Who’s who in GNOME: using LSA to merge software repository identities

Erik Kouters, Bogdan Vasilescu®, Alexander Serebrenik, Mark G. J. van den Brand
Technische Universiteit Eindhoven,
Den Dolech 2, P.O. Box 513,
5600 MB Eindhoven, The Netherlands
e.t.m.kouters @student.tue.nl, {b.n.vasilescu, a.serebrenik, m.g.j.v.d.brand} @tue.nl

Abstract—Understanding an individual’s contribution to an
ecosystem often necessitates integrating information from mul-
tiple repositories corresponding to different projects within
the ecosystem or different kinds of repositories (e.g., mail
archives and version control systems). However, recognising
that different contributions belong to the same contributor is
challenging, since developers may use different aliases.

It is known that existing identity merging algorithms are
sensitive to large discrepancies between the aliases used by
the same individual: the noisier the data, the worse their
performance. To assess the scale of the problem for a large
software ecosystem, we study all GNOME Git repositories,
classify the differences in aliases, and discuss robustness of
existing algorithms with respect to these types of differences.

We then propose a new identity merging algorithm based on
Latent Semantic Analysis (LSA), designed to be robust against
more types of differences in aliases, and evaluate it empirically
by means of cross-validation on GNOME Git authors. Our
results show a clear improvement over existing algorithms in
terms of precision and recall on worst-case input data.

Keywords-identity merging; Gnome; latent semantic analysis

I. INTRODUCTION

One of the challenges when mining software repositories
is identity merging [5]. To study contributors to software
projects or software ecosystems, one often tries to integrate
information about their contributions in different software
repositories, such as version control systems, bug trackers, or
mailing lists. However, developers may use different aliases
in different software repositories (e.g., Bryan Clark authors
Evince changes as Bryan Clark with the email address
clarkbw@domainA', but participates in Evince mailing lists
using bclark@domainB), and even different aliases in the
same software repository (one of the Empathy developers
sometimes uses the nickname mrhappypants). Correctly
identifying who’s who in open source projects is an essential
preprocessing step in many empirical analyses: for example,
activity of open source developers could be used externally
as a measure of their recognition and experience [2].

*Supported by the Dutch Science Foundation project “Multi-
Language Systems: Analysis and Visualization of Evolution—Analysis”
(612.001.020).

"Domain names obscured for privacy reasons.

978-1-4673-2312-3/12/$31.00 © 2012 IEEE

To integrate information about individual contributions,
we therefore need a unique identity representing the
same contributor across different repositories and different
projects. To this end, we need to use an identity merging
algorithm [1, 3, 5, 8, 9]. However, performance of existing
approaches degrades sharply in presence of “noisy” data, i.e.,
data containing large discrepancies between the aliases used
by the same individual: “the more noisy and complex the
project data is, the worse the merge algorithms behave” [5].

In this paper we concentrate on aliases used by developers
in version control systems (VCS); here the term “alias”
refers to a (name, email) tuple, typically available in VCS
logs. Even for a single repository type such as VCS, the
same contributor may use different aliases at different times,
or in different projects within the ecosystem. Our goal
is to design an identity merge algorithm with improved
robustness with respect to noisy data, common in ecosystems
maintained by large developer communities. We start by
extracting commit authorship information from all GNOME
Git repositories, and discuss differences in the aliases used
by GNOME developers in Section II. Next, we evaluate
robustness of two state of the art identity merging algorithms
with respect to types of differences in aliases in Section III.
Based on lessons learned from existing approaches, we
propose a new identity merging algorithm using Latent
Semantic Analysis (LSA) [6] in Section IV, and evaluate
it empirically by means of cross-validation in Section V.
Our results show equally-good performance as the state of
the art in the average case, and a clear improvement over
existing approaches on noisy input data.

