dependency information to characterize the technical needs
of projects, i.e., we assume that a project using certain libraries
requires contributors with experience in those libraries. We chose
the threshold arbitrarily, balancing a desire to retain a large sample,
on the one hand, with an attempt to filter out trivial projects (code
dumps, homework solutions, etc) and a need for ‘enough’ data for
the subsequent embeddings-based approach to work. Similarly, we
filter out developers from labor pools if they authored fewer than
10 commits that involve changes to library import statements, for
analogous reasons. As a robustness validation, we run the same
analysis over datasets where projects and authors with less than
100 commits that involve change of packages are removed, and
the results are qualitatively similar (See the replication package for
validation study).

Second, we made sure to use the de-aliased activity records
from the World of Code dataset, which provides both raw data on
commit authors as well as data on de-aliased commit authors, after
merging developer identities when they use different aliases; see

7We discuss robustness checks for this assumption below.
8We computed all independent variables in 2014 and the outcome variable in 2015.
9The estimated 𝛽 coefficients from the individual models enable this aggregation.
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Table 1: The definitions of variables in the individual model

Variables related to social connections
Social strength The total number of projects one has worked

on with any of the current project developers.
Variables related to technical fit
Technical similarity The similarity between one’s technical back-

ground and the project’s technologies.
Variables related to competition effects
Number of competing
projects

The total number of projects one is in the labor
pools for.

Relative advantage in
social connection

The percentile of the Strength of social connec-
tion variable defined above.

Relative advantage in
technical similarity

The percentile of the Technical fit variable de-
fined above.

Fry et al. [33] for details on the random forest model used to merge
developer aliases based on their user IDs. It is important to use the
de-aliased activity records because the volume of developer aliases
in such data may skew our measurements of project contributors
and experience with Python libraries [3].

Finally, we also make a best effort attempt to filter out bots and
unidentifiable accounts together with their associated commit ac-
tivities, for similar reasons [75]. Specifically, we use three heuristics
to identify bot-like accounts. First, we reuse a list of 13,169 bot ac-
counts in theWorld of Code dataset compiled by Dey et al. [24] after
developing a machine learning classifier for this purpose, based on
author names, commit messages, files, and projects modified by the
suspected bot account. Second, we convert all account usernames
into lowercase characters and use string matching to flag as bots
those with the last part of their username being -bot or -robot. Third,
we order all developer accounts in our dataset based on the num-
ber of commits they made, and we manually evaluate the top 100
accounts. This revealed a few additional bot-like and unidentifiable
accounts such as GitHub Merge Button <merge-button@github.com>.
Overall, all these commit authors are excluded from our analysis.

4.4 Part I: Individual Models
As discussed briefly above, we use logistic regression to model
the factors associated with the individual tendency to join a focal
project, across all (labor-pool-developer, project) pairs in our sample.
The full model is specified as:

𝑃 (𝐽𝑖𝑝𝑦) = logit(𝛽0𝑃𝑝𝑦−1 + 𝛽1𝑆𝑖𝑝𝑦−1 + 𝛽2𝑇𝑖𝑝𝑦−1 + 𝛽3𝐶𝑖𝑝𝑦−1), (1)

where 𝑃 (𝐽𝑖𝑝𝑦) is the likelihood that developer 𝑖 joins project 𝑝
in year 𝑦, and independent variables 𝑆𝑖𝑝𝑦−1, 𝑇𝑖𝑝𝑦−1, and 𝐶𝑖𝑝𝑦−1
represent the social connection between potential contributor 𝑖
and the existing developers of project 𝑝 , the technical background
fit between developer 𝑖 and project 𝑝 , and the factors relating to
the competitive advantage of project 𝑝 among the set of projects
developer 𝑖 can potentially join, respectively, all computed in year
𝑦 − 1. Table 1 gives definitions of the variables in the model; we
expand on how we operationalized the variables below.

Technical fitness Social connection

Project A 0.2 6

Project B 0.3 3

Project C 0.05 2

Project D 0.8 1

Technical fitness

DBAC
(0%) (25%) (50%) (75%)

Social connection

ABCD

(0%) (25%) (50%) (75%)

(a)

(b) (c)

Figure 3: Illustration of the project relative advantage.

