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Many slides thanks to:

• Thomas Zimmermann, Microsoft Research: 
https://speakerdeck.com/tomzimmermann 

• Greg Wilson, Mozilla 
https://www.slideshare.net/gvwilson/presentations 

• Laurie Williams, NC State 
https://www.slideshare.net/laurieannwilliams/writing-good-software-
engineering-research-papers-revisited 

• Prem Devanbu, UC Davis 
https://www.slideshare.net/pdevanbu/beliefevidenceicse 

• Steve Easterbrook, U Toronto 
http://www.cs.uoregon.edu/events/fse14/docsym_docs/FSE06DocSymp-
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http://www.cs.uoregon.edu/events/fse14/docsym_docs/FSE06DocSymp-keynote-v5.pdf
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Once Upon a Time...

Seven Years’ War (1754-63)

Britain loses 1,512 sailors to enemy action...

...and almost 100,000 to scurvy



Oh, the Irony

James Lind (1716-94)

1747: (possibly) the first-ever 
controlled medical experiment

× cider
× sulfuric acid
× vinegar

× sea water
√oranges
×barley water

No-one paid attention until a proper Englishman repeated
the experiment in 1794...



Like Water on Stone

1992: Sackett coins the term
“evidence-based medicine”

Randomized double-blind
trials are accepted as the
gold standard for medical
research

The Cochrane Collaboration (http://www.cochrane.org/)
now archives results from hundreds of medical studies 



What about Software 
Engineering?



© Microsoft Corporation

Do cross-cutting concerns 
cause defects?

I just submitted a bug report. 
Will it be fixed?

What metrics are the 
best predictors of failures?

Should I be writing unit 
tests in my software 
project?

Is strong code ownership good or 
bad for software quality?

Does Distributed/Global software 
development affect quality?

How can I tell if a piece 
of software will have vulnerabilities?

Does Test Driven Development (TDD) 
produce better code in shorter time?

If I increase test coverage, will that 
actually increase software quality?

What is the data quality level 
used in empirical studies and 
how much does it actually 
matter?

Are there any metrics that are indicators of 
failures in both Open Source and Commercial 
domains?



Software Engineering is becoming 
more like modern medicine, 

i.e., evidence-based



The Times They Are A-Changin’

Growing emphasis on empirical studies 
in software engineering research since 
the mid-1990s

Papers describing new tools or 
practices routinely include results 
from some kind of field study

Yes, many are flawed or incomplete, 
but standards are constantly improving
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Contributions	(RQ2)

10

Types of research contribution in ICSE 2016 submissions and acceptances

Type of 
contribution

Submitted 
(2002)

Submitted 
(2016)

Accepted 
(2002)

Accepted 
(2016)

Ratio 
(2002)

Ratio 
(2016)

Procedure or 
technique 152 (44%) 195 (37%) 28 (51%) 35 (35%) 18% 18%

Qualitative or 
descriptive model 50 (14%) 22 (4%) 4 (7%) 4 (4%) 8% 18%

Empirical model 4 (1%) 29 (5%) 1 (2%) 5 (5%) 25% 17%

Analytic model 48 (14%) 54 (10%) 7 (13%) 8 (8%) 15% 15%

Tool or notation 49 (14%) 83 (16%) 10 (18%) 16 (16%) 20% 19%

Specific solution 34 (10%) 14 (3%) 5 (9%) 2 (2%) 15% 14%

Empirical Report 11 (3%) 103 (19%) 0 (0%) 31 (31%) 0% 30%



Validation	(RQ3)

12

TYPES OF VALIDATION IN ICSE 2016 SUBMISSIONS AND ACCEPTANCES

Type of result Submitted 
(2002)

Submitted 
(2016)

Accepted 
(2002)

Accepted 
(2016)

Ratio 
(2002)

Ratio 
(2016)

Analysis 48 (16%) 72 (14%) 11 (26%) 19 (19%) 23% 26%
Evaluation 21 (7%) 188 (35%) 1 (2%) 65 (64%) 5% 35%
Experience 34 (11%) 19 (4%) 8 (19%) 4 (4%) 24% 21%
Example 82 (27%) 61 (12%) 16 (37%) 1 (1%) 20% 2%
Underspecified 6 (2%) 94 (18%) 1 (2%) 11 (11%) 17% 12%
Persuasion 25 (8%) 37 (7%) 0 (0%) 1 (1%) 0% 3%
No validation 84 (28%) 31 (6%) 6 (14%) 0 (0%) 7% 0%

Analysis/Evaluation/Experience becoming ICSE requirement 
compared to 2002



Q: What enabled this? 

