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ABSTRACT
Directional relations are fundamental to spatial data queries,
analysis and reasoning. Consequently there has been a sig-
nificant amount of effort to determine directional relations
between two regions. However, many existing methods do
not perform well when the regions are neighboring or inter-
twined. In this paper we introduce a new model for direc-
tional relations which is based on a splitting line separating
the two regions in question. We identify essential quality cri-
teria for directional relation models and translate them into
measurable properties of a given splitting line. We present
an efficient algorithm that computes an optimal splitting line
for two regions and perform extensive experiments. Our re-
sults show that the splitting line model captures directional
relations very well and that it clearly outperforms existing
approaches on pairs of neighboring or intertwined regions.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Theory

Keywords
Directional relations, splitting line, geometric algorithms

1. INTRODUCTION
Is Sweden south of Norway? And what are the western
neighbors of Brazil? Directional relations are frequently
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used to select data in spatial databases and are fundamen-
tal to spatial data queries, analysis and reasoning [1, 8].
Directional relations are not only used widely in geographic
information systems, but also in areas like artificial intelli-
gence [6], computer vision [10], and multimedia [19]. Con-
sequently there has been a significant amount of effort to
determine directional relations automatically.

Our motivation to study directional relations also stems
from schematized maps like subway maps [17] and (rectan-
gular) cartograms [16]. In these maps the exact geometry
is not very important. But for human perception it is es-
sential that spatial relations like topology, relative distance,
and orientations are preserved. This is particularly crucial
for objects that are close in geographic space. For neigh-
boring regions many of the existing models for directional
relations do not give a useful answer. In particular, many
existing models do not work for intertwined regions, that is,
regions where the centroid of one lies inside the bounding
box of the other.

Figure 1: Austria
and Italy.

We illustrate these issues
with several examples. We dis-
tinguish a reference region A,
drawn in dark gray, and a tar-
get region B, drawn in light
green (light gray in grayscale).
The region centroids are indi-
cated by circles. We want to
determine the direction of the
target region with respect to
the reference region. For exam-
ple, in Fig. 1 we ask: “where
does Italy lie with respect to
Austria?” We are usually interested in the compass direction
that describes the directional relation best. Here we use the
term compass directions to refer to the union of the 4 car-
dinal directions (north, south, west, east) and the 4 ordinal
directions (northwest, northeast, southwest, southeast).

A reasonable and commonly used indicator for the direc-
tional relation between two regions is the direction between
their centroids [9, 12], possibly snapped to one of the 8 com-
pass directions. The centroids tell us that Italy lies to the
south of Austria, which is arguably the best answer. Since
the direction between the centroids is symmetric, this also
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implies that Austria lies north of Italy. However, northeast
seems to be the better answer in this case: visually speak-
ing, a significant part of Austria’s area lies to the northeast
of Italy.

The popular direction-relation matrix model [7] allows for
such asymmetric answers. It subdivides the space around
the bounding box of the reference region into nine direction
tiles and classifies other regions according to the cell of the
subdivision they lie in. Generally this model gives a good in-
dication of the compass direction. However, for neighboring
regions –in particular, if one country is considerably larger
than the other– a large part of the target region might lie
inside the bounding box of the reference region, in which
case no direction can be determined by the model.

Figure 2: Paraguay
and Brazil.

For instance, Paraguay lies
completely inside the bound-
ing box of Brazil (Fig. 2), and
therefore the direction-relation
matrix does not give a useful
answer. The compass direction
resulting from the centroids in
this case is south, while south-
west is arguably the better an-
swer. Here both the general di-
rection of the joined border and
the relative position of the ma-

jority of the area of the respective countries seem to play a
major role in perception of directional relations.

Figure 3: The Gam-
bia and Senegal.

Another interesting example
are the Gambia and Senegal
which are intertwined. For
humans it appears that direc-
tional relations between inter-
twined countries are also re-
lated to separation. Here the
question is: in which direc-
tion do we need to move the
Gambia to separate it from
Senegal? Consequently, people
tend to place Senegal to the east or northeast of the Gambia
and the Gambia to the west or southwest of Senegal.

Figure 4: Belarus
and Ukraine.

Our final example illustrates
how important the direction of
a shared border is for direc-
tional relations between neigh-
boring countries. Belarus and
Ukraine are separated by a
nearly horizontal border. Con-
sequently they are often per-
ceived as north-south neigh-
bors, although neither cen-
troids nor the location of the

majority of the respective areas point that way.