Modeling Considerations. For simplicity, since the estimated 𝛽

coefficients are stable, we compute only one individual model for
𝑦 − 1 = 2014 and reuse the coefficients throughout Part II.

We also restrict our sample only to the labor-pool developers
who were active (i.e., made at least one commit) in 2014, because
developers who are inactive for more than one year tend to have
a low probability to make commits in future years [16]. Until the
end of 2014, there are 104,899 Python developers in our sample
who made at least 10 valid commits with changes to import state-
ments, and were active in 2014. For each developer, we identify the
projects whose labor pools the developer was part of, and model
their tendency to join those projects in 2015. Since some developers
may be in the labor pools of a large number of projects, for each
developer, we randomly sample 30% of the labor pools they are part
of. Consequently, we also exclude developers who are part of the
labor pools of less than four projects, to ensure that at least one
project per person is sampled. In total, we have 47,788 developers
and 5,778,144 (developer–project) observations in our sample.

Finally, given the inherently nested structure of our data (the
same developer being in the labor pool for multiple projects), we
make clustering adjustments in the standard errors at both the
project and developer levels to account for the possible within-
cluster correlation [1].
Measuring the Technical Fit Between Projects and Develop-
ers. The fit between project technical requirements and individual
technical background is hypothesized to be an important factor
influencing the developer joining behavior. We use the packages
(or libraries) a project imports to measure the technical requirement
of a project, and the packages imported in past code commits of
a developer to measure their technical skills. While prior research
used the programming language as a proxy for technical skills [18],
this coarse-grained measure is not suitable for our study as all the
projects in our sample are mostly written in Python.

The World of Code dataset contains dependency information
extracted from each commit (i.e., the packages that a commit im-
ports).10 Therefore, we can obtain the packages that a project de-
pends on, and the packages that a developer has used in their past
commits. Following Dey et al. [23], we then train a Doc2Vec model
to obtain the technical skill embedding of developers and projects.
10https://github.com/woc-hack/tutorial

https://github.com/woc-hack/tutorial
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Table 2: The definitions of the variables used in the project model.

Outcome Variable
Number of new
developers

The number of new developers joining the project in the
next year. New developers are defined as developers who
have never committed to the project before the study pe-
riod, and made their first commit in the following year.
We only count the new contributors that have at least 10
valid commits in the past across the entire WoC dataset.

Control variables
Project age The number of days elapsed since the first commit of the

project.
Total number of
developers

The number of all contributors to the project in the past.
Contributors are defined as the developers who made at
least one commit to the project.

Number of recent
developers

The number of all contributors who committed to the
project in the past year.

Total number of
commits

The number of commits developers made to the project
in the past.

Number of recent
commits

The number of commits developers made to the project
in the past year.

Has license A binary variable indicating whether the project had any
license by the time of the study.

Has readme A binary variable indicating whether the project had any
README file by the time of the study.

Labor pool variables
Labor pool size The number of potential developers in the labor pool of

the project. See Section 4.1 for the definition and opera-
tionalization.

Labor pool
effective size,
non-competing
variables

The size of the labor pool with each individual weighted
by their tendency to join the project. The individual model
does not include the competition-related variable.

Labor pool
effective size, full
variables

The size of the labor pool with each individual weighted
by their tendency to join the project. The individual model
includes all effects as hypothesized in Section 3.

Analogous to a Doc2Vec model in natural language processing [43],
we consider the package names to be the tokens, and the develop-
ers (projects) to be the documents (consisting of tokens). We can
thus learn a vector embedding of each token (package), and each
document (developer and project). The cosine distance between
vector embeddings will be small if the two documents are similar in
terms of the tokens they contain, or the packages they use. There-
fore, the cosine distance between the developer’s and the project’s
embedding is a good proxy for technical skill fit.
Measuring the Project Relative Advantage. To operationalize
possible competition between projects over potential contributors,
we rank projects, from the perspective of an individual potential
contributor, in terms of strength of social connection and technical
similarity — we expect that given multiple options, on average,
developers will typically choose projects for which they are a better
socio-technical fit. For a potential developer, we obtain all projects
whose labor pools they are part of. For each project, we compute
the characteristics that we consider to be influential on the devel-
oper joining behavior as hypothesized in Section 3. The relative
advantage of each project is defined as the percentile of their char-
acteristics, among the set of projects where the focal developer is
part of the labor pool.