A: Data science played a big role



Aside: 
Do we really need 

evidence?

“We hold these Truths to be self-evident, …”



Engineering software is 
inherently a human venture



My Favorite Little Result
Aranda & Easterbrook (2005): “Anchoring and 
Adjustment in Software Estimation”

“How long do you think it will take to 

make a change to this program?”

Control Group: “I’d like to give 

an estimate for this project 

myself, but I admit I have no 

experience estimating. We’ll 

wait for your calculations for 

an estimate.”

Group A: “I admit I have no 

experience with software 

projects, but I guess this 

will take about 2 months to 

finish.”

Group B: “...I guess this will 

take about 20 months...”



Results

Group A (lowball) 5.1 months

Control Group 7.8 months

Group B (highball) 15.4 months

The anchor mattered more than experience, 
how formal the estimation method was, or 
anything else.

Q: Are agile projects similarly afflicted, just on a 
shorter and more rapid cycle?



© Microsoft Corporation

40 percent of major 
decisions are based 
not on facts, but on 
the manager’s gut.
Accenture survey among 254 US managers in industry.
http://newsroom.accenture.com/article_display.cfm?article_id=4777



Opinion Source

!22

Devanbu, P., Zimmermann, T., & Bird, C. (2016, May). Belief & evidence in empirical 
software engineering. In Proceedings of the 38th international conference on software 
engineering (pp. 108-119). ACM.
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Opinion Source
Code quality (defect occurrence) depends on 
which programming language is used.  

1. Strongly Agree
2. Agree
3. Neutral
4. Disagree
5. Strongly Disagree

Where do they 
originate?

!22

Devanbu, P., Zimmermann, T., & Bird, C. (2016, May). Belief & evidence in empirical 
software engineering. In Proceedings of the 38th international conference on software 
engineering (pp. 108-119). ACM.



Opinion Formation

!23

Devanbu, P., Zimmermann, T., & Bird, C. (2016, May). Belief & evidence in empirical 
software engineering. In Proceedings of the 38th international conference on software 
engineering (pp. 108-119). ACM.



Another example: 

Perl - low entry barrier
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The Biggest Challenge

http://tinyurl.com/nwit-randomo

Stefik et al: “An Empirical Comparison of the Accuracy Rates of Novices using the
Quorum, Perl, and Randomo Programming Languages.” PLATEAU'11

We present here an empirical study comparing the accuracy rates of novices writing
software in three programming languages: Quorum, Perl, and Randomo.  The first
language, Quorum, we call an evidence-based programming language, where the
syntax, semantics, and API designs change in correspondence to the latest academic
research and literature on programming language usability. Second, while Perl is well
known, we call Randomo a Placebo-language, where some of the syntax was chosen
with a random number generator and the ASCII table. We compared novices that were
programming for the first time using each of these languages, testing how accurately
they could write simple programs using common program constructs (e.g., loops,
conditionals, functions, variables, parameters). Results showed that while Quorum
users were afforded significantly greater accuracy compared to those using Perl and
Randomo, Perl users were unable to write programs more accurately than those using
a language designed by chance.



Empirical studies are 
hard to get right



Sobel, A. E. K., & Clarkson, M. R. (2002). Formal methods application: 
An empirical tale of software development. IEEE Transactions on 
Software Engineering, 28(3), 308-320.

• Two classes of students at Miami University of Ohio that studied 
object-oriented (OO) design in a one semester course: 

• Control group (random sample): OO design class 

• Treatment group (volunteers): OO design class + formal methods 

• No statistical difference between the abilities of the two groups 
on standardized ACT pre-tests 

• As project, both classes were assigned the development of an 
elevator system 

• Hand in functioning executable + source code (+ formal 
specification written using first-order logic)



• Standard set of test cases: 

• 45.5% of control teams passed all tests 

• 100% of treatment teams 

• Conclusions:  

• “formal methods students had increased complex-
problem solving skills” 

• “the use of formal methods during software 
development produces ‘better’ programs”

Sobel, A. E. K., & Clarkson, M. R. (2002). Formal methods application: 
An empirical tale of software development. IEEE Transactions on 
Software Engineering, 28(3), 308-320.