Results and Organization. We present a new model for
directional relations between regions which is based on a
splitting line separating the two regions in question. Our
model performs very well, specifically for neighboring or in-
tertwined regions.

In Section 2 we first survey related work. In Section 3
we identify essential quality criteria for direction relations
and translate them into measurable properties of a given
splitting line. In Section 4 we present an efficient algorithm
that computes an optimal splitting line for two regions. We

close with an extensive experimental evaluation in Section 5
where we compare the results of our new method to the
compass directions obtained from the region centroids and
from the direction-relation matrix. We used a user study
to determine appropriate parameters for our method; the
details of this study can be found in Appendix A.

2. RELATED WORK
Here we discuss several approaches that determine the direc-
tional relation between two regions, represented by arbitrar-
ily shaped polygons in the plane. We denote the reference
polygon by A and the target polygon by B.

Haar [9] introduced a triangular model which approxi-
mates both the reference and the target polygon by their
centroids. It considers four angular regions corresponding
to the four cardinal directions extending outwards from the
centroid of the reference polygon. The directional relation is
determined by testing in which of these regions the centroid
of the target polygon lies (Fig. 5 a). This model ignores
both shape and size of the polygons and thus can produce
inaccurate results. For example, polygon C in Fig. 5 a would
be classified as being north of polygon A.

(a)

A B

North

West East

South

C

(b)

A

B

North

East

South

West

Figure 5: (a) The triangular model, (b) the cone-
based model.

Peuquet and Ci-Xiang [12] extended the triangular model
to take size, shape, and orientation of the polygons into
account. Their cone-based model uses the bounding box
of the reference polygon when determining the triangular
regions, which now extend from the corners of the bounding
box (Fig. 5 b). When dealing with intertwined polygons the
directional relation is determined using rays shot from the
centroid of the target polygon. The use of a bounding box

A B

NorthA

EastA

SouthA

WestA EastB

NorthB

WestB

SouthB

Figure 6: The intersection-based model.
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Figure 7: (a) The projection-based model, (b) the
direction-relation mode, the center tile is called
sameLocation.

and a centroid to approximate regions can lead to inaccurate
results for neighboring regions.

Abdelmonty and Williams [2] presented an intersection-
based method which further refines the cone-based model.
They consider the intersections between the lines determin-
ing the directional regions of the reference and target poly-
gons, passing through the corners of their respective bound-
ing boxes (Fig. 6). This method suffers from the same prob-
lems as the previous approach and is symmetric.

Papadias and Theodoridis [11] propose a projection-based
model in which the reference and target polygons are ap-
proximated by their bounding boxes. The model distin-
guishes between 169 different directional relation configura-
tions by computing the relations between the projections of
the two bounding rectangles onto the x- and y-axes (Fig. 7 a).

Goyal [7] introduced a similar model in which the refer-
ence object is approximated by its bounding box and the
space surrounding it is partitioned into nine direction tiles
(Fig. 7 b). The compass directions between a target and a
reference polygon are stored as a 3 × 3 boolean direction-
relation matrix. An entry is true if the intersection between
the target polygon and the corresponding direction tile is
non-empty. The model can be adapted to return a unique
direction by storing in the matrix the proportion of the total
area of the target polygon that lies in the corresponding di-
rection tile and selecting the direction in which most of the
area of the target polygon lies. The direction-relation matrix

(a) (b) (c)

A

B

A

B

A

B

Figure 8: (a) and (b) Projection-based model and
direction-relation matrix model: B lies northwest or
northeast of A but is classified north, (c) direction-
relation matrix model: B lies northwest of A but is
classified sameLocation.

A
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B

A

B

(a) (b)

Figure 9: (a) Cone-based directional relations
model, (b) the DVD approach: triangulation
(dashed) and DVD (dash-dotted).

model is not symmetric. Both the projection-based model
and the direction-relation matrix model can lead to inaccu-
rate results when the polygons are intertwined or when the
target polygon lies partially within the bounding box of the
reference polygon (Fig. 8).