In Figure 3 (a), for example, assume that the focal developer is in
the labor pool of four projects (i.e., A, B, C, and D). We first order
projects based on their technical fit with the focal developer, and
the resulting rank (or percentiles, as labeled on top of the project ID
in Figure 3 (b)) is the relative advantage of projects in terms of their
skill fit. Similarly, we compute the relative advantage of projects
based on their strength of social connection with the potential
developer, as shown in Figure 3 (c).

4.5 Part II: Project Models
Given the previous individual models estimating the probability of
a labor-pool developer to join a focal project from Section 4.4, sum-
ming over all developers who are in the project’s labor pool gives

the mathematical expectation of the number of new contributors
joining at the project level:

𝑃𝑝𝑦 =
∑︁
𝑖

𝑃 (𝐽𝑖𝑝𝑦), (2)

where 𝑃𝑝𝑦 is the tendency of all developers 𝑖 in the project 𝑝’s labor
pool to join the project in year 𝑦, and 𝑃 (𝐽𝑖𝑝𝑦) is the tendency for
any individual developer 𝑖 to join project 𝑝 , given that developer 𝑖
is part of 𝑝’s labor pool.

Our modeling strategy is hierarchical regression, i.e., we estimate
separate individual models that incorporate different sets of factors,
ranging from a baseline model with control variables only to a full
model that includes all hypothesized factors. Since the aggregation
to project level incorporates, therefore, the characteristics of devel-
opers in the labor pool, we refer to this outcome variable as the
“effective (labor pool) size” in Table 2. For example, the effective
labor pool of a project could be much smaller than the number of
one-hop potential contributors would suggest, if the technical fit is
relatively low or there is high competition from other projects.

Practically, we regress the number of new developers a project
receives in year 𝑦. Similarly to the individual model, we restrict
our sample to only active projects (i.e., having at least one commit)
in year 𝑦, as projects that are inactive for more than one year
should have lower probability of attracting new contributors in
the next year compared to active projects [52] and we do not want
our sample to be biased by the large number of inactive projects
which attract no new contributors. New developers are those who
made their first ever commit to the project in year 𝑦. As before,
when measuring the number of new contributors (i.e., the outcome
variable), we only count the new contributors who made at least 10
commits involving import statements in the past. For new project
contributors without enough commit history to infer their technical
skills, we cannot estimate their ‘future’ commit tendency, and thus
we are unable to predict whether they will join a new project or
not in this study.
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The main result of this paper is reported for y = 2021, as this
was the most recent complete snapshot in our sample and also the
largest dataset; the 2021 snapshot contains 516,893 active Python
projects. Since the results are consistent for other values of 𝑦, i.e.,
the regression coefficients point in the same direction and have
similar scale and statistical significance, we don’t discuss the other
models in detail but include the results in our replication package.

5 RESULTS
5.1 Models of Individual Joining Tendency
We first present the result for modeling the developers’ tendency to
join other projects, conditioned on them being part of the project’s
labor pool, in Table 3.

In model I, we include social and technical variables that corre-
spond to H2 and H3. Both the social connection between potential
new developers and the existing developers, and the technical sim-
ilarity between potential developers’ skill sets and the project’s
technical requirements are statistically significantly and positively
associated to the likelihood of individuals joining new projects,
which confirms H2 and H3.