II. TYPES OF DIFFERENCES IN GNOME ALIASES

As case study we select GNOME, a popular free and open
source desktop environment for GNU/Linux. GNOME has a
long development history (some projects, e.g., gnome-disk-
utility, have started in 1997 and are still evolving today),
is maintained by a large community of developers (we
found 8618 different aliases® across 1316 different GNOME
projects’), and is well-known to researchers [4]. Analysis of

2We consider data from the author name/email fields in the Git logs.
3Values computed on October 28, 2011, based on the entire lifetime of
the projects available at http:/git.gnome.org/browse/.

the Git logs revealed differences in the aliases used by the
same author on both dimensions (name, email).

Overall, 650 out of 7097 different email addresses
(9.16%) are associated with more than one name. For exam-
ple, the highest number of names for the same email address
is 164: these were actually combinations of the author’s
name and the commit message, filled into the author name
field of the Git logs. This contributor also used other email
addresses, thus his total number of aliases is even higher,
171. Differences in names corresponding to the same email
address can be categorized as follows: ordering (Rajesh
Sola, Sola Rajesh), misspelling/spacing (Rene Engelhard,
Fene Engelhard),diacritics (Démurget, Demurget), translit-
eration (I'wwpyog, Georgios), nicknames (Jacob “Ulysses”
Berkman, Jacob Berkman), punctuation (J. A. M. Carneiro,
J A M Carneiro), middle initials (Daniel M. Mueth, Daniel
Mueth), middle names/patronyms (Alexander Alexandrov
Shopov, Alexander Shopov), additional surnames (Carlos
Garnacho Parro, Carlos Garnacho), incomplete names (A S
Alam, Amanpreet Singh Alam), diminutives/variants (Mike
Gratton, Michael Gratton), irrelevant information incorpo-
rated in the name (e.g., the name of the project: Ar-
turo Tena/libole2, Arturo Tena), username instead of name
(mrhappypants, Aaron Brown), artifacts of the tooling used
by developers when committing/storing/migrating data (e.g.,
timestamps “(16:06) Alex Roberts”, or commit messages
in addition to names, “Fixed a wrong translation in ja.po.
T.Aihana”), mixed (combinations of the above).

On the other hand, differences in email addresses (as-
sumed to adhere to the prefizt@domain format) may be
due to organisational policies (e.g., a.serebrenik and asere-
bre), unavailability of a prefix at free mail services (e.g.,
ankit644), personal choice (e.g., kaffeetisch), or (lack of)
sensitivity for punctuation (e.g., john.smith and johnsmith).
Although the same contributor may use different prefixes for
different addresses, she is typically consistent in spelling:
discrepancies occurred in only 164 out of 7097 cases
(2.31%) due to spam protection, e.g., gerard DOT b AT
domain and gerard.b@domain.

III. EXISTING ALGORITHMS

We can classify existing identity merge algorithms into
two groups: endogenous and exogenous algorithms. En-
dogenous algorithms [1, 3, 5] try to match full names or
email addresses shared by different aliases, or use heuristics
to “guess” email prefixes based on combinations of name
parts (e.g., jsmith and John Smith). Endogenous algorithms
operate under the “closed world” assumption, i.e., they only
use the information available in the repositories the aliases
come from. In contrast, exogenous algorithms [8, 9] also
use external information in addition to heuristics to aid in
the matching process, e.g., GPG key servers to determine
couplings between email addresses [9]. Many open-source
projects do not use GPG servers. In this paper we focus

on endogenous algorithms, and discuss the best-performing
simple algorithm by Goeminne and Mens [5] and a more
advanced one proposed by Bird et al. [1]. Other algorithms
(see [5]) are similar in spirit and, despite more complex
heuristics, are still not robust with respect to noisy data.
As part of different algorithms, a string can be normalised
(denoted string) by removing accents, converting uppercase
into lowercase, replacing multiple whitespace characters by
a single space, and removing leading and trailing whitespace.

A. Simple algorithm

Aliases (name;,email;) and (nameg, emaily) are
merged by the simple algorithm [5] if {namey, prefiz; } and
{W, preﬁxg} share at least one element, and at least
one shared element has length at least a certain threshold
minLen. For example, if minLen = 3, (John Smith,
Jsmith@domainA) would be merged with (Jonathan Smith,
Jsmith@domainB) because both share jsmith of length 6.