Several extensions to the direction-relation matrix model
exist. Cicerone and Di Felice [4] study compass directions
between regions with uncertain boundaries. They consider
such objects to have two boundaries (an inner and an outer
boundary) and propose a model that creates a double par-
tition of the plane around the inner and the outer boundary
of the region. The resulting 25 distinct direction tiles are
stored in a 4-value, 5x5 matrix. Skiadopoulos et al. [14, 13]
present an efficient implementation of the direction-relation
matrix model that can handle disconnected regions and re-
gions with holes. Chen et al. [3] proposed an extension to
the direction-relation matrix model which uses the overlay
of two grids of directional tiles. This approach is symmetri-
cal, does not give a unique answer, and is ill-suited to deal
with intertwined polygons.

Skiadopoulos et al. [15] presented a cone-based directional
relations model for disconnected regions based on the cone-
based model [12]. Here only the reference polygon is ap-
proximated by its bounding box, as in the direction-relation
matrix model. The space around the reference polygon is
partitioned into 5 regions using four rays originating from
the four vertices of the bounding box (Fig. 9 a).

Deng and Li [5] proposed a statistical approach. They
rasterize polygons A and B into small cells, compute the
angle between the centroids of each pair of cells, and return
the median angle. This method mostly ignores the shape of
the polygons and can so lead to inaccurate results.

Yan et al. [18] proposed a method using directional Voronoi
diagrams (DVDs). They first triangulate the space between
the two polygons A and B. For every triangle that has two
edges connecting A to B the DVD contains a line segment
connecting the midpoints of these two edges (Fig. 9 b). They
then compute a quality value for each direction based on the
lengths and directions of the edges of the DVD and output
all values. This approach is symmetric and does not return
a unique answer. It ignores the area distribution of the poly-
gons and is based on local features of the boundaries which
do not necessarily represent the general directions well.

3. THE SPLITTING LINE MODEL
We propose the following quality criteria for a directional
relation model. Each criterion is accompanied by a figure to
illustrate the concept.
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Area. The direction should indicate
where the majority of the area of the
target polygon B lies with respect to
the reference polygon A. This is the
most obvious and important factor
in deciding the directional relation,
and is also utilized by the centroid
and matrix methods. This criterion
plays an important role in Fig. 1.

Alignment. If the polygons are close to-
gether, then the direction should be
perpendicular to the shared border.
In the figure, considering only the an-
gle between the centroids might sug-
gest that northwest is the best di-
rection, whereas due to the orienta-
tion of the shared border, north is
perceived as the better answer here.
This criterion is important in Fig. 4,
where the shared border between the
countries is approximately horizon-
tal.

Removal direction. The direction
should indicate how to move A
and B apart without incurring
intersections. This factor becomes
important when the polygons are
intertwined, as illustrated in the
figure. In this example, the centroid
of the reference polygon actually lies
left of the centroid of the target poly-
gon. Hence, the centroids method
will answer east, whereas west is
perceived as the right answer here.
A similar situation is illustrated in
Fig. 3.

Robustness. Extensions of A or B can
affect the direction only if they con-
tain a significant part of the area of A
or B. It is important for the mathe-
matical soundsness of the model that
the answer is not affected by minor
changes (with respect to area) to one
of the polygons.

Affine transformation. The directional
relation should be consistent under
affine transformations. Since the fig-
ure is a 90◦-rotated version of the fig-
ure that accompanies the first para-
graph discussing the area criterion,
the answer is southwest.

We do not consider symmetry to be an important crite-
rion for a good directional relation model. As illustrated by
Fig. 1, it can be argued that the directional relation is not
always symmetrical.

We model our criteria as measurable properties of a split-
ting line � which separates A and B. We associate each side
of � with one of the polygons: the A-side and the B-side of
�. Parts of both A and B may lie on the “wrong” side of �.
We obtain the directional relation from a splitting line � by
taking the normal vector on the B-side of � (Fig. 10). The
quality of a splitting line is evaluated by a composition of
the measures derived from the quality criteria. To determine
the directional relation we find the optimal splitting line.

B

�

A

Figure 10: A splitting
line � for A and B.

To evaluate the quality of
a particular line � we concep-
tually divide the scene into
thin slabs that are perpen-
dicular to �. We then com-
pute a quality value for each
slab and finally combine the
values for all slabs. As the
number of slabs used ap-
proaches infinity, and hence
the width of a slab ap-
proaches 0, the measure for
a line can be represented us-
ing an integral. For our ex-
planation we will assume the slabs have a width of Δx which
makes reasoning about them more intuitive.