In model II, we include the competition effects on the basis of
model I, as discussed in H4 and H5. H4 is confirmed, as indicated
by the negative effect of variable Number of competing projects (log),
which suggests that the more projects a developer was potentially
exposed to (the more labor pools they are part of), the lower the
likelihood that the developer will join any specific one of them. H5
was also confirmed by the significant positive coefficient for vari-
ables Social strength percentile and Technical similarity percentile,
suggesting that the project’s relative advantage among the set of
projects that a developer is potentially exposed to also influences
the developer’s tendency to join the project. Interestingly, the effect
of absolute technical similarity disappears after controlling for the
relative similarity effect, suggesting that the relative technical fit
among exposed projects is more important to influence the develop-
ers’ joining behavior compared to the absolute fitness. Compared
to model I, model II has a lower AIC (Akaike information criterion)
value overall which indicates a better match between the predicted
value and the ground truth.

To better analyze the impact of social-technical factors on in-
dividual joining tendencies, we examine project-developer pairs
where the developer belongs to the project’s labor pool and is a po-
tential new contributor. We categorize these pairs into four groups
based on whether the developer’s technical similarity to the focal
project and their social connection to existing developers are above
or below the median values observed in our sample. We then calcu-
late the joining probability for each project-developer pair within
each group. Figure 4 summarizes the results. Among (labor pool
developer, project) pairs where developers have strong social con-
nections (top 50%) and high technical similarity (top 50%) with the
project, we find an average of 8.7 new developers joining per 10,000
project-developer pairs. In contrast, for pairs where developers have
weak social connections and low technical similarity, this number
drops to only 0.6 new developers per 10,000 project-developer pairs.
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Figure 4: Illustration of the social-technical effects on devel-
oper joining tendency (𝑦=2021).

5.2 Models of the Number of New Contributors
Table 4 summarizes the models explaining the expected number of
new contributors that a project receives in the next year; note the
log-scaled outcome variable. Model I is our base model, where we
explain the number of new developers a project receives only with
the control variables (project-level characteristics). As the model
suggests, the current and historical size of the project’s developer
team is positively associated with the number of future developers
that a project receives, which suggests the existence of a preferential
attachment effect that developers tend to attach to popular and well-
known projects. This results is consistent with the one reported by
prior work [57, 71]. In addition, the use of licenses and the project
age both have a significant positive effect on the number of new
developers. The effect of the current project size (or the number
of commits) is also significant, though it is highly correlated with
the historical project size and commits, as expected. Overall, this
model explains 12.9% of the variance.

Next, we include the labor pool size variable in model II to ex-
plain the number of new developers a project will receive. As hy-
pothesized in H1, the size of the project’s labor pool is positively
associated with the number of new developers, and the model ex-
plains 14.8% variance in total, or about 2% of the overall variance
more than model I.

The simple measurement of the project’s labor pool size treats
all developers in the labor pool equally, and fails to capture their
different tendencies to join. In models III and IV, each developer is
weighed differently based on their estimated tendency to join, as
computed by the individual model. For the variable Effective size,
no-competition variables, the estimated joining tendency for each
developer is computed with non-competing variables only (model I
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Table 3: Modeling the project-joining tendency of developers

Model I Model II

Non-competition effects
Social strength (log) 1.17(0.02)∗∗∗ 0.89(0.03)∗∗∗
Technical similarity 2.03(0.21)∗∗∗ −0.14(0.25)
Competition effects
Num. competing projects (log) −0.68(0.02)∗∗∗
Social strength percentile 2.03(0.07)∗∗∗
Technical similarity percentile 0.93(0.13)∗∗∗

Observations 5, 778, 144 5, 778, 144
Akaike Inf. Crit. 64, 668.72 60, 465.68

∗𝑝 < 0.05; ∗∗𝑝 < 0.01; ∗∗∗𝑝 < 0.001

in Table 3), and the variable Effective size, all variables is computed
based on both competition and no-competition variables (model II
in Table 3). Controlling for the simple measurement of the project’s
labor pool size, the effective labor pool size is still positively associ-
ated with the number of new contributors that a project receives,
and it provides additional explanatory and predictive power for our
outcome variable. Model III which includes the effective size com-
puted with only non-competing variables explains 14.9% variance,
slightly more variance compared to model II, and by adding the
effective size computed by both competition and no-competition
effects, model IV explains 16.4% variance in total, and 1.5% more of
the overall variance than model III – a sizeable increase. Therefore,
we conclude that all hypotheses in Section 3 are confirmed at the
project level.