Berry, D. M., & Tichy, W. F. (2003). Comments on" Formal methods 
application: an empirical tale of software development". IEEE 
Transactions on Software Engineering, 29(6), 567-571.

• “Unfortunately, the paper contains several 
subtle problems. The reader unfamiliar with 
the basic principles of experimental 
psychology may easily miss them and 
interpret the results incorrectly. Not only do we 
wish to point out these problems, but we also 
aim to illustrate what to look for when drawing 
conclusions from controlled experiments.”



Berry, D. M., & Tichy, W. F. (2003). Comments on" Formal methods 
application: an empirical tale of software development". IEEE 
Transactions on Software Engineering, 29(6), 567-571.

• Confounding variables: 

• differences in motivation (treatment group volunteers more 
motivated) 

• differences in exposure (treatment group more instruction) 

• differences in learning style (treatment group better learners) 

• differences in skills (outside of ACT) 

• Novelty effects 

• …



Why big data needs 
thick data 

Credits: M.-A.Storey, “Lies, damned lies, and analytics: Why big data needs thick data” 



“Data is like people – interrogate 
it hard enough and it will tell you 

whatever you want to hear”





Anscombe’s quartet



Kay, M., Matuszek, C., & Munson, S. A. (2015, April). Unequal representation and gender stereotypes in image search results for 
occupations. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 3819-3828). ACM.





Data Science for SE:

• We need appropriate research methods, applied 
rigorously 

• But also:











Today
• First session:


• Intro: the Science of Software Engineering


• Hands-on: segmented regression analysis of 
interrupted time series data 


• Second session:


• Intro: the Naturalness of Software theory


• Hands-on: language modeling



GitHub Repository Badges

Enlarged to show detail.

Trockman, A., Zhou, S., Kästner, C., and Vasilescu, B.  
Adding Sparkle to Social Coding: An Empirical Study of Repository Badges in the npm Ecosystem. 
International Conference on Software Engineering, ICSE, ACM (2018), 511–522.



Theory fragments
• Projects that adopt dependency management badges 

have “fresher” dependencies

• because developers act on the warnings generated by 

their dependency management tool

• because out-of-date dependencies would reflect 

negatively on their project


• Badges with underlying analyses are stronger predictors 
than badges that merely state intentions or provide links

dependenciesdependencies up to dateup to date dependenciesdependencies out of dateout of date

npmnpm v1.1.0v1.1.0



How to test?
• Idea: consider the badge adoption as an “intervention”


• Analyze the time series of dependency freshness 


• Compare before vs after intervention
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change in level

Evaluating the effects of an 
intervention

t-test no difference



Interrupted time series 

slope 
before

slope 
after

change 
in level



Interrupted Time Series Design

• The strongest quasi-experimental design to evaluate 
longitudinal effects of time-delimited interventions. 


• How much did an intervention change an outcome of interest?

• immediately and over time;

• instantly or with delay;

• transiently or long-term; 


• Could factors other than the intervention explain the change?
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slope 
before slope 

after

change 
in level

time:                  1   2   3 … … … 100  101  102 … … …  200
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time:                  1   2   3 … … … 100  101  102 … … …  200

  intervention:     F   F   F … … …   T      T      T   … … …   T

time after 
intervention:     0   0   0 … … …   1      2      3   … … …  100

yi = α + β · timei +  
ɣ · interventioni +  
δ · time_after_interventioni + εi

β β + δ

ɣ 



R time

• Data: http://bit.ly/vasilescu-midwest 

http://bit.ly/vasilescu-midwest
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Slides thanks to:

• Prem Devanbu, UC Davis



Natural languages are complex

Hmmmm….



Tiger, Tiger  
burning bright 
In the forests 
of the night..

Natural languages are complex



..but Natural Utterances are simple & repetitive

TIGER!!  
RUN!!!



