
Data Science for Software Engineering

Bogdan Vasilescu

2019 Midwest Big Data Summer School

Intro
• 2009 - 2014: MSc & PhD, TU Eindhoven
• 2014 - 2016: Postdoc, UC Davis
• 2016 - : Assistant Professor, CMU ISR

• Software analytics research lab
https://cmustrudel.github.io/

https://cmustrudel.github.io/

Today
• First session:

• Intro: the Science of Software Engineering

• Hands-on: segmented regression analysis of
interrupted time series data

• Second session:

• Intro: the Naturalness of Software theory

• Hands-on: language modeling

Today
• First session:

• Intro: the Science of Software Engineering

• Hands-on: segmented regression analysis of
interrupted time series data

• Second session:

• Intro: the Naturalness of Software theory

• Hands-on: language modeling

Many slides thanks to:

• Thomas Zimmermann, Microsoft Research:
https://speakerdeck.com/tomzimmermann

• Greg Wilson, Mozilla
https://www.slideshare.net/gvwilson/presentations

• Laurie Williams, NC State
https://www.slideshare.net/laurieannwilliams/writing-good-software-
engineering-research-papers-revisited

• Prem Devanbu, UC Davis
https://www.slideshare.net/pdevanbu/beliefevidenceicse

• Steve Easterbrook, U Toronto
http://www.cs.uoregon.edu/events/fse14/docsym_docs/FSE06DocSymp-
keynote-v5.pdf

https://speakerdeck.com/tomzimmermann
https://www.slideshare.net/gvwilson/presentations
https://www.slideshare.net/laurieannwilliams/writing-good-software-engineering-research-papers-revisited
https://www.slideshare.net/laurieannwilliams/writing-good-software-engineering-research-papers-revisited
https://www.slideshare.net/pdevanbu/beliefevidenceicse
http://www.cs.uoregon.edu/events/fse14/docsym_docs/FSE06DocSymp-keynote-v5.pdf
http://www.cs.uoregon.edu/events/fse14/docsym_docs/FSE06DocSymp-keynote-v5.pdf

Once Upon a Time...

Seven Years’ War (1754-63)

Britain loses 1,512 sailors to enemy action...

...and almost 100,000 to scurvy

Oh, the Irony

James Lind (1716-94)

1747: (possibly) the first-ever
controlled medical experiment

× cider
× sulfuric acid
× vinegar

× sea water
√oranges
×barley water

No-one paid attention until a proper Englishman repeated
the experiment in 1794...

Like Water on Stone

1992: Sackett coins the term
“evidence-based medicine”

Randomized double-blind
trials are accepted as the
gold standard for medical
research

The Cochrane Collaboration (http://www.cochrane.org/)
now archives results from hundreds of medical studies

What about Software
Engineering?

© Microsoft Corporation

Do cross-cutting concerns
cause defects?

I just submitted a bug report.
Will it be fixed?

What metrics are the
best predictors of failures?

Should I be writing unit
tests in my software
project?

Is strong code ownership good or
bad for software quality?

Does Distributed/Global software
development affect quality?

How can I tell if a piece
of software will have vulnerabilities?

Does Test Driven Development (TDD)
produce better code in shorter time?

If I increase test coverage, will that
actually increase software quality?

What is the data quality level
used in empirical studies and
how much does it actually
matter?

Are there any metrics that are indicators of
failures in both Open Source and Commercial
domains?

Software Engineering is becoming
more like modern medicine,

i.e., evidence-based

The Times They Are A-Changin’

Growing emphasis on empirical studies
in software engineering research since
the mid-1990s

Papers describing new tools or
practices routinely include results
from some kind of field study

Yes, many are flawed or incomplete,
but standards are constantly improving

3

Contributions	(RQ2)

10

Types of research contribution in ICSE 2016 submissions and acceptances

Type of
contribution

Submitted
(2002)

Submitted
(2016)

Accepted
(2002)

Accepted
(2016)

Ratio
(2002)

Ratio
(2016)

Procedure or
technique 152 (44%) 195 (37%) 28 (51%) 35 (35%) 18% 18%

Qualitative or
descriptive model 50 (14%) 22 (4%) 4 (7%) 4 (4%) 8% 18%

Empirical model 4 (1%) 29 (5%) 1 (2%) 5 (5%) 25% 17%

Analytic model 48 (14%) 54 (10%) 7 (13%) 8 (8%) 15% 15%

Tool or notation 49 (14%) 83 (16%) 10 (18%) 16 (16%) 20% 19%

Specific solution 34 (10%) 14 (3%) 5 (9%) 2 (2%) 15% 14%

Empirical Report 11 (3%) 103 (19%) 0 (0%) 31 (31%) 0% 30%

Validation	(RQ3)

