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Abstract

Open-source software (OSS) development platforms, such as GitHub,
expand the potential for cross-national collaboration among de-
velopers by lowering the geographic, temporal, and coordination
barriers that limited software innovation in the past. However, re-
search has shown that the technological affordances that facilitate
cross-national collaboration do not uniformly benefit all countries.
Using the GitHub Innovation Graph dataset, which aggregates the
complete cross-country collaborations among the entire population
of GitHub developers, we present quantitative evidence of deep-
seated religious and cultural affinities, shared colonial histories, and
geopolitical factors structuring the collaborations between non-U.S.
country pairs that become visible when the overarching dominance
of the US. is removed from the data. This study highlights the
opportunities to develop decentralizing strategies to facilitate new
collaborations between developers in non-U.S. countries, thereby
fostering the development of novel, innovative solutions. More
generally, this study also underscores the importance of contextu-
alizing user behavior and knowledge management in information
systems with long-term, macro-social conditions in which these
systems are inextricably embedded.
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1 Introduction

How do countries collaborate in open-source software develop-
ment? Throughout history, dense economic trade relations in com-
modities, goods, services, and labor tended to promote international
peace whereas sparse connections and fragmentation heightened
the probability of war [13]. These international connections among
countries have been subject to a myriad of social, economic, and
political forces with shifting influences over time. For example,
Western capitalist versus Eastern communist countries during the
Cold War era formed connections along ideological fault lines while
the post-Cold War divisions have been structured in part by deep-
seated culture and religion [12]. Their significance has been shown
to persist in online social interactions among millions of email and
social media users, despite the friction-less connectivity that these
communication technologies enabled [24].

Although studies show the persistence of such ideological, cul-
tural, and geopolitical forces on cross-national online communica-
tion, it is an open question whether cross-national collaborations
with a clearer instrumental focus, such as those observed in open-
source software development, also form under the influence of such
macro-social forces. Presumably, these bottom-up collaborations
between millions of software developers across national borders
should appear oblivious to these social forces insofar as the online
collaboration platform helps overcome spatio-temporal barriers of
collaboration in the creation of technological and economic value.
Indeed, previous studies of open-source software development have
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shown that cross-country collaborations largely exhibit such instru-
mental rationality, reflecting the economic dominance of the U.S.
and, to a lesser extent, of a handful of technologically advanced Eu-
ropean countries. Although this heavy reliance on the U.S. is taken
for granted, it is puzzling from the vantage point of the potential
for frictionless and untethered collaborations that OSS platforms
afford.

Based on a recent cross-country collaboration dataset released
by GitHub, we construct a network of OSS collaborations between
countries and study the patterns hidden under the global dominance
of the United States. We reveal the structural markers of interna-
tional OSS collaboration indicative of hierarchical organization in
tandem with deep-seated, macro-cultural fault lines that have been
observed in cross-border email and Twitter communications [24].
Despite the common belief that OSS collaboration can overcome
geographical barriers [4], we observe cultural affinities (i.e., cultural
homophily) and historical influences (e.g., shared colonial past) that
create social boundaries in inter-country collaborations.

Our paper makes two primary contributions. First, we contribute
to OSS research by proposing to remove the dominant U.S. from
analysis when exploring otherwise hidden structures that provide
insight. Second, we contribute to data mining and knowledge man-
agement in collaborative information systems by demonstrating
the deep insights that can be gained from considering social pro-
cesses that unfold at historical time scales, an approach that has
been neglected in the literature.

2 Related Work
2.1 Structure of Global Interdependence

A prevailing view on international relations is that the interdepen-
dence among nations lead to a more integrated world. Dense con-
nections between countries through economic exchange of goods,
services, and labor create strong economic interdependence that
inhibit war and lead to prolonged prosperity [13]. From this per-
spective, the OSS software development collaboration ties that
emerge between countries through the uncoordinated activities of
the hundreds of thousands of individual software developers are a
potentially important aspect to consider for understanding interna-
tional economic interdependence in today’s information economy.
Furthermore, the structure of OSS collaboration is important for
technological innovation, since these mutual cross-border collab-
orations directly affect the extent of joint-innovations, and their
global diffusion potential [1]. As such, gaining a deeper understand-
ing of the principles that govern bottom-up open-source software
development across national borders can aid in identifying novel
collaboration opportunities for innovation.