Notation. To formalize our splitting line model we first
introduce some notation. Let A be the reference and B
be the target polygon. We consider the horizontal splitting
line � : y = y0 with the A-side above �. Since we take the
limit with infinitely thin slabs, we can assume that the in-
tersections of A, B, or the white space (everything but A
and B) with a slab [x : x + δx] × [−∞ : ∞] are rectan-
gles which we call segments (see Fig. 11). We refer to the

B

A

a1

w2

b3

w4

a5

w6

b7

b8

w9

a10

w11

a12

�

Δx

Figure 11: A slab for reference polygon A and target
polygon B. The segments are numbered in order,
and we have: TopA = {a10, a12}, TopB = {b8}, TopW =
{w9, w11}, BottomA = {a1, a5}, BottomB = {b3, b7}, and
BottomW = {w2, w4, w6}
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height of a segment s as height(s). The set of A-segments on
the A-side of � is called TopA and the set of A-segments on
the B-side of � is called BottomA. TopB and BottomB are
defined similarly. Letm1 be the minimum y-coordinate of an
A- or B-segment in a slab, and let m2 be the maximum. We
define TopW to be the set of white space segments inside the
sub-slab [x : x+δx]× [y0 : m2] on the A-side of �; BottomW
is defined similarly. The set of all segments between m1 and
m2 is called Strip. For segments s and t we say s < t if all
points in s have a lower y-coordinate than the points in t.

The Measure. Our quality measure consists of several
components that jointly capture our set of quality criteria.
As measure we take the sum of these components weighted
by positive real weights ρi.
To satisfy the area criterion we ask that the majority of

A lies on the A-side of � and the majority of B lies on the
B-side of �. Thus we take these quantities, GoodA ·Δx and
GoodB ·Δx (see Eq. 1 and 2), as components of our measure.
They constitute the first two terms in our measure given in
Eq 5. The Δx factor is not included in the measure since
we later take the integral over the combined measure. The
modeling of the area criterion can be refined to not only
take into account the side of the line A and B lie in, but
also whether A and B are actually facing each other, that is
if a slab contains a large fraction of A on the correct side then
it should also contain a large fraction of B on the correct
side and vice versa (Fig. 12). Furthermore, if there is a large
fraction of B on the correct side, only a small fraction of A
should be on the wrong side. This is captured by the third,
forth and fifth term in Eq 5. To normalize these terms the
height of the minimal axis-aligned bounding box of A (resp.
B) is used, which we denote by height(A) (resp. height(B)).
To satisfy the alignment criterion, � should align well with

the border of A (but not necessarily with the border of B).
We hence penalize parts of A that are on the correct side
but separated from the splitting line by B or white space.
Specifically, we negatively weigh such parts within the slab
by the amount of B and white space separating it from the
line, that is by AlignmentA · Δx (see Eq. 3). We weigh the
contribution of the slab to this term by the fraction of B in
the slab on the correct side. This is the sixth term in Eq 5.

GoodA =
∑

a∈TopA

height(a)

area(A)
(1)

GoodB =
∑

b∈BottomB

height(b)

area(B)
(2)

A

B
�

�′

Figure 12: The splitting line � is better than �′ as
none of the slabs of �′ contains both A and B.

AlignmentA =
∑

w∈TopW∪TopB

(
height(w)∑

s∈Strip
height(s)

·

∑
a∈{s|s∈TopA∧w<s}

height(a)

area(A)

)
(3)

ObstructB =
∑

b∈TopB

(
height(b)

area(B)
·

∑
a∈{s|s∈TopA∧b>s}

height(a)

∑
a∈TopA

height(a)

)
(4)

To satisfy the removal direction criterion we ask that a
slab does not contain alternations of A and B. More specif-
ically, we penalize parts of B (resp. A) on the wrong side of
the line that have parts of A (resp. B) between it and the
splitting line. This results in the terms ObstructB ·Δx (see
Eq. 4, ObstructA is defined analogously) and ObstructA·Δx.
These constitute the final two terms in Eq 5. The resulting
splitting line model is consistent under affine translations by
definition. Most of the terms used in the measure are not
significantly affected by small quantities of A, B, or white
space, and therefore satisfy the robustness criterion. The
only term that can be affected by such small quantities is
the height of the bounding box. However, the overall mea-
sure remains robust: if the height of the bounding box is
extremely large relative to the area of the region then the
corresponding components will simply be very small, thus
giving more weight to the more robust components.