The approach is robust against noisy aliases as long as the
{mame, prefiz} sets are not disjoint. However, it is not un-
common for GNOME developers to use disjoint aliases (e.g.,
(William Lachance, wrlach@domainA), (William Rikard
Lachance, wlach@domainB)), resulting in false negatives.
Moreover, even though two aliases may have the same email
prefix (in which case they would be merged), these may be-
long to different contributors (e.g., when prefixes consist of
common first names, (John Harper, john@domainA), (John
Lightsey, john@domainB)), resulting in false positives.

B. Bird et al’s algorithm

A more advanced algorithm was proposed by Bird
et al. [1], who compute approximate rather than perfect
matches using the normalised Levenshtein similarity [5]
(denoted sim). After a normalisation and cleaning prepro-
cessing step, names are split into two parts (first and last)
using whitespace and commas as separators. Then, given a
similarity threshold ¢, two aliases are merged if:

o sim(mame;, namez) > t;

o or sim(firsty, firsty) >t and sim(lasty, lasty) > t;

o or prefiry ;) contains first; (o) and lasts(s);

e or prefiry sy contains the initial of first;(2) and the

entire lastl(g);

o or prefizy ;) contains the entire first; () and the initial

of lastl(g);

e or sim(prefixy, prefize) > t.

This approach is more robust to misspelling or punc-
tuation than the simple algorithm (due to the Levenshtein
distance). However, it is still sensitive to ordering of name
parts (e.g., Rajesh Sola and Sola Rajesh would probably not
meet the similarity threshold since the first and last names
are switched), as well as different alphabets (e.g., Cyrillic,
Greek) or names with more than two parts, potentially
leading to false negatives. Moreover, similarly to the simple

algorithm merging aliases with email prefixes consisting of
popular first names may result in false positives.

IV. LATENT SEMANTIC ANALYSIS

Latent Semantic Analysis (LSA) [6] is a technique used in
natural language processing to analyse relationships between
a set of documents and the terms they contain. In software
engineering, LSA has been used, e.g., to identify traceability
links between documentation and source code [7].

LSA uses a sparse term-document matrix A which de-
scribes the occurrences of terms in documents, although
other weighing schemes may also be applied. The typical
question one tries to answer with LSA is: given a term-
document matrix A and a query column matrix ¢, com-
pute the most similar documents to q. To this end, A is
first transformed using singular value decomposition, i.e.,
A =USVT, where S is a diagonal matrix of the singular
values of A. Next, one can compute a rank-k approximation
of A by keeping the first (largest) k singular values in S and
the corresponding columns of U and V/, i.e., Ay = UkSkaT.
Dimensionality reduction is one of the key reasons for
applying LSA to identity merging, since it is believed that
by reducing the dimensionality of A, much of the “noise”
in the input data is eliminated, and the overall retrieval
performance of LSA is improved [7] (recall from Section II
that GNOME aliases are noisy). The lower the k (the higher
the reduction), the less Ay reflects the original data, but
the more noise is removed. Selection of k is therefore
an experimental process, results from previous work being
generally not transferable. Finally, the similarity between ¢
and a document d is computed as the cosine of the angle
between the two vectors. The higher this value, ranging
between -1 and 1, the more similar ¢ and d are.

The only identity-merging-specific step in the LSA
methodology is computing the term-document matrix A.
Computing the documents starts by grouping together aliases
that share a full email address (the underlying assumption
is that email addresses are private, i.e., the same email
address is not used by different individuals). Next, for each
email address a document is created containing the set of
normalised name parts of the names associated with that
email address (punctuation is first removed, then names
are split on whitespace). Normalisation in this case also
includes transliteration, removing diacritics, and removing
words consisting of only digits. Only words with length at
least minLen are kept, where minLen is our first parameter.
Transliteration improves robustness with respect to different
alphabets (e.g., we found GNOME author names in Cyrillic,
Greek, or Chinese), ignoring words consisting of only digits
improves robustness with respect to artifacts of tooling
(e.g., timestamps incorporated in names), and ignoring short
words improves robustness with respect to initials, prefixes,
or suffixes (e.g., dr, jr). For example, the document cor-
responding to the email address george.stefanakis @domain

would contain the terms {george, georgios, giorgos, ste-
fanakis} as a result of normalising the names George
Stefanakis, Georgios Stefanakis, Giorgos Stephanakis, and
Twpyos YTepavarns. Then, to improve robustness with
respect to use of usernames instead of names, we add nor-
malised email prefix parts to the document strings (prefixes
are split on dots). Since george and stefanakis are already
part of the document string, nothing is added in our example.