2.2 Hierarchy in Global Open-Source
Collaboration

A widespread belief about OSS development is that it can remove
geographic barriers to enable global collaboration & innovation at
an unprecedented rate. However, the reality is that OSS develop-
ment also clusters geographically [26]. Earlier studies in Linux [5],
SourceForge [7, 27], and GitHub [25] consistently indicate that OSS
development is dominated by developers from the U.S., the EU, as
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illustrated in striking visualizations [10]. Even within this concen-
tration of OSS activity and collaborations among Western countries,
studies also highlight the extreme hierarchy and asymmetry be-
tween the U.S. and other European nations, where software projects
led by U.S. developers attracts exceptional levels of international
contributions relative to the contributions that U.S. developers tend
to make in non-U.S. projects [25]. Although, some recent stud-
ies [20, 28] show that geographic concentration in development
activity has been gradually decreasing since the 2000s (i.e., partic-
ipation of non-U.S. and non-EU countries), the projects based in
the dominant countries tend to reject code contributions from less
developed countries [6, 17, 18].

2.3 Deep-Seated Cultural and Historical Forces

With the unmistakable U.S. dominance in open-source software
collaboration, it is difficult not to lose sight of the macro-historical
forces underlying international politics, trade, and conflict. For
example, the ideological schisms of the Cold War era between
the Eastern and Western blocks had a broad and enduring impact
on global interactions, but the U.S. dominance in OSS appears to
forcefully erase them.

However, political scientist, Samuel Huntington posited that the
fault lines in post-Cold War international relations will shift from
ideological to deep-seated cultural and religious divides [12]. These
divides proved to be important in the formation of distinct blocs and
networks, influencing not only political alliances but also scientific,
technological, and industrial exchanges. This historical context sets
the stage for understanding the paradoxical role of modern com-
munication technologies in global connectivity, as explored in [24].
Challenging the notion that advancements in communication tech-
nologies inherently lead to a more connected world, [24] reveals
that despite the global reach of digital communication platforms, in-
teractions often reflect and sometimes exacerbate existing cultural
divides. The findings suggest a preference for in-group communi-
cation, even in digital spaces, indicating that technological tools
alone are insufficient for narrowing cultural gaps.

These works collectively paint a picture of global interdepen-
dence that is far more complex than the OSS narrative of digital
integration and untethered connectivity might suggest. They illus-
trate how economic, ideological, and technological factors, while
having the potential to bring nations closer, also maintain or even
widen existing divides. Such a nuanced understanding of global
interdependence is crucial for considering the dynamics of interna-
tional collaboration, particularly in fields like open-source software
development. Hence, moving beyond general-purpose communica-
tions, we test the effects of broad cultural/religious commonalities
on the structure of the specialized, goal-driven collaboration net-
work in GitHub.

3 Methods

3.1 Data

We use the publicly available GitHub Innovation Graph dataset!
which provides the complete quarterly country-to-country Git

!https://innovationgraph.github.com/
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push2 volume data from Q1, 2020 to Q2, 2023. GitHub is the most
widely used open-source software platform, with more than half
of developers reporting its use for both personal and professional
projects®. Hence, the activities on GitHub can be regarded as repre-
sentative of the prevailing patterns of open-source collaboration.
The approximate locations of developers are inferred from the IP
addresses associated with a developer’s Git pushes, which are then
aggregated to construct country-to-country collaboration ties.*

We study the aggregate collaborations across all quarters by cre-
ating a weighted, directed graph consisting of countries as nodes
and their aggregate Git pushes from one country to another as
weighted edges between them.” However, this raw graph is heavily
skewed with weights between major countries that are an order
of magnitude larger than the weights between smaller, developing
countries. Given our goal of delineating the multi-scale interna-
tional collaborations while also filtering out the possible noise
observed in the low-weight edges, we first normalize the weight
of each edge by the total outgoing weight of its source node, then
retain only the edges that are more likely to have structural sig-
nificance, using the disparity filter for uncovering the network
backbone [22].

The disparity filter examines the weights of a node’s outgoing
ties and retains the edges with weights that are significantly larger,
relative to when the weights were to be distributed at random. The
filter is customizable with an alpha value at which statistical sig-
nificance is defined. Choosing a low alpha value results in more
aggressive edge filtering. Instead of filtering out any edge with
weight below a fixed threshold (i.e., uniform thresholding), the dis-
parity filter adapts to the local structure of the network, preserving
the heterogeneity of connections.

3.2 Hierarchical Clustering

To characterize the hierarchical structure of the global OSS collabo-
ration network and identify structural equivalence classes (block
models), we employ hierarchical clustering analysis [29]. This ap-
proach groups countries based on the similarity of their collab-
oration patterns rather than their direct connections, revealing
the underlying positional structure of the network consistent with
world systems theory [23].