M = ρ1 ·GoodA+ ρ1 ·GoodB (5)

ρ2 ·
∑

a∈TopA height(a)

height(A)
·GoodB +

ρ2 ·
∑

b∈BottomB height(b)

height(B)
·GoodA −

ρ3 ·
∑

a∈BottomA height(a)

height(A)
·GoodB −

ρ4 ·
∑

b∈BottomB height(b)

height(B)
· AlignmentA −

ρ5 ·ObstructA− ρ5 ·ObstructB

The value of M depends on the slab and the splitting line
chosen and therefore is a function of x and y. We denote
this function by M(x, y). The resulting overall measure is
now

Mline(y) =

∫ ∞

−∞
M(x, y) dx. (6)

4. ALGORITHM
In this section we first present an efficient algorithm to com-
pute a description of Mline(y). We then describe a dis-
cretized version of our algorithm, which we use in our ex-
perimental validation.

Computing the function Mline(y). Let A and B be the
input polygons and assume, without loss of generality, that
we want to find the optimal horizontal splitting line with
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the A-side above the splitting line. A horizontal splitting
line can be specified by its y-coordinate. In this section we
show that the derivative of the measure Mline(y) consists
of pieces that are sums of rational function. The optimal
splitting line corresponds to a break point or a zero of the
derivative. We show how to efficiently compute a descrip-
tion of Mline(y) (and of its derivative) using a sweep line
algorithm that sweeps a horizontal line � downwards. How-
ever, given the description of Mline(y) it is still not feasible
to solve the resulting equation. Therefore we also present
a discretized version of the sweep line algorithm, which we
use in our implementation.

We first illustrate the algorithm to compute a description
of Mline(y) by the example of the contribution of GoodA.
As M , GoodA is a function in x and y. The component∫∞
−∞GoodA(x, y) dx is piecewise quadratic in y. To see this,
consider a splitting line at y = y0 and y = y1 = y0 − Δy
and assume that there are no vertices of A with y-coordinate
between y0 and y1. Let P be the set of pieces of the polygon
A intersected by the horizontal slab [y1 : y0] (see Fig. 13).
It follows that the component of GoodA increases by δ =∑

p∈P area(p)/area(A). The pieces in P are all trapezoids.
The area of such a trapezoid is quadratic in Δy. Since δ
is a sum of quadratic functions, it is also quadratic in Δy.
Overall the component is a piecewise quadratic function in
y. While sweeping downwards we need to update this com-
ponent at a discrete set of events, namely the y-coordinates
of the vertices of A. At each event the status at the sweep
line, that is, the configuration of trapezoids, changes locally.
We can update the quadratic function by replacing the con-
tributions of ending trapezoids by the contribution of new
trapezoids. In the same way we can compute the contribu-
tion of GoodB . Using standard data structures like a sorted
list as event queue and a balanced binary search tree for the
status we can compute these components as functions in y
in O(n log n) time, where n is the number of vertices of A
and B.

y0
y1

Figure 13: The intersection of polygon A with the
horizontal slab [y1 : y0] consists of a set of trapezoids.

The other components are more difficult to compute since
they depend on A and on B (and on the white space) and
since for some components the denominator is a function in
x and/or y. Since they all can be computed in the same
way, we describe how to compute them by the example of
ObstructB , which together with ObstructA is the most com-
plicated component. We subdivide the plane into vertical
strips through the vertices of A and B. By this we obtain a
linear number of strips which do not contain any vertices of
A or B in the interior. We first consider the contribution of
a single strip.

Assume we sweep a splitting line from y = y0 to y =
y1 = y0 − Δy with a lower edge of A entering the strip at
(x0, y0) from the left and leaving it at (x1, y1) to the right
(see Fig. 14) and with white space below that edge. We
denote the x-coordinate of the intersection of the lower edge
and a splitting line by xL(y), which is a linear function in
y. We further denote the y-coordinate of this intersection
by yL(x), which is a linear function in x. Let hA(x) and

hA(x)

y0

y1

x0 x1

y

xL(y)

Figure 14: The decomposition of [y1 : y0]. Parts of
polygon A are drawn in grey. The whitespace and
B parts are white.

hB(x) (one such function, hA(x), is shown in Fig. 14 above
the sweep line) denote the height of A and or B in the strip
above the sweep line at y0. Both of these functions are
(within the strip) linear functions. Let

g(x) =
∑

b∈TopB

height(b) ·
∑

a∈{s|s∈TopA∧b>s}
height(a).

for the sweep line at y0. The function g(x) is quadratic.
Now, the contribution of this part up to the sweep line

corresponding to y is∫ xL(y)

x0

g(x) + hB(x)(hA(x) + yL(x)− y0)

area(B)(hA(x) + yL(x)− y0)
dx+∫ x1

xL(y)

g(x) + hB(x)(hA(x) + y(x)− y0)

area(B)(hA(x+ y(x)− y0))
dx.