5.3 Analysis on the Generalizability of Labor
Pool Factors

To better understand when labor pool factors fail to explain the
number of new contributors, we plot in Figure 5 the number of new
developers that projects in our sample attract and the corresponding
effective labor pool size (computed with the full-variables individual
model). For better visualization, high-leverage points are removed
and we log-scale the effective labor pool size. The red dot represents
the mean of effective labor pool size with a given number of newly
attracted developers.

We focus on two areas of the graph. First, projects in area A of
Figure 5 have a large effective labor pool size, but they attract very
few new contributors, if at all, which differs from what we would
predict with the effective labor pool. In contrast, projects in area B
attract a large number of new developers in the next year but seem
to have a very small effective labor pool size. It is also interesting
to understand how they attract a large number of new developers
given a relatively small effective labor pool size. Therefore, we
manually explore the projects in area A and B in Figure 5 and list
possible factors that may lead to model misclassification.

First, we find that many projects in area A (large effective la-
bor pool and a low number of new contributors) seem to be used
for storage purposes, such as workshops or student competition
projects (e.g., ai2cm/dsl_workshop, PlatziMaster/challenge-prework-
ds), rather than more traditional open-source development. Those
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Figure 5: The relationship between the effective labor pool
size and the attracted new contributors (Y=2021, excluding
outlier projects attracting more than eight developers).

projects tend to stop receiving new contributors after the workshop
or competition ends, thus their contribution is relatively indepen-
dent of the effective labor pool size. Second, projects in area A are
likely to receive no commits at all in the next year, being that not
only do they attract no new developers, but also they receive little
to no commits from the existing developers in the next year. This
suggests that the existing developers, which is the basis for identi-
fying a project’s labor pool in our study, may not be sending signals
to their collaborators and attracting new developers as they have
abandoned the project themselves. In addition to some existing de-
velopers being “forced“ to leave the project because of unavailability,
as also reported by prior research [48], another possible reason is
the completeness of project features or a decision to stop the devel-
opment, which leads to a natural end of the project development.
We find evidence for such projects as they have been archived [47]
(e.g., ansible-community/molecule-azure), or they receive no new
issues and updates in the future (e.g., FergusYip/DrinkMoreApp).

For projects in area B (low effective labor pool and a large number
of new contributors), we find the most common reason is that those
projects are owned by organizational accounts (e.g., skit-ai/dialogy,
panther-labs/panther-analysis, ZJU-OpenKS/OpenKS), and the labor
pool measured based on developer networks may not be an accurate
reflection of developers who are aware of the project.

Overall, we found that factors such as project completion and
the disengagement of existing developers may complicate the esti-
mation of a project’s labor pool, which could bias predictions and
explanations of the number of future contributors. We further ac-
knowledge that it is harder to estimate the labor pool size based on
our current operationalization for projects owned by organizational
accounts, as we do not incorporate the organization influence into
our labor pool operationalization. However, we recommend that
future researchers and developers also consider these factors when
estimating a project’s effective labor pool or the number of future
contributors that may be expected. In addition, despite having con-
siderable explanatory power on the number of future developers,
the regression model with the labor pool and other controls in
our study has not yet produced practically usable predictions on
individual future contributors. We estimate that with the individual
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Table 4: Modeling the number of new developers a project will receive in the next year (𝑦 = 2021)