We construct structural equivalence by measuring the Euclidean
distance between countries’ collaboration profiles. For each pair of
countries i and j, we compute:

1

dij = |[ai —ajl, =

where a; denotes the ith row of the adjacency matrix A, repre-
senting country i’s collaboration profile, and n is the number of
countries. Countries with similar distance values have comparable
patterns of collaboration with other countries, indicating structural

2The GitHub platform uses the Git version control system. In Git parlance, contribu-
tions to a source code repository are packaged as “commits” that get “pushed” to that
repository.

3https://survey.stackoverflow.co/2022/#overview
“https://github.com/github/innovationgraph/blob/main/docs/datasheet.md

5The replication data and code are available at: https://github.com/hehao98/github-
innovation-graph
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equivalence regardless of whether they directly collaborate with
each other [29].

Using the complete linkage method, we perform hierarchical
agglomerative clustering on the distance matrix. The optimal num-
ber of clusters is determined by maximizing the Calinski-Harabasz
score, which evaluates cluster separation and compactness [3]. For-
mally, the Calinski-Harabasz (CH) index for k clusters and N coun-
tries is defined as:

BCSS/(k—1) @
WCSS/(N — k)

where the between-cluster sum of squares (BCSS) and within-
cluster sum of squares (WCSS) are computed as:

CH(k) =

k k
BCSS = Zni llci —al2, WCSS = Z Z la—cill? (3
i=1

i=1 aeC;

Here, n; is the number of countries in cluster i, ¢; is the centroid
of cluster i, and a is the global centroid of all collaboration profiles.
All distances are measured in the same Euclidean space as defined
above. A higher CH score indicates more distinct and compact clus-
tering. We evaluated clustering solutions across threshold values
from 20 to 150 with unit intervals, selecting the configuration with
the highest CH score.

The resulting block model partition identifies structural posi-
tions within the global collaboration hierarchy [23]. Countries in
the same block share similar roles in the network: they may not
collaborate directly with each other, but they maintain comparable
patterns of relationships with countries in other blocks. This struc-
tural equivalence approach reveals the core-periphery dynamics
where the core countries (typically advanced economies) receive
disproportionate collaboration from semi-peripheral and periph-
eral countries, while peripheral countries exhibit sparse internal
connectivity despite occupying similar structural positions [23].

This block modeling approach conceptually differs from com-
munity detection methods that identify densely connected groups.
Instead, it reveals the positional structure of countries based on
their equivalent roles in channeling international OSS collaboration
flows, providing insight into the hierarchical organization of global
technological networks consistent with the theoretical predictions
of world systems [23].

3.3 Exponential Random Graph Models

To quantitatively assess the influence of cultural factors on cross-
national OSS collaboration patterns while accounting for the com-
plex interdependencies inherent in network data, we employ Expo-
nential Random Graph Models (ERGMs) [19]. Traditional statistical
approaches that assume independence among observations are
inappropriate for network analysis, as the formation of one col-
laborative tie may directly influence the probability of forming
additional ties within the same network structure [29]. ERGMs
address this fundamental limitation by explicitly modeling the con-
ditional dependence structure of network formation processes.

ERGMs belong to the exponential family of probability distribu-
tions and model the likelihood of observing a particular network
configuration y as:
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1
k(0)

where 0 = (01,60,..., QP)T represents the vector of model pa-

Po(Y =y) = —exp {67g(y)] @

rameters, g(y) = (g1(y),---.9p (y)T denotes the vector of suffi-
cient statistics capturing various network configurations, and x(6)
is the normalizing constant:

K(0)= ) exp{67g(y)] s)
y'ey
where Y represents the sample space of all possible networks
on n nodes.
The conditional log-odds of edge formation between nodes i and
Jj» given the rest of the network Y'l?j, can be expressed as:

logit(P(Y;j = 1]Y5,)) = 676(y)i ©)

where the sum is over all configurations A that contain Y;;, and
04 (y) is the change statistic representing the change in the value
of the network statistic g4 (y) when y;; changes from 0 to 1.

Network Statistics and Model Terms. Our ERGM specification in-
corporates several theoretically motivated network statistics to test
hypotheses regarding cultural homophily, reciprocity, and struc-
tural patterns in international OSS collaboration [11]:

Edges Term: The fundamental density statistic controls for the
baseline propensity of collaboration:

Gedges(¥) = ) | bij ™
ij
This statistic counts the total number of collaboration ties in the
network.