These are integrals over a rational function with a linear
function in y on the integral boundary. Therefore the deriva-
tive is a rational function in y. The sum of the derivatives
over all strips is therefore a sum of rational functions. As
description of the contribution we can store hA(x), hB(x),
g(x) for each strip. We have to update these function each
time an edge of A or B intersects the boundary a verti-
cal strip. We therefore have a linear number of events per
strip. This yields a quadratic number of events overall. As
event queue we use a priority queue. Initially it contains
only events corresponding to vertices of B. From such a
vertex we examine the incident edges of B and add for such
an edge the next intersection point with a strip boundary
to the event queue. In this way we store at most a linear
number of events at any time. As status structure we store
an array with entries corresponding to the strips. The other
terms can be handled in the same way. The running time of
this algorithm is dominated by the cost of maintaining the
event queue, O(n2 log n).

Discretized version. If the exact position of the optimal
splitting is not essential but a good approximation suffices,
then we can compute the measure for discrete steps in y.
This has the main advantage of avoiding solving equations
involving sums of rational functions and all the associated
numerical problems.

We used the discretized version of the algorithm in our
experiments. That is, instead of evaluating the measure
at dynamically computed event points we decompose the
bounding box of A into equal height horizontal strips and
evaluate Mline at each strip boundary. We also discretize the
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computation of Mline itself: we divide the scene into equal
width vertical slabs, and approximate the intersections of A
and B with a slab using a set of rectangular segments. This
means that when an edge of either of the polygons enters the
slab at height y0 and leaves it at y1 we treat it as a horizontal
edge at height (y0 + y1)/2. For the figures in this paper we
divide the bounding box of A into 100 horizontal strips, and
we use 100 vertical slabs for each computation of Mline . For
initial experiments we even used only 25 strips and slabs.
While 100 strips and slabs should result in better (more ex-
act) results we could in fact not visually distinguish between
the two sets. This implies that our approach is “stable” in a
certain sense and shows that even a quite simplified version
already gives very good results.

5. EXPERIMENTAL VALIDATION
We implemented the discretized version of our algorithm
and we performed an experimental validation. For non-
neighboring countries our algorithm is nearly equivalent to
using the centroid of regions. Hence we focus our evaluation
on neighboring regions, specifically, we tested our algorithm
on a set of neighboring countries in Europe. Table 1 dis-
plays the resulting splitting lines for 24 pairs of input re-
gions using 360 directions. Overall, the splitting line model
performs very well, computing the line that best separates
the two polygons and aligns with the reference polygon on
the shared border. The only exception is SI → IT, where the
alignment with the reference polygon (SI) outweighs the fact
that the splitting causes a small part of the target polygon
(IT) to be cut off.

To obtain the directional relations between two countries,
we could simply snap the output of our algorithm run in
360 directions to the compass directions. Instead we opted
to limit the number of sweeping directions to the 8 compass
directions. To evaluate the performance of this version of
our algorithm, we implemented the direction-relation ma-
trix and the centroids algorithms, and compared their per-
formance on a large set of neighboring countries in Europe.

ρ1 1
ρ2 0.5
ρ3 3
ρ4 4
ρ5 4

Table 2: The pa-
rameter values

The values of the parameters ρi
(Table 2), used by both the 8- and
360-directions versions of our algo-
rithm, were selected such that the
results of our algorithm match the
results of the user study (see Ap-
pendix A). In particular, the pa-
rameters were not tuned to the val-
idation set. The user study con-
tains 25 questions which use exam-
ples from related work, as well as examples designed to assess
the influence of the criteria discussed in Section 3, and was
completed by 85 people.