12

TYPES OF VALIDATION IN ICSE 2016 SUBMISSIONS AND ACCEPTANCES

Type of result Submitted
(2002)

Submitted
(2016)

Accepted
(2002)

Accepted
(2016)

Ratio
(2002)

Ratio
(2016)

Analysis 48 (16%) 72 (14%) 11 (26%) 19 (19%) 23% 26%
Evaluation 21 (7%) 188 (35%) 1 (2%) 65 (64%) 5% 35%
Experience 34 (11%) 19 (4%) 8 (19%) 4 (4%) 24% 21%
Example 82 (27%) 61 (12%) 16 (37%) 1 (1%) 20% 2%
Underspecified 6 (2%) 94 (18%) 1 (2%) 11 (11%) 17% 12%
Persuasion 25 (8%) 37 (7%) 0 (0%) 1 (1%) 0% 3%
No validation 84 (28%) 31 (6%) 6 (14%) 0 (0%) 7% 0%

Analysis/Evaluation/Experience becoming ICSE requirement
compared to 2002

Q: What enabled this?

A: Data science played a big role

Aside:
Do we really need

evidence?

“We hold these Truths to be self-evident, …”

Engineering software is
inherently a human venture

My Favorite Little Result
Aranda & Easterbrook (2005): “Anchoring and
Adjustment in Software Estimation”

“How long do you think it will take to

make a change to this program?”

Control Group: “I’d like to give

an estimate for this project

myself, but I admit I have no

experience estimating. We’ll

wait for your calculations for

an estimate.”

Group A: “I admit I have no

experience with software

projects, but I guess this

will take about 2 months to

finish.”

Group B: “...I guess this will

take about 20 months...”

Results

Group A (lowball) 5.1 months

Control Group 7.8 months

Group B (highball) 15.4 months

The anchor mattered more than experience,
how formal the estimation method was, or
anything else.

Q: Are agile projects similarly afflicted, just on a
shorter and more rapid cycle?

© Microsoft Corporation

40 percent of major
decisions are based
not on facts, but on
the manager’s gut.
Accenture survey among 254 US managers in industry.
http://newsroom.accenture.com/article_display.cfm?article_id=4777

Opinion Source

!22

Devanbu, P., Zimmermann, T., & Bird, C. (2016, May). Belief & evidence in empirical
software engineering. In Proceedings of the 38th international conference on software
engineering (pp. 108-119). ACM.

Opinion Source
Code quality (defect occurrence) depends on
which programming language is used.  

1. Strongly Agree
2. Agree
3. Neutral
4. Disagree
5. Strongly Disagree

!22

Devanbu, P., Zimmermann, T., & Bird, C. (2016, May). Belief & evidence in empirical
software engineering. In Proceedings of the 38th international conference on software
engineering (pp. 108-119). ACM.

Opinion Source
Code quality (defect occurrence) depends on
which programming language is used.  

1. Strongly Agree
2. Agree
3. Neutral
4. Disagree
5. Strongly Disagree

!22

Devanbu, P., Zimmermann, T., & Bird, C. (2016, May). Belief & evidence in empirical
software engineering. In Proceedings of the 38th international conference on software
engineering (pp. 108-119). ACM.

Opinion Source
Code quality (defect occurrence) depends on
which programming language is used.  

1. Strongly Agree
2. Agree
3. Neutral
4. Disagree
5. Strongly Disagree

Where do they
originate?

!22

Devanbu, P., Zimmermann, T., & Bird, C. (2016, May). Belief & evidence in empirical
software engineering. In Proceedings of the 38th international conference on software
engineering (pp. 108-119). ACM.

Opinion Formation

!23

Devanbu, P., Zimmermann, T., & Bird, C. (2016, May). Belief & evidence in empirical
software engineering. In Proceedings of the 38th international conference on software
engineering (pp. 108-119). ACM.