Nodematch Terms: To test Huntington’s cultural homophily
hypothesis [12], we employ nodematch statistics that quantify the
tendency for countries sharing civilization membership to exhibit
higher collaboration rates [14]. For civilization attribute C, the
differential nodematch statistic for civilization k is:

gnodematch,k(Y) = Z yijl(ci = Cj = k) (8)
ij
where 1(C; = Cj = k) is an indicator function equal to 1 when
both countries i and j belong to civilization k. This specification
allows for civilization-specific homophily coefficients, enabling us
to test whether different cultural groups exhibit varying degrees of
preference for internal collaboration.
For structural equivalence effects, we also test block model ho-
mophily using:
Gblock model (¥) = Z yij1(B; = Bj) 9
ij
where B; represents the block model position of country i derived
from hierarchical clustering of structural equivalence patterns.

Mutual Terms: For directed networks, reciprocity effects are
captured through mutual dyad statistics [29]:

gmutual(y) = Z YijYyji (10)
ij
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This statistic counts pairs of countries that collaborate with each
other in both directions (mutual collaboration).

Baseline Model Specification and Estimation. Our baseline model
specification evaluates the structure of the collaboration network
while controlling for density and reciprocity effects:

Pr(Y = y) = —— exp {fedgesL(¥) + Ot M(y)} (1)

k(0)

where L(y) = 3.; ; yij is the number of edges, M(y) = X; ; yijyji
is the number of mutual dyads.

Parameter estimation is conducted using Monte Carlo Maximum
Likelihood Estimation (MCMC-MLE) as implemented in the ergm
package [9]. The MCMC algorithm approximates the intractable
normalizing constant through iterative simulation from the model
distribution. We employ a burn-in period of 40,000 iterations with
sampling intervals of 10,000 iterations to ensure adequate mixing
and convergence. Model adequacy is assessed through goodness-
of-fit diagnostics that compare observed network statistics to dis-
tributions generated from the fitted model.

3.4 Node2Vec

We test the robustness of both the hierarchical clustering of coun-
tries in structurally equivalent positions and the direct collaboration
ties based on homophily in a unified node embedding framework,
node2vec. Node2vec learns continuous vector representations of
nodes by performing biased random walks that can be controlled
by two hyperparameters [8]. The return parameter p controls the
likelihood of revisiting nodes, while the in-out parameter g controls
whether the random walk explores locally or globally. High p and
low g biases the random walk toward depth-first exploration, cap-
turing direct collaboration patterns between countries embedded
in dense clusters (i.e., homophily). In contrast, low p and high ¢
biases the random walk toward local breadth-first search, captur-
ing countries that play similar structural positions (i.e., structural
equivalence) such as hub positions in the collaboration network.
After generating the embeddings with different return parameter
p and in-out parameter g combinations from values [0.25, 0.5, 1, 2,
4], we settled with p = 4, g = 0.25 for node features learned from
homophily and with p = 0.25, g = 4 for structural equivalence. We
then standardized each embedding using StandardScaler and ran
k-means clustering with six clusters using Euclidean distance as the
similarity metric. The optimal number of clusters was determined
using silhouette analysis [21]. While k = 3 and k = 2 achieved the
highest silhouette scores for the homophily and structural equiv-
alence embedding configurations (0.348 and 0.823, respectively),
these provided insufficient granularity for meaningful analysis of
the complex global collaboration structure, obscuring important
regional groupings and nuanced structural relationships between
countries. We selected k = 6, which yielded the next-highest scores
(homophily: 0.337; structural equivalence: 0.451) while providing
adequate resolution to identify distinct collaboration patterns.

3.5 Colonial Dimension Analysis

Building on the node2vec embeddings described above, we inves-
tigate whether historical colonial relationships persist in the OSS
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collaboration network structure by constructing a colonial dimen-
sion in embedding space. This approach tests whether countries
exhibit systematic proximity to their historical colonizers when
positioned along a theoretically motivated vector space derived
from colonial relationships.

Specifically, we construct a "colonizer-colonized dimension" in
the learned node2vec embedding by computing the average vector
from three major historical colonial relationships. Using colonial
pairs India-Britain (IN-GB), Vietnam-France (VN-FR), and Mexico-
Spain (MX-ES), this colonial dimension is defined as:

CD

_ (N —9GB) + (vyN — vFR) + (UMX ~ VES) (12)
3

where v; represents the node2vec embedding for country i com-
puted using the parameters specified in Section 3.4. This dimension
captures the average directional vector from former colonizers
toward their colonies, theoretically representing a "decolonized"
direction in the embedding space.