Now A contains m columns and n rows, where m is
the number of distinct email addresses (i.e., number of
documents), and n is the number of distinct terms from
all documents. Next, we record occurrences of terms in
documents, and fill in ones in the entries a;; if term;
occurs in document;. Clearly, A is sparse. To improve
robustness with respect to misspelling, we then also fill into
an empty cell a;; the value of the normalised Levenshtein
similarity between term; and document; if it is at least
a certain threshold levThr (our second parameter), where
the normalised Levenshtein similarity between a term ¢
and a document d is defined as the maximal normalised
Levenshtein similarity between ¢ and each 7 € d. For
example, if levThr is 0.5, then the cell corresponding to the
term rene and the document d = {fene, engelhard} contains
the value 0.75, since the maximal normalised Levenshtein
similarity between rene and d is 0.75 (due to rene and
fene), and 0.75 > 0.5. Finally, to improve robustness with
respect to common first/last names, we weigh each non-
empty value a;; by the inverse document frequency of
term;, i.e., idf (term;) = log Z%ia]

The aliases corresponding to pgﬁrs of documents for which
the cosine similarity is at least a certain threshold cosThr
(our third parameter) are recorded as merged. Our fourth
parameter is k (dimensionality reduction).

V. EMPIRICAL EVALUATION

To evaluate the performance of the LSA identity merging
algorithm (and compare it to the algorithms in Section III)
we performed cross-validation on GNOME aliases by means
of repeated random sub-sampling. As LSA is computation-
ally more complex than the other algorithms we expect it to
be slower but to perform better in terms of correctness. We
report performance in terms of the f-measure, a popular in-
formation retrieval quality metric that summarises precision
and recall. Detailed results of the evaluation can be found
on http://www.win.tue.nl/~aserebre/[CSM-ERA-2012.html.

To evaluate the approaches we first constructed a GNOME
“oracle” that decides whether two aliases should be merged,
for all pairs of aliases. Construction of such an oracle
can be only partly automated (e.g., two aliases with a
common email address should be merged), and is essentially
a manual, labour-intensive, error-prone process. The oracle
was computed by one of the authors and manually inspected
by two others, and appears free of evident errors. For the
8618 different (name, email) GNOME aliases we found, the

oracle contains 4989 unique identities, i.e., on average each
GNOME contributor uses approximately 1.73 aliases.

We treat two cases: an average-case, containing random
samples of the set of 8618 GNOME aliases, and a worst-
case, consisting of a subset of 673 “noisy” GNOME aliases,
expected to cause false negatives in the simple algorithm.
We have obtained this dataset by removing contributors
with only one alias, as well as contributors with intersecting
{mame, prefiz } sets. It is apriori not clear how the algorithm
by Bird et al. will behave on the worst-case dataset.

For each algorithm/scenario we performed training/testing
steps and repeated the process ten times. Training determines
optimal parameter values: for the simple algorithm we varied
minLen (1,...,10); for the algorithm by Bird et al. we
varied the Levenshtein similarity threshold ¢ (0.05,...,1);
for LSA, to avoid training on all combinations of the 4
parameters, we first performed a sensitivity analysis by
fixing 3 and varying the remaining. After the sensitivity
analysis we restricted the range of minLen to {2,3,4},
levThr to {0.5,0.75}, cosThr to {0.65,0.70,0.75}, and k
was fixed to half of the number of terms. In the average
case, for each of the ten repetitions, training was performed
on one tenth of the GNOME aliases (~ 860), and testing on
ten random subsets with the same size from the remaining
aliases. Samples were chosen instead of the entire remaining
data for computational efficiency reasons. In the worst case,
because of fewer aliases in the dataset (673), for each of the
ten repetitions, training was performed on one third of the
data and testing on the other two thirds. All algorithms as
well as the data, can be made available upon request.