Another example:

Perl - low entry barrier

89

The Biggest Challenge

http://tinyurl.com/nwit-randomo

Stefik et al: “An Empirical Comparison of the Accuracy Rates of Novices using the
Quorum, Perl, and Randomo Programming Languages.” PLATEAU'11

We present here an empirical study comparing the accuracy rates of novices writing
software in three programming languages: Quorum, Perl, and Randomo. The first
language, Quorum, we call an evidence-based programming language, where the
syntax, semantics, and API designs change in correspondence to the latest academic
research and literature on programming language usability. Second, while Perl is well
known, we call Randomo a Placebo-language, where some of the syntax was chosen
with a random number generator and the ASCII table. We compared novices that were
programming for the first time using each of these languages, testing how accurately
they could write simple programs using common program constructs (e.g., loops,
conditionals, functions, variables, parameters). Results showed that while Quorum
users were afforded significantly greater accuracy compared to those using Perl and
Randomo, Perl users were unable to write programs more accurately than those using
a language designed by chance.

Empirical studies are
hard to get right

Sobel, A. E. K., & Clarkson, M. R. (2002). Formal methods application:
An empirical tale of software development. IEEE Transactions on
Software Engineering, 28(3), 308-320.

• Two classes of students at Miami University of Ohio that studied
object-oriented (OO) design in a one semester course:

• Control group (random sample): OO design class

• Treatment group (volunteers): OO design class + formal methods

• No statistical difference between the abilities of the two groups
on standardized ACT pre-tests

• As project, both classes were assigned the development of an
elevator system

• Hand in functioning executable + source code (+ formal
specification written using first-order logic)

• Standard set of test cases:

• 45.5% of control teams passed all tests

• 100% of treatment teams

• Conclusions:

• “formal methods students had increased complex-
problem solving skills”

• “the use of formal methods during software
development produces ‘better’ programs”

Sobel, A. E. K., & Clarkson, M. R. (2002). Formal methods application:
An empirical tale of software development. IEEE Transactions on
Software Engineering, 28(3), 308-320.

Berry, D. M., & Tichy, W. F. (2003). Comments on" Formal methods
application: an empirical tale of software development". IEEE
Transactions on Software Engineering, 29(6), 567-571.

• “Unfortunately, the paper contains several
subtle problems. The reader unfamiliar with
the basic principles of experimental
psychology may easily miss them and
interpret the results incorrectly. Not only do we
wish to point out these problems, but we also
aim to illustrate what to look for when drawing
conclusions from controlled experiments.”

Berry, D. M., & Tichy, W. F. (2003). Comments on" Formal methods
application: an empirical tale of software development". IEEE
Transactions on Software Engineering, 29(6), 567-571.

• Confounding variables:

• differences in motivation (treatment group volunteers more
motivated)

• differences in exposure (treatment group more instruction)

• differences in learning style (treatment group better learners)

• differences in skills (outside of ACT)

• Novelty effects

• …

Why big data needs
thick data

Credits: M.-A.Storey, “Lies, damned lies, and analytics: Why big data needs thick data”

“Data is like people – interrogate
it hard enough and it will tell you

whatever you want to hear”

Anscombe’s quartet

Kay, M., Matuszek, C., & Munson, S. A. (2015, April). Unequal representation and gender stereotypes in image search results for
occupations. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 3819-3828). ACM.

Data Science for SE:

• We need appropriate research methods, applied
rigorously

• But also:

Today
• First session:

• Intro: the Science of Software Engineering

• Hands-on: segmented regression analysis of
interrupted time series data

• Second session:

• Intro: the Naturalness of Software theory

• Hands-on: language modeling

GitHub Repository Badges

Enlarged to show detail.

Trockman, A., Zhou, S., Kästner, C., and Vasilescu, B.
Adding Sparkle to Social Coding: An Empirical Study of Repository Badges in the npm Ecosystem.
International Conference on Software Engineering, ICSE, ACM (2018), 511–522.

Theory fragments
• Projects that adopt dependency management badges

have “fresher” dependencies

• because developers act on the warnings generated by

their dependency management tool

• because out-of-date dependencies would reflect

negatively on their project

• Badges with underlying analyses are stronger predictors
than badges that merely state intentions or provide links

dependenciesdependencies up to dateup to date dependenciesdependencies out of dateout of date

npmnpm v1.1.0v1.1.0

How to test?
• Idea: consider the badge adoption as an “intervention”

• Analyze the time series of dependency freshness

• Compare before vs after intervention

Evaluating the effects of an
intervention

change in slope

Evaluating the effects of an
intervention

t-test no difference

change in slope

Evaluating the effects of an
intervention

change in level

change in level

Evaluating the effects of an
intervention

t-test no difference

Interrupted time series

slope
before

slope
after

change
in level

Interrupted Time Series Design

• The strongest quasi-experimental design to evaluate
longitudinal effects of time-delimited interventions.