We test this dimension by projecting countries of interest along
the colonized vector (v; + CD) and measuring cosine similarity to
potential colonizers. Test countries and regions include Ukraine,
Poland, South Korea, Taiwan, Argentina, Brazil, Canada, Senegal,
Turkey, United States, and China. The results are aggregated across
three different node2vec parameter combinations (structural equiv-
alence p=0.25, q=4; homophily p=4, q=0.25; balanced p=1, q=1) on
the collaboration networks with vs. without the U.S., resulting in a
total of six configurations.

4 Results
4.1 Global Hierarchy of OSS Collaboration

The hierarchical clustering analysis reveals four distinct structural
positions in the global OSS collaboration network. The dendrogram
in Figure 1 demonstrates how countries naturally cluster based
on their structural equivalence patterns, with the resulting blocks
reflecting real-world geopolitical hierarchies.

The dendrogram shows distinct clustering patterns across all
country groups. Among the periphery countries (shown in orange),
we observe clear regional groupings where African countries cluster
together, Latin American countries form another coherent cluster,
and small island nations and developing economies occupy separate
branches. The dendrogram structure indicates that despite their
geographic dispersion, these countries share similar structural po-
sitions in the global OSS network—they predominantly contribute
to projects in core countries while receiving minimal collaboration
from other periphery nations.

The dendrogram also illustrates the hierarchical relationships
among core and semi-periphery countries. The core countries (shown
in red) include major Western European nations (Netherlands, Ger-
many, France, United Kingdom), along with economically advanced
countries like Canada and Spain. These countries occupy simi-
lar structural positions as regional hubs that attract substantial
collaboration from their respective spheres of influence. The semi-
periphery countries (shown in green) display more heterogeneous
clustering patterns, reflecting their intermediate position between
core and periphery. Notable clusters include Eastern European
countries (Poland, Czechia, Romania), Asian emerging economies
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60 70 80

Figure 1: Hierarchical clustering dendrogram of all coun-
tries in the global OSS collaboration network. The blue lines
highlight the separation of the U.S. from other countries, re-
flecting its unique structural position. Countries are colored
by their structural equivalence blocks: periphery (orange),
core (red), semi-periphery (green), and the U.S. as a separate
block. The optimal cutting points for the four-block parti-
tion were determined by maximizing the Calinski-Harabasz
score, revealing the hierarchical organization of the global
OSS network.

(Taiwan, South Korea, Singapore), and other middle-income coun-
tries that serve as bridges between the global core and their regional
peripheries.
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Figure 2: Relative collaboration tie strength between core,
semi-periphery, and periphery country positions

The blue lines in the dendrogram highlight the unique struc-
tural position of the United States, which separates early in the
clustering process, confirming its exceptional role in the global OSS
collaboration network that we analyze in detail below.

The global collaboration pattern exhibits a strict hierarchy among
four groups of countries that assume structurally equivalent posi-
tions, or “blocks”, obtained from a block model analysis. Figure 2
plots the asymmetry in collaborations among these four blocks —
core, semi-periphery, periphery blocks and the U.S. as its own block.
The cells represent a column block’s relative collaboration volume
directed to a row block (e.g., the collaboration volume from devel-
opers in peripheral countries on U.S. projects is 233.78% of the U.S.
developers’ collaboration volume on the projects of the peripheral
countries). The volume of collaborations directed between clusters
are highly asymmetric and transitive — as shown in Figure 2, the
core countries consistently receive disproportionately more collabo-
rations from the semi-periphery and the periphery countries while
the semi-periphery countries receive out-sized collaborations from
the periphery countries. This perfectly transitive structure remains
highly stable across quarters with the U.S. at the apex, receiving
disproportionate collaborations from the other three blocks.

Indeed, the strong centripetal force of the U.S. is visually apparent
in Figure 3a, which displays a subset of countries that appear in
Samuel Huntington’s civilization classification, based on a force
directed layout (Force Atlas 2 in Gephi [2]). Node colors represent
countries within densely knit communities of strong collaboration
ties, as labeled by the Louvain community detection algorithm.
Consistent with previous studies that report the exceptional U.S.
prominence in OSS development, it looms large at the center, so
much so that over 60% of the countries are labeled into the same
community as the U.S,, gravitating en masse, thereby blurring the
more subtle boundaries.

Henry Xu et al.