The output of our splitting line algorithm for a large set of
neighboring countries in Europe is shown in Table 3. Each
figure in Table 3 is accompanied by the result of the splitting
line, the centroids model, and directional-relation matrix.
We write“BE → LU: SE”to indicate that the reference poly-
gon is Belgium, the target polygon is Luxembourg and the
splitting line answers southeast. The table is sorted alpha-
betically by country codes. The directional-relation matrix
model and the centroids model show various shortcomings
on this test set. The directional-relation matrix fails if a
large part of the target polygon lies inside the bounding box
of the reference polygon (e.g., BA → ME, BE → LU, ES
→ PT, or NO → SE). In various cases, the orientation of
the shared border is important, e.g., BE → NL, BG → GR,
and RS → HU. Since the centroids model does not take the
orientation of the border into account, it gives an inaccurate
direction in these cases.

Overall, the splitting line performs very well, with very
few exceptions. In the cases NO → FI and NO → SE, the
reference country has a border which clearly favors a diag-
onal splitting line: any vertical line either has too much of
the reference polygon on the wrong side or too much target
polygon between it and the reference polygon. Here the di-
rection given by a good splitting line does not correspond to
the direction perceived. Similar situations can be observed
in the cases IT → FR, and LV → BY.

Table 1: The optimal splitting line for adjacent countries using 360 directions.

AL → ME AL → MK AT → CZ BA → ME BG → MK CZ → PL DE → PL ES → FR

FR → BE LV → LT MD → RO MK → AL MK → RS NL → BE NL → DE PL → BY

PL → SK RO → BG RO → RS RS → BA SI → AT SI → IT SK → CZ SK → HU
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Table 3: The optimal splitting line for adjacent countries.

AT → DE: NW AT → IT: S BA → ME: SE BE → DE: E BE → LU: SE BE → NL: N BG → GR: S BG → MK: SW

Centroids: NW Centroids: S Centroids: SE Centroids: E Centroids: SE Centroids: NE Centroids: SW Centroids: W

Matrix: N Matrix: S Matrix: - Matrix: NE Matrix: - Matrix: N Matrix: S Matrix: W

BY → LV: NW BY → UA: S CH → FR: W CH → IT: S CZ → DE: W CZ → PL: NE CZ → SK: SE DE → AT: SE

Centroids: NW Centroids: SE Centroids: W Centroids: SE Centroids: W Centroids: NE Centroids: E Centroids: SE

Matrix: N Matrix: SE Matrix: SW Matrix: SE Matrix: NW Matrix: N Matrix: E Matrix: -

DE → FR: SW DE → NL: W ES → FR: NE ES → PT: W FR → BE: NE FR → CH: E FR → DE: NE GR → AL: NW

Centroids: SW Centroids: W Centroids: NE Centroids: W Centroids: NE Centroids: E Centroids: NE Centroids: NW

Matrix: SW Matrix: W Matrix: N Matrix: - Matrix: - Matrix: - Matrix: NE Matrix: -

GR → BG: N GR → MK: N IE → GB: E IT → AT: NE IT → CH: NW IT → FR: W IT → SI: NE LT → LV: N

Centroids: NE Centroids: NW Centroids: E Centroids: N Centroids: NW Centroids: NW Centroids: NE Centroids: NE

Matrix: N Matrix: - Matrix: E Matrix: N Matrix: - Matrix: W Matrix: - Matrix: N

LU → DE: NE LV → BY: S MD → RO: SW MK → BG: NE MK → GR: S NL → BE: S NO → FI: SE NO → SE: SE

Centroids: E Centroids: SE Centroids: SW Centroids: E Centroids: SE Centroids: SW Centroids: E Centroids: SE

Matrix: NE Matrix: SE Matrix: W Matrix: NE Matrix: S Matrix: S Matrix: - Matrix: -

PL → CZ: SW PL → LT: NE RO → HU: NW RO → MD: NE RO → RS: SW RS → HU: NW RS → ME: SW RS → RO: NE

Centroids: SW Centroids: NE Centroids: W Centroids: NE Centroids: SW Centroids: NW Centroids: SW Centroids: NE

Matrix: - Matrix: N Matrix: W Matrix: - Matrix: - Matrix: N Matrix: - Matrix: E

SE → FI: E SE → NO: W SI → HU: E SI → IT: SW SK → CZ: NW UA → BY: N UA → MD: SW UA → RO: SW

Centroids: E Centroids: NW Centroids: E Centroids: SW Centroids: W Centroids: NW Centroids: SW Centroids: SW

Matrix: E Matrix: W Matrix: NE Matrix: SW Matrix: NW Matrix: N Matrix: - Matrix: -
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Table 4: Examples showing the splitting line, matrix decomposition and the centroids.