Model I Model II Model III Model IV

Control variables
Project age (log) 0.01(0.0004)∗∗∗ 0.005(0.0004)∗∗∗ 0.005(0.0004)∗∗∗ 0.005(0.0004)∗∗∗
Project total developer size (log) 0.07(0.001)∗∗∗ 0.06(0.001)∗∗∗ 0.06(0.001)∗∗∗ 0.06(0.001)∗∗∗
Project recent developer size (log) 0.05(0.001)∗∗∗ 0.04(0.001)∗∗∗ 0.04(0.001)∗∗∗ 0.02(0.001)∗∗∗
Project total commits (log) 0.001(0.0004)∗ 0.0003(0.0004) 0.001(0.0004) 0.001(0.0004)∗
Project recent commits (log) 0.01(0.0004)∗∗∗ 0.01(0.0004)∗∗∗ 0.01(0.0004)∗∗∗ 0.01(0.0004)∗∗∗
Has readme −0.01(0.001)∗∗∗ −0.01(0.001)∗∗∗ −0.01(0.001)∗∗∗ −0.01(0.001)∗∗∗
Has license 0.03(0.001)∗∗∗ 0.02(0.001)∗∗∗ 0.02(0.001)∗∗∗ 0.03(0.001)∗∗∗
Labor pool variables
Labor pool size (log) 0.02(0.0002)∗∗∗ 0.01(0.0002)∗∗∗ 0.01(0.0002)∗∗∗
Effective size, no-competing variables (log) 0.10(0.004)∗∗∗
Effective size, full variables (log) 0.42(0.004)∗∗∗

Observations 516, 893 516, 893 516, 893 516, 893
Adjusted R2 0.129 0.148 0.149 0.164

Note: ∗𝑝 < 0.05; ∗∗𝑝 < 0.01; ∗∗∗𝑝 < 0.001

model (i.e., predicting whether a given developer will join a project
in the next year or not), making a prediction has 7% precision and
14% recall on average, and with the project model (i.e., predicting
the number of new contributors to a project in the next year) mak-
ing a prediction has 0.19 average difference, or the prediction on
the number of new contributors for each project will be off by 0.19
compared to the ground truth on average. This accuracy may be
insufficient for prediction tasks in practice, which go beyond the
scope of this work in which we focus on explanation instead, and
better understanding the underlying mechanisms.

6 DISCUSSION
In this paper, we explored the influence of the projects’ labor pool
on attracting new developers. We summarize the main results and
discuss limitations, the scientific value, and the practical implica-
tions of our results below.

6.1 Labor Pool as an Important Factor for
Project Sustainability

The prevailing empirical studies on open-source sustainability, and
attracting new contributors in particular, have focused on the influ-
ence of project-level characteristics. In our paper, we provide an
alternative, ecosystem-level perspective by suggesting the project’s
labor pool as an important factor.

The labor pool of a project corresponds to the communities of
developers that may be of help to the development andmaintenance
of the project. They consist of developers who learn about the
project through many possible channels, like recommendations
from their friends or collaborators, exposure on social media spaces,
recommendation systems, web search engines, and many others.
They are the contribution resources potentially ‘accessible’ by the
project at a given time.

Considering labor pool factors following a methodology similar
to ours can help open-source stakeholders to better understand
and predict the amount of contributions projects may have in the

future, which helps with the project management and resource al-
location. Moreover, users who are seeking sustainable open-source
projects to adopt can use labor pool factors to better evaluate the
sustainability of candidate projects.

6.2 The Size of the Labor Pool Is Important, but
It Is Not All That Matters

It is not surprising that expanding the size of the project’s labor
pool helps to attract new developers, which is why so much effort
has been devoted to promoting open-source projects to a larger
audience [14, 29, 62]. However, our results indicate that the charac-
teristics of the developers in the project’s labor pool, in addition
to the raw number of developers, also have a significant effect to
explain the number of new developers that a project will receive.

With many previous studies about attracting and retaining open-
source contributors focusing on expanding the influence of projects
and reaching out to a large community, our work adds to the con-
ventional wisdom by suggesting that expanding project influence
to a proper audience also matters. In addition, our work is the first,
to the best of our knowledge, to provide empirical evidence of the
competition effects between projects, and suggests the practice of
recruiting new developers is more complex beyond simply reaching
out to a large community.