(a) Nodes including the U.S., colored by modu-
larity class

(b) Nodes excluding the U.S., colored by
block model positions (red: core, green: semi-
periphery, purple: periphery)

e |

(c) K-means clustering (6 clusters) on node2vec
embeddings emphasizing structural equiva-
lence (p=0.25, q=4)

Figure 3: Force Atlas layout of the GitHub collaboration
graph including the U.S. and colored by modularity class
(a), without the US colored by block model positions (b), and
k-means clustering applied to node2vec embeddings that
emphasize structural equivalence patterns (c). Node size and
edge thickness are proportional to weighted nodal degree
and edge weight, respectively. While the original k-means
clustering identified six clusters, only four are visible in this
visualization as the countries in the fifth and sixth clusters
were excluded due to weak, non-significant collaboration
ties that would have appeared as isolates after applying the
disparity filter.
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Table 1: ERGM Models 1 & 2: Baseline and Structural Equiva-
lence

Term Model 1 Model 2
Edges -3.206™*  —3.263***
Mutual 2.2947** 2.283%*
Nodematch.SameBlock - 0.165

*p < 0.001,*p < 0.01,*p < 0.05, p < 0.1

However, once the U.S. is removed from the graph, the overall
hierarchy obtained from the aforementioned block model is more
apparent. In Figure 3b with the U.S. removed, the node colors are
based on the structurally equivalent blocks of the core (red), semi-
periphery (green), and periphery (purple) countries. In the absence
of the U.S,, the large core countries (i.e., Great Britain, Germany,
France, Russia, and India) are spatially dispersed, with their respec-
tive semi-periphery countries closely positioned. Aligned with this
finding, a qualitatively similar core-periphery structure is apparent
from K-means clustered (K = 6) countries based on the node2vec
embeddings that prioritize structural equivalence (p = 0.25, g = 4),
as shown in Figure 3c. While the embeddings differentiate some
of the Latin American and Asian countries as separate clusters
respectively, they offer a coarser visual differentiation between the
core (green) and periphery (pink).

4.2 Cultural Homophily

We present four ERGMs that incrementally evaluate the influence
of structural equivalence and cultural homophily on cross-national
OSS collaboration. Each model builds on the baseline network struc-
ture while testing additional hypotheses, emphasizing cultural affin-
ity and positional equivalence as sources of clustering.

Model 1: Baseline Network Structure. The baseline model includes
only the number of edges and mutual collaboration ties. The re-
sults in Table 1 show a strong and significant mutuality effect
(0 = 2.294, p < 0.001), indicating that dyads with bilateral contribu-
tions are substantially more likely to form. However, it is a stretch
to interpret mutual as reciprocity in the sense of quid-pro-quo
between countries. Since ties are aggregates of individual behav-
iors, contributors are unlikely to coordinate country-to-country
exchanges. Rather, the mutual effect likely reflects broader simi-
larity patterns between countries that are not captured by other
covariates.

Model 2: Structural Equivalence (Same Block). Model 2 adds a
nodematch term for countries in the same structural equivalence
block derived via hierarchical clustering. Table 1 shows that the
coefficient is positive but only marginally significant (§ = 0.165,p <
0.1). According to world systems theory [23], countries occupying
peripheral positions should exhibit low internal connectivity, with
stronger outward links to the core. Hence, the limited magnitude
and marginal significance of the same-block effect is consistent
with the expected hierarchical structure of global collaboration.

Model 3: Cultural Homophily (Civilizations). Model 3 evaluates
the influence of shared cultural affiliation by including nodematch
terms for Huntington’s civilization categories. Table 2 shows that
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most civilization terms are strongly significant and positive. The
Sinic civilization exhibits the strongest internal collaboration ten-
dency (0 = 2.344, p < 0.001), followed by Orthodox (6 = 1.725,p <
0.001) and Latin American (f = 1.657,p < 0.001) civilizations. In
contrast, Islamic civilization shows no significant homophily ef-
fect (0 = 0.313, n.s.), while the African civilization demonstrates
a marginally significant effect (8 = 0.775, p < 0.01). These results
are visually apparent in Figure 4a where countries in the same
civilization are spatially clustered closely together, similar to the
unsupervised clustering based on modularity as shown in Figure 4b.
Mirroring the weak cultural homophily of African and Islamic na-
tions in Model 3, The African and Islamic countries are spatially
scattered in contrast to other tightly clustered non-Western civi-
lizations in Figure 4a (e.g., Latin American, Orthodox).