• How much did an intervention change an outcome of interest?

• immediately and over time;

• instantly or with delay;

• transiently or long-term;

• Could factors other than the intervention explain the change?

slope
before slope

after

change
in level

slope
before slope

after

change
in level

time: 1 2 3 … … … 100 101 102 … … … 200

slope
before slope

after

change
in level

time: 1 2 3 … … … 100 101 102 … … … 200
time after
intervention: 0 0 0 … … … 1 2 3 … … … 100

slope
before slope

after

change
in level

time: 1 2 3 … … … 100 101 102 … … … 200

 intervention: F F F … … … T T T … … … T

time after
intervention: 0 0 0 … … … 1 2 3 … … … 100

time: 1 2 3 … … … 100 101 102 … … … 200

 intervention: F F F … … … T T T … … … T

time after
intervention: 0 0 0 … … … 1 2 3 … … … 100

yi = α + β · timei +
ɣ · interventioni +
δ · time_after_interventioni + εi

β β + δ

ɣ

R time

• Data: http://bit.ly/vasilescu-midwest

http://bit.ly/vasilescu-midwest

101

102

−8 −6 −4 −2 0 2 4 6 8
Month index relative to badge

Fr
es

hn
es

s

dependenciesdependencies up to dateup to date

Time

Badge
Adoption

Month

Before Badge After Badge

R time

101

102

−8 −6 −4 −2 0 2 4 6 8
Month index relative to badge

Fr
es

hn
es

s

dependenciesdependencies up to dateup to date

Time

Badge
Adoption

Month

Before Badge After Badge

R time

101

102

−8 −6 −4 −2 0 2 4 6 8
Month index relative to badge

Fr
es

hn
es

s

dependenciesdependencies up to dateup to date

Badge
Adoption

Month

Time

Before Badge After Badge

R time

101

102

−8 −6 −4 −2 0 2 4 6 8
Month index relative to badge

Fr
es

hn
es

s

dependenciesdependencies up to dateup to date

Time

}}Decrease
in Level

Decrease
in Slope

Before Badge After Badge

R time

Data Science for Software Engineering

Part 2

Bogdan Vasilescu

2019 Midwest Big Data Summer School

Today
• First session:

• Intro: the Science of Software Engineering

• Hands-on: segmented regression analysis of
interrupted time series data

• Second session:

• Intro: the Naturalness of Software theory

• Hands-on: language modeling

Slides thanks to:

• Prem Devanbu, UC Davis

Natural languages are complex

Hmmmm….

Tiger, Tiger  
burning bright
In the forests
of the night..

Natural languages are complex

..but Natural Utterances are simple & repetitive

TIGER!!  
RUN!!!

English, த"#, German

English, த"#, German

Can be Rich, Powerful, Expressive

English, த"#, German

Can be Rich, Powerful, Expressive

..but “in nature” is mostly Simple, Repetitive, Boring

English, த"#, German

Can be Rich, Powerful, Expressive

..but “in nature” is mostly Simple, Repetitive, Boring

Statistical Models

The “naturalness of software” thesis

Programming Languages are
complex...

...but Natural Programs are simple &
repetitive.

and this, too, CAN BE EXPLOITED!!

[Hindle et al, 2011]

Repetition

Statistical Models

Make “Search”
Algorithms faster.

Non-Uniqueness (Redundancy) in a Large Java
Corpus

Pe
rc

en
t

R
ed

un
da

nc
y

0

10

20

30

40

50

60

70

80

90

100

Length of Candidate Code Fragment in Tokens

5 20 35 50 65 80

Identifiers Renamed
Exact Tokens

Non-Uniqueness (Redundancy) in a Large Java
Corpus

Pe
rc

en
t

R
ed

un
da

nc
y

0

10

20

30

40

50

60

70

80

90

100

Length of Candidate Code Fragment in Tokens

5 20 35 50 65 80

Identifiers Renamed
Exact Tokens

Non-Uniqueness (Redundancy) in a Large Java
Corpus

Pe
rc

en
t

R
ed

un
da

nc
y

0

10

20

30

40

50

60

70

80

90

100

Length of Candidate Code Fragment in Tokens

5 20 35 50 65 80

Identifiers Renamed
Exact Tokens

Software is really
repetitive.

how can we use this?