6.3 Towards Targeted Project Promotion
For open-source project promoters seeking to attract more attention
and effort to their projects, our results suggest that it is not only the
number of developers that the promotion reaches that matters, but
also the characteristics of those developers. Therefore, a targeted
promotion that diffuses the project information to a developer
community that possesses the related technical skills and is socially
close to the project’s existing developers may be more efficient and
effective to attract new developers compared to promotions to a
wide audience, as they reach a community that is more likely to join
the project as contributors. In addition, as the promotion of projects
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becomes more targeted, developers may be less overwhelmed by
the wide range of projects hosted online as the information and
promotion they are exposed to will be more relevant to their skills,
social connections, and needs. It can reduce the cognitive workload
for individual developers and should help to better allocate attention
and effort at the open-source ecosystem level [19].

Some project promotion channels or tools are potentially suitable
for targeted promotions. For example, project promotion on social
media such as Twitter may easily reach socially connected groups as
the diffusion of information depends on the social connections; and
the project recommendation tools can incorporate technical related-
ness and social connections as factors for project recommendations.
With most open-source promotion research so far concentrating on
the size of developers that a promotion reaches [14, 29], we argue
for the importance of studying the characteristics of developers
that those promotions reach, and reconsider the value of promotion
campaigns based on their effectiveness to reach a targeted audience
instead of reaching a large developer community.

6.4 The Relationship Between Projects and the
Success of Open-Source Ecosystems

The significant competition effects between projects revealed by
our models suggest that the attraction of developers to projects
is not a local question. Given two projects with overlapping labor
pools, any effort to make one project more attractive is likely to
have a negative effect on the sustainability of the other, when they
are competing for the same effort pool.

This finding raises the important question about the allocation
of effort among open-source projects, and the role of individual
projects in the success of the open-source ecosystem. While open-
source developers and researchers have devoted much effort to
making individual projects more successful and sustainable, little
was discussed about the influence of those efforts on other projects
in the ecosystem. Our result is one of the first works to understand
the relationship and competition between projects, andwe call upon
future research in this direction to further study the sustainability of
individual projects jointly with that of the open-source ecosystem.

6.5 Validations and Robustness Checks
Validate the Robustness of Our Results Over Years. We evalu-

ate the effectiveness of labor pool factors over years and run the
same project model for data in three other years (i.e., selecting
𝑦 = 2016, 2017, 2018, 2019, 2020 and 2021). The result suggests that
the labor pool factors are important predictors of the new developer
attraction for four consecutive years, see our replication package
for full results.

Validate the Results With a Negative Binomial Regression Model.
Negative binomial regression is a powerful tool to model discrete
outcome variables such as the number of new developers [38]. To
validate the influence of labor pool factors, we use a negative bino-
mial regression model to estimate the number of new developers
that a project receives, with all the independent variables the same
as the ordinary least squares (OLS) regression used to report the
main result; see replication package.

All labor pool factors are still significantly associated with the
outcome variable, with the direction of effects qualitatively similar

except for the effect from Effective size, no-competition variables in
model III, which changes from positive in the OLS regression model
to the current negative effect. Further analysis shows that the effect
is only negative when controlling for the Labor pool size variable,
but significantly positive otherwise. Despite this inconsistency, the
effective labor pool size with the individual model of full variables
still shows a significant positive effect, and the Akaike information
criterion (AIC) value decreases when adding labor pool variables,
which indicates better model fit. Therefore, we conclude the results
with negative binomial regression are generally consistent with the
OLS regression.

7 CONCLUSIONS
In this work, we show that an open-source project’s labor pool,
defined as the set of developers who are possibly aware of the
project and may serve as potential future project contributors, is an
important factor that can impact project sustainability. We found
that adding the labor pool factors, being both the amount and
characteristics of developers in a project’s labor pool, explains
27% more variance compared to baseline models that only include
project characteristics. We also show that the technical fit, the
social connection, and the project competition effects are three
factors that can affect how developers move between projects. Our
work contributes to the scientific understanding of what leads to
the attraction of new open-source developers beyond individual
project-level factors, and provides important implications to open-
source stakeholders for better project promotion and community
management.

8 DATA AVAILABILITY
The data and scripts to reproduce our results are available in the
replication package [27]. DOIDOI 10.5281/zenodo.825256010.5281/zenodo.8252560
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