Model 4: Cultural Homophily and Structural Equivalence Com-
bined. Model 4 incorporates both civilization categories and the
positional equivalence of the same block. As shown in Table 2, the
civilization coefficients remain robust and significant, while the
same block term becomes negative and nonsignificant (6 = —0.114,
n.s.), in contrast to Model 2 (Same Block only: 6§ = 0.165, p < 0.1).
This reinforces the interpretation that structural equivalence cap-
tures countries with similar positions in the global system, not
necessarily countries with stronger bilateral collaborations. Two
countries in the same block may or may not have direct ties, be-
cause being in the same block simply means that they have similar
connection patterns to others (i.e., structural equivalence), not that
they should have a higher propensity to form direct ties with each
other. According to world systems theory [23], the periphery block
should have low internal connectivity, with high interconnections
within the core block, fewer within the semiperiphery, and sparse
connections within the periphery itself. In short, Model 4 shows
that cultural homophily, operationalized through shared civiliza-
tional identity, offers more consistent and interpretable insight into
direct collaboration ties in global OSS production.

Finally, the salience of macro cultural similarities for OSS col-
laboration in Figure 4a is also visually apparent when compared
to Figure 4c, which colors the countries according to the clusters
(K = 6) obtained from the node2vec embedding that emphasizes
homophily (p = 4, ¢ = 0.25). These clusters do not effectively
differentiate the sampled countries as the civilization labels, demon-
strating the utility of a theory-driven exploration.

4.3 Colonial History and Geopolitics

The unsupervised Louvain community detection, unlike the theory-
driven groupings of countries based on structural equivalence (Fig-
ures 3b, 3c) or homophily (Figures 4a, 4c), additionally hints at
historical factors that continue to structure OSS collaborations. Of
particular note, the modules shown in Figure 4b, obtained from
community detection, coincides with groups of countries that share
common colonial histories, such as the former British colonies lo-
cated in the Northwest, neighbored by the former French colonies
in the North, and by the former Spanish colonies to the South-
west. The former Soviet bloc countries are also grouped as one
community.

We analyzed the relationships between the colonizers (France,
UK, Spain) and the cold-war super powers (Russia) on the one hand
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Table 2: ERGM Models 3 & 4: Cultural Homophily

Term Model 3 Model 4
Edges 35187 —3.490"
Mutual 1.718*** 1.730***
Nodematch.SameBlock - -0.114
Nodematch.African 0.775™* 0.841™*
Nodematch.Buddhist 1.902%** 1.939%**
Nodematch.Islamic 0.313 0.320
Nodematch.LatinAmerican  1.657*** 1.690™"*
Nodematch.Orthodox 1.725%** 1.707***
Nodematch.Sinic 2.344%%* 2.384%%*
Nodematch Western 1.604™** 1.630%**

p < 0.001, *p < 0.01,*p < 0.05, p < 0.1

and their subordinated countries on the other by projecting the
node vectors on the colonial dimension, as described in Section 3.5.
The results provide direct evidence of macro-historical legacies
embedded within the collaboration network structure. Japan con-
sistently emerges as the closest to South Korea and Taiwan (4/6 con-
figurations), accurately reflecting Japanese colonial history. Spain
matches Argentina in 3/6 configurations and Portugal matches
Brazil in 2/6 configurations, suggesting the persistence of Iberian
colonial legacies in Latin American OSS collaboration. Beyond
formal colonialism, Russia frequently appears closest to Ukraine
and Poland, reflecting Soviet sphere of influence, analogous to the
above-mentioned traditional colonial relationships.

However, contemporary superpowers appear to defy historical
projection. Both the United States and China consistently exhibit
highest similarity to themselves (>0.99 cosine similarity), indicating
these nations maintain such dominant structural positions that even
colonial dimension adjustments cannot overcome their network
centrality.

Taken together, the apparent organization of collaboration around
common colonial history (and cold war hierarchies in the Soviet
block) may partly explain why countries from the Islamic and
African cultures are less visually clustered within their own cul-
ture, but scattered around their respective former colonizers. The
economic dependencies that date back to the colonial era continue
to influence today’s knowledge economy that is supported in part
by OSS development.