SplittingLine Matrix Centroids SplittingLine Matrix Centroids SplittingLine Matrix Centroids

result
no

result
no

E SW W NW SE W NW

result
no

result
no

NW N N N NW E SE

The splitting line model is, however, particularly suitable
for situations in which the two polygons are intertwined or
have very irregular shapes, where traditional models such as
directional-relation matrix model and the centroids model
offer incorrect answers. We illustrate such situations in Ta-
ble 4. The directional-relation matrix does not give any
answer in the situations in which the target polygon is con-
tained inside the bounding box of the reference polygon (ex-
amples 2, 3, 4, and 6), and gives answers which do not cor-
respond to the perceived direction in the situations in which
one of the eight cells used for determining the direction con-
tains a higher proportion of the area of the target polygon
than the other cells (examples 1 and 5). In example 1, the
answer is determined by the direction in which B can move
away from A without incurring intersections, i.e., east; in
example 5, the answer is determined by the orientation of
the shared border between the target and the reference poly-
gons, i.e., northwest.

Similarly, the centroids model does not give the desired
answer in the situations in which the shared border (exam-
ples 2, 3, 4, and 5) or the direction in which the two polygons
can be separated without incurring intersections (examples
1, 2, and 6) play the decisive role.

6. CONCLUSION
Many models for directional relations between regions are
solely based on where the majority of area of the target re-
gion lies relative to the reference region. We believe that
this is not sufficient to model directional relations. In par-
ticular, for neighboring regions the direction of the common
border seems crucial. Additionally, for intertwined regions
it seems important how the regions can be separated by
translation. Our new model is based on splitting lines. The
placement of these splitting lines is computed by optimizing
a measure that incorporates all of the above mentioned fac-
tors. While we do not believe that the directional relation
between regions can be fully captured by a single measure,
our experimental evaluation clearly shows the advantages of
the splitting line model.

Several challenges remain. If the general direction of the
common border between two regions is not straight, there
might be no good splitting line, but there might still be a
good non-linear separator. For intertwined regions a model
that is robust to extensions of insignificant area might not be

suitable: these extensions do influence whether the regions
can be separated by translation.

In the case that one of eight compass directions has to be
chosen, there are several possibilities to apply our model. We
choose a direction by comparing the quality of the splitting
lines in these directions. But an alternative would be to test
more directions and snap to one of the compass directions.
It remains open which of these possibilities is most suitable.

In this paper we argued that a directional relation model
should allow for asymmetric answers. While this is also in-
dicated by our user study, further cognitive studies would
be necessary for a better understanding of this asymmetry.
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APPENDIX
A. USER STUDY
We performed a user study to determine direction relations.
The survey contains 25 questions which use examples from
related work as well as examples designed to test for the
influence of the shape and orientation of common borders
and intertwined parts. The survey was completed by 85
people. We gave the following instructions:

In each question, you are asked to give the position
of the green shape relative to the gray shape. In
other words, you should complete the statement
”The green shape is to the (...) of the gray shape”.

You are asked to give both a general answer (one
of the four cardinal directions) and a more spe-
cific answer (one of the four cardinal directions, or
one of the ordinal directions). If you think none
of the directions match well, then tick the ”Un-
clear” checkbox. Even if you think the direction is
unclear, please select general and specific options
which match best.

These instructions were followed by the example in Fig. 15
together with the following explanation:

Figure 15: Screenshot of the user study.

In the following example, we see that the green
shape is to the North West of the gray shape.
Hence, we answered ”North West” as the specific
direction. It is debatable whether the general di-
rection is North or West, but we picked ”North”
here. The specific direction is pretty clear, so we
did not tick the Unclear box.

Table 5: The results of our user study and the three
algorithms considered (only 3 of 25 questions shown
because of space constraints).

1.

north_west
north

Specific

north_west
north

Specific

false

true

Unclear

false

true

Unclear
Splitting Line: NW

Centroids: NW

Matrix: N

2.

north_east

south_west
southeast
west

Specific

north_east

south_west
south
east
west

Specific

false

true

Unclear

false

true

Unclear
Splitting Line: N

Centroids: NW

Matrix: N

3.

north

north_westSpecific

north
north_west

Specific

false

true

Unclear

false

true

Unclear
Splitting Line: NW

Centroids: NW

Matrix: N
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