Average case Worst case

) o

3 3

> T

g | == 5

) ! = —
2 8 b g 8 :
g ° H z °
8 3
: g P g ==
L2 L} L2

i

8 | 8

o =] a

2 L

° T T T o T T T

Simple Bird et al. LSA Simple Bird et al. LSA

Figure 1. The f-measures for the competing approaches. The f-measure
ranges between 0 and 1 (the higher the value, the better). LSA performs as
well as the simple algorithm in the average case, and significantly better in
the worst case. Note that both y-axes start at 0.75.

Figure 1 displays the results of the cross-validation. In
the average case (left) we observe that LSA performs as
well as the simple algorithm (Kruskal-Wallis test followed
by pairwise Wilcoxon tests with Bonferroni correction did
not reveal enough reasons to assume that the two produce
essentially different results at 0.05 significance level), fol-
lowed by the algorithm of Bird et al. Concurrent results
have been obtained in [5]: simple is better than Bird,
and is the best of all algorithms tested. LSA and the

simple algorithm do, however, behave differently. For ex-
ample, the simple algorithm does not merge (Christophe
Michael Saout, csaout@domainA) with (Christophe Saout,
christophe @domainB) because the two aliases are disjoint,
while LSA does. However, the simple algorithm correctly
merges (Gareth Owen, gowen@domainA) with (gowen,
gowen@domainB), while LSA does not (the cosine simi-
larity between the documents corresponding to the two is
0.69 and falls just outside the threshold, in this case 0.70).
This observation suggests that further improvements of the
LSA algorithm, e.g., by using the simple algorithm in a
pre-processing step, might be possible, and are considered
as future work. On the other hand, the results in the
worst case (Figure 1 right) show a clear improvement of
LSA (median=0.935) over Bird et al’s (median=0.893) and
the simple algorithms (median=0.778), confirmed by the
statistical analysis described above.

VI. CONCLUSIONS

Our main contribution is a generic new identity merging
algorithm based on LSA, robust against many types of dis-
crepancies in VCS aliases. Empirical evaluation on GNOME
Git repositories has shown equally-good performance of our
algorithm as the state of the art in the average case, and
better performance in the worst case.

REFERENCES

[1] C. Bird et al. “Mining email social networks”. In: MSR.
ACM, 2006, pp. 137-143.

[2] A. Capiluppi, A. Serebrenik, and A. Youssef. “De-
veloping an H-Index for OSS Developers”. In: MSR.
IEEE, 2012, pp. 251-254.

[3] P. Christen. “A comparison of personal name matching:
Techniques and practical issues”. In: ICDM. 1EEE,
2006, pp. 290-294.

[4] D.M. German. “The GNOME project: a case study
of open source, global software development”. In:
Software Process 8.4 (2003), pp. 201-215.

[5] M. Goeminne and T. Mens. “A comparison of identity
merge algorithms for software repositories”. In: Sci-
ence of Computer Programming (2011). accepted.

[6] T.XK. Landauer and S.T. Dumais. “A solution to Plato’s
problem: The latent semantic analysis theory of acqui-
sition, induction, and representation of knowledge.” In:
Psychological Review 104.2 (1997), p. 211.

[7] A. Marcus and J.I. Maletic. “Recovering documenta-
tion to source code traceability links using latent se-
mantic indexing”. In: /ICSE. IEEE, 2003, pp. 125-137.

[8] W. Poncin, A. Serebrenik, and M.G.J. van den Brand.
“Process Mining Software Repositories”. In: CSMR.
IEEE, 2011, pp. 5-14.

[91 G. Robles and J.M. Gonzélez-Barahona. “Developer
identification methods for integrated data from various
sources”. In: MSR. ACM, 2005, pp. 1-5.