English, த"#, German
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English, த"#, German

Can be Rich, Powerful, Expressive

..but “in nature” is mostly Simple, Repetitive, Boring

Statistical Models



The “naturalness of software” thesis

Programming Languages are 
complex... 

...but Natural Programs are simple & 
repetitive.  

and this, too, CAN BE EXPLOITED!! 

[Hindle et al, 2011]



Repetition

Statistical Models

Make “Search”
Algorithms faster.





Non-Uniqueness (Redundancy) in a Large Java 
Corpus

Pe
rc

en
t 

R
ed

un
da

nc
y

0

10

20

30

40

50

60

70

80

90

100

Length of Candidate Code Fragment in Tokens

5 20 35 50 65 80

Identifiers Renamed
Exact Tokens



Non-Uniqueness (Redundancy) in a Large Java 
Corpus

Pe
rc

en
t 

R
ed

un
da

nc
y

0

10

20

30

40

50

60

70

80

90

100

Length of Candidate Code Fragment in Tokens

5 20 35 50 65 80

Identifiers Renamed
Exact Tokens



Non-Uniqueness (Redundancy) in a Large Java 
Corpus

Pe
rc

en
t 

R
ed

un
da

nc
y

0

10

20

30

40

50

60

70

80

90

100

Length of Candidate Code Fragment in Tokens

5 20 35 50 65 80

Identifiers Renamed
Exact Tokens



Software is really 
repetitive.

how can we use this? 



How has “naturalness” 
(repetitive structure) 
of Natural Language 

been exploited?  



Large Corpora

Language Models

Speech Recognition,
Translation, etc. 



Language Models
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Language Models
For any utterance U,  0  p(U)  1

p(“EuropeanCentralF ish”) < p(“EuropeanCentralBank”)

If Ua is more often uttered than Ub p(Ua) > p(Ub)

p(for(i = 0; i < 10; fish + +)) < p(for(i = 0; i < 10; i + +))
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Exploiting Code Language Models

Suggest next tokens for developers

Complete next tokens for developers

Assistive (speech, gesture) coding for 
convenience and disability. 

Statistical translation approach to 
summarization & retrieval

fast, “good guess” static analysis. 

Search-based Software Engineering.
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How to build an LM. 
Large Text
Corpus 

(Training)  
Statistical

Model
Design

Estimation 
Algorithm

Model

Evaluation
Model  
Quality  

Large Text
Corpus 
(Test)  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What a Language Model 
does

Language 
Model

..of the European Central Bank

p(of) p(the) p(European) p(Central)p(Bank)p(European) p(Central)
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Language
Models

Vastly more complex 

Novel, NLP-specific estimation methods

Almost always face data-sparsity
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Evaluating a 
LM’s quality

The words it encounters are not “too 
surprising” to it.

 Frequently encountered language events 
are assigned higher probability

 Infrequent language events are assigned 
lower probability. 

....measured using “Cross-Entropy”



Background 
Cross Entropy

Language 
Model

public class FunctionCall {
    public static void funct1 () {

System.out.println ("Inside funct1");
    }
    public static void main (String[] args) {
        int val;
        System.out.println ("Inside main");
        funct1();
        System.out.println ("About to call funct2");
        val = funct2(8);
        System.out.println ("funct2 returned a value of " + val);
        System.out.println ("About to call funct2 again");
        val = funct2(-3);
        System.out.println ("funct2 returned a value of " + val);
   }
    public static int funct2 (int param) {
        System.out.println ("Inside funct2 with param " + param);
        return param * 2;
    }
}

Good  
Description?
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�p(ei)log p(ei)

Low Entropy High Entropy
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n-gram models

• Intuition: Local Context Helps.

• Examples (NL, then code) 

• multiple choice question

• item = item→next

• More context helps more!!
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N-gram Cross 
Entropy

0
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1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram

English Code

Five Bits!
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The Skeptic asks..
Is it just that C, Java, Python... are simpler 
than English? 

➡ Do cross-project testing!

➡Train on one project,  Test on the others.

➡If it’s all “in the language”, entropy should be 
similar. 
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Search-based Software Engineering.
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Hands-on time

• Instructions: http://bit.ly/vasilescu-midwest 


• Need: Python, NLTK, Pygments

http://bit.ly/vasilescu-midwest