5 Discussion

Extending previous studies that identify the geographic locus of
OSS development, this study dissects the network structure of the
cross-national collaboration on Github. As reported in the litera-
ture, we observe a strictly hierarchical collaboration structure with
the U.S. as the strongest gravitational force at the epicenter of the
global collaboration network, followed by a core group of tech-
nologically advanced countries heavily contributing to U.S.-based
projects. The U.S. and this core group, in turn, hosts projects to
which the semi-periphery and periphery countries heavily con-
tribute. This transitive structure in terms of core, semi-periphery,
and periphery countries is reminiscent of the hierarchical structure
of the international trade network that social network analysts have
repeatedly discovered from input-output tables since the 1970s [23].
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Legend - Civilizations
wstm (236%)
islam (20.22%)
latam (16.:85%)

Weric (1573%)
sssss 87

° W ortho (7.87%)
W bucen (@a9%)

hindu (225%)
- NA (1.12%)

(a) Colored by Huntington’s civilization cate-
gories

(c) K-means clustering (6 clusters) on node2vec
embeddings emphasizing homophily (p=4,
q=0.25)

Figure 4: Force Atlas layout of the GitHub collaboration
graph without the U.S,, colored by Samuel Huntington’s civ-
ilization labels (a), modularity class (b), and k-means clus-
tering applied to node2vec embeddings that emphasize ho-
mophily patterns (c). Node size and edge thickness are propor-
tional to weighted nodal degree and edge weight, respectively.
While the original k-means clustering identified six clusters,
only four are visible in this visualization as the countries
in the fifth and sixth clusters were excluded due to weak,
non-significant collaboration ties that would have appeared
as isolates after applying the disparity filter.

Furthermore, these international collaborations also appear to
reflect long-term cultural affinities and shared historical experi-
ences between countries. By triangulating the results from network
visualizations, block models, exponential random graph models,
and node embeddings, we demonstrated the robust influence of
deep-seated cultural and religious similarities (i.e., civilizations) as
well as long-lasting geopolitical power structures from the past (i.e.,
colonial power-dependencies and cold-war super powers). These
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results are not likely to simply reflect shared language uses be-
tween countries, given that only 12.7% of Github developers used
non-English comments in their code commits [16].

Nevertheless, the comparison across different analytical approaches
reveals both the robustness and underlying complexity of collab-
oration patterns. Both hierarchical block modeling and k-means
clustering based on node2vec biased toward structural equivalence
identify the pluralistic core, consisting of DE, GB, FR, RU, and IN
and their close collaborating nations, surrounded by the diverse
peripheral and semiperipheral countries broadly positioned on the
outskirts, along with two additional geographically clustered blocks
of Latin American and Asian countries, respectively. In contrast,
while the modularity-based community detection accurately distin-
guishes colonial spheres, the k-means clustering based on node2vec
embeddings learned with the homophily biased parameters do not
detect these fine distinctions as clearly as the community detection
approach. Discrepancies not withstanding, these results from tri-
angulating different methods offer a nuanced illustration of how
homophily and structural equivalence are manifested at multiple
scales within both historical networks and emerging regional col-
laborations.

5.1 Discussion

While the findings of this study are informative, they are to be
evaluated with the following data limitation. The reliance on IP-
based activity statistics for constructing the weighted collaboration
edges could introduce potential biases, particularly in countries
with prevalent VPN usage, like China. This could lead to distorted
representations of actual OSS activity. While we anticipate these
distortions are limited in scope, their impact on the study’s findings
should not be underestimated. Future research might explore alter-
native data collection methods to mitigate this limitation. Despite
this limitation, our findings offer several key insights with broad
implications:

5.1.1 Influence on Commercial Software Development Practices.
Our results indicate that historical and geopolitical factors have a
significant impact on OSS contributions. They suggest new ways
for imagining and evaluating global outsourcing and collaboration
strategies in commercial software development, which could lead to
tangible development of agile and adaptable collaboration models
for global software teamwork.

5.1.2  Overcoming Barriers in OSS Collaboration. As we have demon-
strated, identifying and addressing both inter-community and intra-
community barriers in OSS collaboration can be challenging. Future

initiatives might focus on developing enhanced recommender sys-
tems for OSS platforms, incorporating cultural tags to foster more

effective cross-cultural collaborations that are conducive to innova-
tion [15]. Additionally, there is an opportunity to develop features

within platforms like GitHub to streamline collaboration within

culturally similar groups, potentially evolving these platforms into

more effective multi-hub network structures.

5.1.3  Broader Research Horizons. Future research might also ex-
plore the socio-political dimensions of OSS collaboration, exam-
ining how global political shifts and policy changes influence the
dynamics of these networks. Understanding these broader impacts
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could provide valuable insights into the evolving nature of global
software development and collaboration.

6 Conclusion

All in all, the implications of this study are far-reaching, suggest-
ing the need for resilient OSS community frameworks, adaptable
commercial software development strategies, and tools to strike
the right balance between the efficiency gains of hierarchical in-
tegration at the global scale while also lowering both inter and
intra-community collaboration barriers.
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