How has “naturalness”
(repetitive structure)
of Natural Language

been exploited?

Large Corpora

Language Models

Speech Recognition,
Translation, etc.

Language Models

Language Models
For any utterance U, 0 p(U) 1

If Ua is more often uttered than Ub p(Ua) > p(Ub)

Language Models
For any utterance U, 0 p(U) 1

p(“EuropeanCentralF ish”) < p(“EuropeanCentralBank”)

If Ua is more often uttered than Ub p(Ua) > p(Ub)

Language Models
For any utterance U, 0 p(U) 1

p(“EuropeanCentralF ish”) < p(“EuropeanCentralBank”)

If Ua is more often uttered than Ub p(Ua) > p(Ub)

p(for(i = 0; i < 10; fish + +)) < p(for(i = 0; i < 10; i + +))

Exploiting Code Language Models

Exploiting Code Language Models

Suggest next tokens for developers

Exploiting Code Language Models

Suggest next tokens for developers

Complete next tokens for developers

Exploiting Code Language Models

Suggest next tokens for developers

Complete next tokens for developers

Assistive (speech, gesture) coding for
convenience and disability.

Exploiting Code Language Models

Suggest next tokens for developers

Complete next tokens for developers

Assistive (speech, gesture) coding for
convenience and disability.

Statistical translation approach to
summarization & retrieval

Exploiting Code Language Models

Suggest next tokens for developers

Complete next tokens for developers

Assistive (speech, gesture) coding for
convenience and disability.

Statistical translation approach to
summarization & retrieval

fast, “good guess” static analysis.

Exploiting Code Language Models

Suggest next tokens for developers

Complete next tokens for developers

Assistive (speech, gesture) coding for
convenience and disability.

Statistical translation approach to
summarization & retrieval

fast, “good guess” static analysis.

Search-based Software Engineering.

How to build an LM.

How to build an LM.
Large Text
Corpus 

(Training)  
Statistical

Model
Design

How to build an LM.
Large Text
Corpus 

(Training)  
Statistical

Model
Design

Estimation 
Algorithm

Model

How to build an LM.
Large Text
Corpus 

(Training)  
Statistical

Model
Design

Estimation 
Algorithm

Model

Estimated using
frequency of occurrence!

How to build an LM.
Large Text
Corpus 

(Training)  
Statistical

Model
Design

Estimation 
Algorithm

Model

How to build an LM.
Large Text
Corpus 

(Training)  
Statistical

Model
Design

Estimation 
Algorithm

Model

Large Text
Corpus 
(Test)  

How to build an LM.
Large Text
Corpus 

(Training)  
Statistical

Model
Design

Estimation 
Algorithm

Model

Evaluation

Large Text
Corpus 
(Test)  

How to build an LM.
Large Text
Corpus 

(Training)  
Statistical

Model
Design

Estimation 
Algorithm

Model

Evaluation
Model  
Quality  

Large Text
Corpus 
(Test)  

What a Language Model
does

Language 
Model

What a Language Model
does

Language 
Model

..of the European Central Bank

What a Language Model
does

Language 
Model

..of the European Central Bank

p(of) p(the) p(European) p(Central) p(Bank)

What a Language Model
does

Language 
Model

..of the European Central Bank

p(of) p(the) p(European) p(Central)p(Bank)p(European) p(Central)

Language
Models

Language
Models

Vastly more complex

Language
Models

Vastly more complex

Almost always face data-sparsity

Language
Models

Vastly more complex

Novel, NLP-specific estimation methods

Almost always face data-sparsity

Evaluating a
LM’s quality

Evaluating a
LM’s quality

The words it encounters are not “too
surprising” to it.

Evaluating a
LM’s quality

The words it encounters are not “too
surprising” to it.

 Frequently encountered language events
are assigned higher probability

Evaluating a
LM’s quality

The words it encounters are not “too
surprising” to it.

 Frequently encountered language events
are assigned higher probability

 Infrequent language events are assigned
lower probability.

Evaluating a
LM’s quality

The words it encounters are not “too
surprising” to it.

 Frequently encountered language events
are assigned higher probability

 Infrequent language events are assigned
lower probability.

....measured using “Cross-Entropy”

Background
Cross Entropy

Language 
Model

public class FunctionCall {
 public static void funct1 () {

System.out.println ("Inside funct1");
 }
 public static void main (String[] args) {
 int val;
 System.out.println ("Inside main");
 funct1();
 System.out.println ("About to call funct2");
 val = funct2(8);
 System.out.println ("funct2 returned a value of " + val);
 System.out.println ("About to call funct2 again");
 val = funct2(-3);
 System.out.println ("funct2 returned a value of " + val);
 }
 public static int funct2 (int param) {
 System.out.println ("Inside funct2 with param " + param);
 return param * 2;
 }
}

Good  
Description?

Background-Entropy

X

i

�p(ei)log p(ei)

Background-Entropy

X

i

�p(ei)log p(ei)

Low Entropy

Background-Entropy

X

i

�p(ei)log p(ei)

Low Entropy High Entropy

n-gram models

• Intuition: Local Context Helps.

• Examples (NL, then code)

• multiple choice question

• item = item→next

•

n-gram models

• Intuition: Local Context Helps.

• Examples (NL, then code)

• multiple choice question

• item = item→next

•

What is
This?

n-gram models

• Intuition: Local Context Helps.

• Examples (NL, then code)

• multiple choice question

• item = item→next

•

What is
This?

n-gram models

• Intuition: Local Context Helps.

• Examples (NL, then code)

• multiple choice question

• item = item→next

•

What is
This?

n-gram models

• Intuition: Local Context Helps.

• Examples (NL, then code)

• multiple choice question

• item = item→next

•

n-gram models

• Intuition: Local Context Helps.

• Examples (NL, then code)

• multiple choice question

• item = item→next

•

What is
This?

n-gram models

• Intuition: Local Context Helps.

• Examples (NL, then code)

• multiple choice question

• item = item→next

•

What is
This?

n-gram models

• Intuition: Local Context Helps.

• Examples (NL, then code)

• multiple choice question

• item = item→next

•

What is
This?

n-gram models

• Intuition: Local Context Helps.

• Examples (NL, then code)

• multiple choice question

• item = item→next

•

What is
This?

n-gram models

• Intuition: Local Context Helps.

• Examples (NL, then code)

• multiple choice question

• item = item→next

•

n-gram models

• Intuition: Local Context Helps.

• Examples (NL, then code)

• multiple choice question

• item = item→next

• More context helps more!!

N-gram Cross
Entropy

N-gram Cross
Entropy

0

2,5

5

7,5

10

1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram

English Code

N-gram Cross
Entropy

0

2,5

5

7,5

10

1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram

English Code

N-gram Cross
Entropy

0

2,5

5

7,5

10

1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram

English Code

N-gram Cross
Entropy

0

2,5

5

7,5

10

1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram

English Code

3-4 Bits!

N-gram Cross
Entropy

0

2,5

5

7,5

10

1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram

English Code

N-gram Cross
Entropy

0

2,5

5

7,5

10

1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram

English Code

Five Bits!

The Skeptic asks..

The Skeptic asks..
Is it just that C, Java, Python... are simpler
than English?

The Skeptic asks..
Is it just that C, Java, Python... are simpler
than English?

➡ Do cross-project testing!

The Skeptic asks..
Is it just that C, Java, Python... are simpler
than English?

➡ Do cross-project testing!

➡Train on one project, Test on the others.

The Skeptic asks..
Is it just that C, Java, Python... are simpler
than English?

➡ Do cross-project testing!

➡Train on one project, Test on the others.

➡If it’s all “in the language”, entropy should be
similar.

The “Naturalness” Vision

The “Naturalness” Vision

Suggest & Complete next tokens for
developers

Assistive (speech, gesture) coding for
convenience and disability.

Code Summarization & Retrieval

Porting

“Typo” Error Correction

Search-based Software Engineering.

The “Naturalness” Vision

Suggest & Complete next tokens for
developers

Assistive (speech, gesture) coding for
convenience and disability.

Code Summarization & Retrieval

Porting

“Typo” Error Correction

Search-based Software Engineering.

Hands-on time

• Instructions: http://bit.ly/vasilescu-midwest

• Need: Python, NLTK, Pygments

http://bit.ly/vasilescu-midwest

